INTERNATIONAL RFFERENCE CIWNTHE FOR COMMUNITY WATER GUPPLY AN: SANITATION IHRCI

ACTION RESEARCH STUDY ON RAIN WATER HARVESTING

Project Report 2
Community Water Supply \& Sanitation Project
Ministry of Housing, Construction \& Public Utilities

C W S S P

- The Community Water Supply and Sanitation Project is an initiative of the Government of Sri Lanka with the support of the World Bank.
- The CWSS Programme Unit located within the Ministry of Housing, Construction \& Public Utilities coordinates the project. The Regional Directorates in Badulla, Matara and Ratnapura, support Partner Organizations and Community Based Organizations in implementing their projects.
- CWSSP supports improvements in water supply and sanitation for approximately 650,000 rural people in 2,500 villages and 17 small towns in Badulla, Matara, Ratnapura and Monaragala Districts.
- Some 1600 schools in these districts will be eligible for support to improve personal hygiene through school water supply and sanitation, and hygiene education.
- CWSSP works with over 80 partner organizations (NGOs, co-operatives, government and quasigovernment bodies) to support, motivate, organize and train communities to implement and manage their own water supply and sanitation schemes.

ADDRESS

Director
Community Water Supply \& Sanitation Project
Ministry of Housing, Construction \& Public Utilities
P.O. Bax 30,
Battaramulla, SRI LANKA

Tel: (01) 872 141/872 142
Fax: (01) 872143

```
LIBRARY, INTERNATIO:AL REFERENCE
CENTEF FO. - %, wim:IY WATER SUPPLY
```



```
Futw:,', OYAD the Haque
TEl. (0,0;81 Lul) +xt 141/142
mN:
LO:
```

CWSSP

ACTION RESEARCH STUDY ON RAIN WATER HARVESTING

Coordinated by K.D. (Deva) Hapugoda

August 1, 1995

Project Report 2
Community Water Supply \& Sanitation Project Ministry of Housing, Construction \& Public Utilities

Table of Contents
PAGE

1. Abstract 6
2. Preface 7
3. Executive Summary 8
4. Introduction 14
4.1 Purpose
4.2 Study Area
4.3 Methodology
4.4 Collection of Data
4.5 Field Visit
4.6 Construction
5. Status of Rainwater Harvesting 16
5.1 Iriyagama
5.2 Bandarawela
5.3 Galle
5.4 Kundasale
5.5 Peradeniya
6. Rainwater Harvesting Option 20
6.1 Advantages and Disadvantages of Rain Water Harvesting Systems
6.2 Feasibility
6.2.1 Rain Fall
6.2.2 Water Demand
6.2.3 Water Supply
6.3 Economics
6.3.1 Cost Scenario
6.4 Social
6.5 Design
6.5.1 Dry Season Demand Versus Supply Method
6.5.2 Mass Curve Analysis Method
6.5.2.1 Design Example
6.5.2.2 Rain Region Graph
6.6 Construction
6.6.1 Roof Catchment
6.6.2 Surface Catchment
6.6.3 Gutter System
6.6.4 Storage Tank
6.6.5 Water Extraction Device
7. Technical Options Tested 45
7.1 Ferro-Cement Tank
7.2 Brick Dome Tank
7.3 Cement Jar
8. Pilot Projects 518.1 Medawatugoda, Ratnapura
8.2 Dematawelhinna, Badulla
8.3 DorsarKanda, Matara
9. Conclusion and Recommendations 56
9.1 Technical
9.2 Economic
9.3 Social
9.4 Design
9.5 Construction
9.6 Quality

Аипехеs

1A. Terms of Reference

1. List of Main Document Consulted
2. Monthly Rain Fall Data of 10 Regions in Badulla 11 Regions in Ratnapura 5 Regions in Matara
3. $\quad 5 \mathrm{M}^{3}$ Ferro-Cement Tank Drawing
4. Table with quantities and costs of $5 \mathrm{M}^{3}$ Ferro-Cement Tank
5. $\quad 5 M^{3}$ Brick Dome Tank Drawing
6. Table with Quantities and Cost of $5 \mathrm{M}^{\mathbf{3}}$ Brick Dome Tank.
7. Map Showing Location of relevant Meteorological stations at Badulla, Ratnapura and Matara Districts.
8. Rain Region Graphs

A	-	Badulla (City)	$\}$	
B	-	Haputale	$\}$	Badulla District
C	-	Kolonne	$]$	
D	-	Ratnapura (City)	$]$	Ratnapura District
E	-	Ambilipitiya	$]$	
F	-	Kekenadora	$\}$	
G	-	AninKanda	$\}$	Matara District

9. Storage to Catchment Graphs

R - Badulla (City) \}
Q - Haputale \}
T - Ratnapura (City)
0 - Ambilipitiya
S - Kekenadora
P - AninKanda

Badulla District
] Ratnapura District
\} Matara District
10. Dry Season Supply to Catchment Graphs

X	-	Badulla (City)	$\}$	
W	-	Haputale	$\}$	Badulla District
Z	-	Ratnapura (City)	$]$	
U	-	Ambilipitiya	$]$	Ratnapura District
N	-	Kolonne	$]$	
Y	-	Kekenadora	$\}$	
V	-	AninKanda	$\}$	Matara District

11. 1.1 M^{3} Cement Jar Drawing
12. Article on Asbestos Roofing and Safety.
13. Table with Quantities and Cost of $1.1 \mathrm{M}^{3}$ Cement Jar.
14. Material and Cost Break Down of 5, 8 and 10M ${ }^{3}$ Brick Dome Tank.
15. Projected Source Coverage Maps

Abbreviations

CBO	Community Based Organization
CRO	Community Relations Officer
CRO/T	Community Relations/Technical officer
CWSSP	Community Water Supply \& Sanitation Project
DD/T	Deputy Director/Technical
G.I.	Galvanized Iron
ITDG	International Technology Develogment Group
LPCD	Liters per capita per day
M 3	Cubic Meter
NERD	National Engineering Research and Development Centre
PO	Partner Organization
PVC	Poly Vinyl chlorine
Qty	Quantity
R.C.	Run off coefficient
R.F.	Rain Fall
RS	Sri Lanka Rupees (IRS = 0.02 US\$ in June 95)
TO	Technical Officer
TSC	Technical Support Cell
UV	ultra Violet

1. Abstract

Rain water harvesting is becoming an important option for underserved households and communities in Sri Lanka. Many areas in Sri Lanka offer a good potential for the introduction of rainwater harvesting, however as many people do not appreciate the potential of rainwater harvesting for domestic and drinking water purpose this technology is undervalued.

A policy for the Community Water Supply and Sanitation Project is formulated to enhance the application of rain water harvesting methods.

In rain water harvesting reliability of the supply depends on the size of the catchment area - often the roof -, the volume of the storage tank and the management of the daily consumption, all in relation to the local rainfall pattern. The study attempts to develop a suitable technical and economical solution to the storage of drinking water, and as a result proposes brick dome and ferrocement as the two most economical options.

Quality of rain water in storage is addressed on the basis of a literature study. Maps are provided indicating areas of high suitability for rain water harvesting.

Recommendations are given in respect of further trials and field level monitoring. Promotion and awareness raising for greater appreciation of rain water harvesting is advocated.

2. Preface

This report has been drafted in the framework of the World Bank financed Community Water Supply \& Sanitation Project, executed by the Ministry of Housing, Construction \& Public Utilities, Sri Lanka.

The need to assess the feasibility of rainwater harvesting as an water supply option specially for low income households located at places where no other viable option is available, has always existed. It is an appropriate time to do this study as a number of water supply schemes under CWSSP with no traditional options, continue to increase.

Given the time frame of just three months for the preparation of this report including trial construction at places upto 200 km away from the Head Office and the limited office facilities, some issues may not be dealt with in sufficient depth. Future studies may be able to correct any such deficiencies.

Numerous persons were involved with the study and their friendly response and cooperation significantly contributed to the formulation of this report. They include the TSC Manager Mr. Han Heijnen and the staff of CWSSP at Head Office, Regional Offices in Matara, Badulla and Ratnapura and the NERD Centre, Ja-Ela.

The co-operation of UNICEF, ITDG, SARVODAYA, the Faculty of Engineering Peradeniya, Residents of Rahaspokuna, Mr. Pigera of Bandarawela, Residents of Iriyagama and the Principal of Paradise School Ratnapura need special mention. The consultant is deeply indebted to all of them.

A special thank you to Ms. Samanthika de Silva for computer analyzing the data and typing the report.

3. Executíve Summary

Introduction

An Action Research Study on Rain Water Harvesting was commissioned in January 1995 by CWSSP as part of its Research and Documentation Program.

Rainwater Harvesting appears to be the only option remaining for a number of water supply schemes, under CWSSP with no traditional options. This applies to all three districts where CWSSP is working : Matara, Badulla \& Ratnapura.

The objective of the study was to design and construct low cost rain water harvesting storage tanks and to gather existing experience in Sri Lanka on rainwater harvesting, in order to investigate the possibility to conduct Pilot Projects to develop recommendations and guidelines for the in-corporation of the rain water harvesting option in the CWSSP.

The study comprised of four main steps :

1. Design and construction of trial tanks.
2. Visits to existing rainwater harvesting places in Sri Lanka.
3. Field visits to selected pilot project villages.
4. The collection and analysis of rainfall data.

Status of Rain Water Harvesting in Sri Lanka

Presently there is no planned rainwater harvesting program in Sri Lanka.
Local investigation reveals :

- that rainwater harvesting for domestic consumption is currently in practice in Sri Lanka.
- that a section of potential consumers are looking for appropriate technology to harvest and store rain water.
- that a section of potential consumers are not sure about rainwater harvesting. They are concerned about the quality and reliability of rain water.

Rain Water Harvesting as an Option

Technical potential for rain water harvesting exists every where in the island where a suitable catchment is available.

Economic feasibility varies from place to place. It is a reasonable option where,

- Water bills are high

[^0]- \quad Traditional technical options are not economically feasible.
- Operation and maintenance of traditional methods are a major concern.

In the CWSSP rainwater harvesting is specially relevant in some 30% of the total projected project coverage where tube wells and pump systems are, envisaged, or in areas high up in the hills where there are no springs.

Various Technical Options Tested

- CWSSP criteria on rainwater collecting tanks system requires that a five cubic meter tank be built to cost below Rs. 5,400/- excluding unskilled labour.

Three types of storage tanks were studied:

Type	Capacity
Brick Dome	$5 \mathrm{M}^{3}$
Ferro-Cement	$5 \mathrm{M}^{3}$
Cement Jar	$1 \mathrm{M}^{3}$

These were designed and constructed. Construction indicates that :

- \quad The brick dome tank can be constructed to meet this criteria.
- \quad The ferro cement tank constructed, using the cost lowering method, was successful in bringing the standard cost of a $5 \mathrm{~m}^{3}$ ferro cement tank down by a impressive 50%. It is anticipated that with a few more trials the cost could be brought down further to meet CWSSP criteria, by reducing skill labour time.

COMPARISON OF DIFFERENT TANKS

Type of Tank	Total Cost/ M^{3} (1995) Rs.	Advantages	Disadvantages	Rural Level Construction
Brick Dome	' 1318	- Can be built to any capacity from 2-10M ${ }^{3}$ - Can easily be maintained \& repaired at rural level. - Dome roof prevents contamination - Water wasted is minimum due to extraction of water by pump	- Tank is under ground level - Need a pump to extract water - Difficult to empty for cleaning. - Risk of falling in by children, animals, etc.	- With a short training rural masons can built the tanks with locally available material.
Ferro-Cement (Pumpkin Shape)	1468	- Can be built upto $5 \mathrm{M}^{3}$ capacity. - Easy to maintain at rural level. - Water is well protected against outside contamination. - Convenient to take water from a gravity fed tap or siphon pipe - Safe for children and animals	- Difficult to built larger than $5 \mathrm{M}^{3}$ - The full tank is visible - Water mıght get wasted from the tap.	- With the use of a simple low cost mould possible to build at rural level with available materials.
Cement Jar	1874	- Easy to maintain \& repair at rural level. - Water is well protected against outside contamination. - Safe for children \& anımals.	- Difficult to built larger than $2 \mathrm{M}^{3}$ capacity. - Need number of jars for a house. - Takes too much ground space to keep.	- Possible to build at rural level, with available material.

Pilot Project

Three places from the three districts were identified to do pilot projects. They are :
Dematawelhinna

- Badulla District

Medawatugoda Upper Sec.

Omalpè
Dorsar Kanda

- Matara District

- At Dematawelhinna and Madawatugoda rainwater harvesting is technically and economically feasible to improve the present status of water supply. However supply per day will be less than 20LPCD from smaller catchment roofs during the dry spell in a ten year dry year. Graphs X and N depicts these scenarios. Bar graphs 3-1 \& 3-2 gives the daily supply scenarios, possible from a well managed system consisting of a $60 \mathrm{M}^{2}$ (R.C.-0.8) catchment \& $5 \mathrm{M}^{3}$ storage tank for Dematawelhinna \& Madawatugoda respectively in a normal year.

Bar Graph 3.1 \& 3.2

At Dorsarkanda available roofs are mostly covered with thatch and are not suitable for rainwater harvesting. To do rainwater harvesting here suitable catchment must be constructed.

Most householders have taken house-building loans recently and have started to build better houses with permanent roofs, suitable as catchments.

Once suitable catchment is available rainwater harvesting becomes technically and economically feasible to improve the present status of water supply Graph Y gives the dry season supply to the catchment area scenario in a ten year dry year.

Bar graph 3-3 gives the daily supply scenario, possible from a well managed system consisting of a $60 \mathrm{M}^{2}$ catchment \& $5 \mathrm{M}^{3}$ storage tank for Dorsarkanda in a normal year.

[^1]

DV Dorsarkanda

Conclusion and Recommendations

1. There is adequate social acceptance of rainwater harvesting as a source of water in areas, where there is no adequate or sustainable fresh-water source within reasonable distance. However a vast majority of the potential beneficiaries do not understand the full benefits of rainwater harvesting.

It is recommended to conduct an awareness campaign under the CWSSP targeted to potential consumers.
2. The study recommends the design and construction of the three pilot project already identified at Badulla, Ratnapura and Matara. By monitoring these projects after construction, to evaluate the technical economic and social aspects experience can be gained which in turn can be used to train the TO of Partner Organization in design and construction of rainwater harvesting systems.
3. The study recommends continued construction of ferro-cement tanks and Cement Jars with suggested improvements to bring down the cost to fall within the CWSSP cost criteria. These can be done at Regional Level.

4. From literature referred, the study concludes that the rainwater collected off

G.I. Sheet
Clay Tile \&
Asbestos

made catchment is suitable for drinking and other domestic purposes. However, the first flush of water after the dry season should be discarded. To avoid any environmental problems, tank should be made mosquito proof.

4. Introduction

The time has come where serious consideration should be given to rainwater harvesting. In the dry zone as well as in the wet zones of Sri Lanka many areas that are potentially suitable for rainwater harvesting remain undeveloped. Rural poor inhabitants of these areas continue to use highly polluted water or suffer from lack of any water, for most basic needs, resulting in high incidence of water related diseases.

At the recommendation of the National Steering Committee, an Action Study on Rain Water Harvesting in Sri Lanka was started by the CWSSP at the end of Jan' 95. It is an appropriate time to do this study as the number of water-supply schemes under CWSSP with no traditional options, continues to increase.

The study involved an investigation phase, focused on obtaining and studying past and current published literature on the subject both local and foreign, and visits to sites where rainwater harvesting is currently practiced in Sri Lanka. Investigations were followed by a note for discussion, giving the preliminary options on rainwater harvesting by the Consultant.

Technical personnel of the CWSSP contributed at the discussion. As a result CWSSP accepted as a policy to :

1. promote rainwater as a domestic supply where other acceptable sources are not feasible due to technical, maintenance or economic reasons.
2. to ensure that rainwater would prove an acceptable alternative, CWSSP adopted the strategy to improve the existing situation to a reasonable level. i.e. to supply a minimum of $\mathbf{2 0}$ lpcd during the dry season.
3. develop affordable Rainwater storage tanks

These strategic considerations and the objectives as stated in the Terms of Reference for the consultant guided the study. (See Annex 1A)

4.1 Purpose

The action research aimed to

1. design and construct a 5 cubic meter storage tank system to cost less than Rs. 5400/- excluding unskilled labour cost.
2. make appropriate recommendations for the incorporation of rainwater harvesting option in the CWSSP.
3. prepare training material so as to transfer skills to CWSSP technical staff.
[^2]
1

4.2 Study Area

The study area covers the CWSSP Project area which comprises the Districts of Badulla, Ratnapura and Matara. However, the recommendations could be adapted to any part of Sri Lanka.

4.3 Methodology

The research study comprised of the following steps.

4.3.1 Desk studies

- Preparation of a work plan for the study
- A review of published literature on the subject covering local and foreign sources.
- An analysis of rainfall data.
- Design of tank including preparation of drawings and bill of quantities.
- Study of literature on rain water quality.

4.3.2 Collection of data

- Collection of data on rainfall from the Meteorological Department Colombo.

4.3.3 Field Visit

- Survey the existing rainwater harvesting experiences.
- Assess the level of interest/demand for rainwater harvesting from potential consumers within CWSSP area.

4.3.4 Construction

- Construction of a $5 M^{3}$ Brick dome tank at Badulla
- Construction of a $5 M^{3}$ Ferrocement trial tank at Ratnapura
- Construction of a $1 \mathrm{M}^{3}$ Cement Jar at NERD Centre Ja-Ela.

B

5
\square
\square
\square
I
I
I
I

1

5. Status of Rain Water Harvesting in Sri Lanka

In Sri Lanka one can trace the evidence of rainwater harvesting back to the fifth century.

For instance, the network of storage reservoirs, swimming pools artificial streams and baffling fountains of the 5th Century rock fort of Sigiriya relied totally on rainwater harvesting. Agriculture also relied mainly on irrigation through cleverly designed, surface storage tanks (wewas).

In recent years many of this rain water collection skills have become obsolete. People now often rely on reticulated, central systems for drinking water supply and irrigation. So, presently Sri Lanka cannot claim a well planned rainwater harvesting program.

Local Investigations reveal however that

- rainwater harvesting for domestic consumption is currently in practice in Sri Lanka.
- a section of potential consumers are looking for appropriate technology to harvest and store rain water.
- a section of potential consumers are not sure about rainwater harvesting.

Details of a Few Selected Visits

5.1 Iriyagama

The residents of Iriyagama situated close to the Kandy Road at Peradeniya used mainly rain water before the town water supply system was put into operation. One house with a roof area of about 200 sq. meters has three 7000 liter tanks, made of masonry. This system built about sixty years ago is still usable. The residents had adequate water for all their domestic uses when the system was in use. The Bible School at Iriyagama too used rain water as the only source while running a 35 student hostel. Hosteliers were not allowed to bath with this water.

At present the town relies almost totally on the town's pipe water supply as their main source of water. This is unfortunate. Rainwater harvesting systems if re-used can be a useful additional source of water. However, as long as the town supply continue to supply government subsidized cheap water the interest of the resident to re-use the rainwater harvesting systems will be low.

[^3]
5.2 Bandarawela

Mr. Pigera of Bandarawela, a retired police officer, built an a underground cistern to store rainwater in 1982. This rectangular cistern is 3 meter deep and holds about 18000 liters. The catchment roof, is approximately $180 \mathrm{M}^{2}$. The tank is made by simply plastering the sides of the pit with cement mortar, and all the work was done by the unskilled members of the family. This cistern has served up to four families in the past. This is the best water supply solution for people in the hills, says Mr. Pigera who got the idea from a friend in South India. In dry parts of South India where it rains only a few months per year harvesting rainwater has a long history, according to Mr. Pigera.

Mr. Pigera \& the water system. (Hapugoda)

5.3 Galle

At the peak of the Buona Vista Hill, Galle a rainwater harvesting system is under construction. On completion rain water from part of the very large roof will fill into a 18000 liters. re-inforced concrete covered tank. The over flow from this tank is directed to a 90,000 liters open tank, through underground locally fabricated 30 cm diameter concrete pipes. The estimated cost for this system is about five hundred thousand rupees.

The Peak of Buona Vista Hill, has long suffered from lack of water. The rain water harvesting system design was proposed after an effort to supply water with tube wells and other means failed, said Mr. Lakshman Welikala, the Civil Engineer responsible for this design. The design was presented at the Tokyo International Rainwater Utilization conference in 1994.

[^4]
5.4 Kundasale

Low income families at Ahaspokuna Village in Kundasale, have on their own built 1400-1800 liter tanks out of home burnt mud bricks. Out of the seven houses visited six of them had some form of permanent roofs. The gutters were standard pvc gutters. They have improvised a cheap polythene pipe to lead the water from the gutter into the tank. The roof area in most houses was over $40 \mathrm{~m}^{2}$, and some tanks were said, never to go dry. A women in one of the houses was keen to add that they are very careful with water, as they pay up to Rs. 350 per 5000 liter bowser. At one house, a low level second tank built adjoining the main tank, collected some of the waste water for bathing, washing, etc. This is depicted in the front cover graphic. This water is re-used in the water-seal toilets. A recent aid project helped the inhabitants to build these toilets. The village households have collected and used rainwater for the last five years. Most tanks leak after about five years, however these can be repaired easily by replastering the inside.

None of the tanks had covers resulting in mosquito nuisance. One owner had some fish in the water, said to prevent mosquito breeding. The general view is that rain water is acceptable as a water source. However the cost of building tanks to store it is too costly. One family said they were willing to spend up to Rs. 10000/- in installments to build storage tanks, if they can store enough water for their domestic use.

Typical System at Kundasale (Hapugoda)

5.5 Peradeniya

The residence of the Dean of the Faculty of Engineering, University of Peradeniya has an 2.40 meter high 30 cubic meter ferro-cement tank to store rainwater from an approximately 200 square meter area of his house roof. The water is pumped into a two cubic meter overhead tank and used for all domestic purposes including washing clothes by machine, Eight adults live here. An elaborate two-pump system to pump water from a well, located about one hundred meters lower in elevation, backs up the rainwater harvesting system. However this is rarely used. The tank costs about Rs. 10000 in 1992. The Professor is very pleased and proud of the system.

(Hapugoda)

6. Rain Water Harvesting as an Option.

6.1. Advantages and Disadvantages of Rain-Water Harvesting Systems.

Advantages and disadvantages of rainwater harvesting vary depending mainly on the rainfall pattern, catchment area, storage capacity and user demand, of a situation. General advantages and disadvantages are given below.

Advantages

- the quality of rainwater can be kept high with simple precautions.
- systems can be independent
- local materials and skills can be used for the construction of the systems.
- maintenance can be done by the user.
- water is available at the dwelling, this saves time in collecting water.

[^5]- during rainy periods a highlevel of domestic service can be expected as there is adequate water collected.

disadvantages

- High initial capital cost.
- available water is limited by rainfall and catchment area.
- water has a flat taste due to lack of minerals.
- lack of minerals in the water may cause nutrition deficiencies.
- the user must learn to ration the use of water during the dry season.

6.2. Feasibility

At the Project Development Phase, once there is doubt that traditional watersupply systems are not feasible due, to technical, economic or social reasons, consideration of the feasibility of rainwater harvesting can be initiated.

In the CWSSP the choice of technology must suite remote rural communities. Construction must be possible by locally available materials and skills. in a number of hilly areas available water supply options are tube wells or high head pump systems. Both can be poor choices. To construct tube wells external expensive technical inputs are needed. Some times lack of proper roads make it very difficult for rigs to get to the right place. Pump systems need fuel or electricity on a continuous basis. Their maintenance need funds and skilled personal.

In the existing in pump schemes under CWSSP, it is seen that paying for water on a regular basis is difficult for the beneficiaries who in many cases do not have a regular income.

Communal pump pipe schemes and tube well systems create social problems due to their communal nature. In most villages there are political, social and economic differences that trickle down into the management of communal water systems. Water right issues, such as the owner of the land where the springs are, located may protest, here too rainwater harvesting can be the choice to prevent further delays.

\square
\square
\square
\square
\square

6.2.1 Rain fall

Sri Lanka is divided into two major zones, wet and dry. The dry zone occupies the majority of the land area. (65% of total land area). The dry zone gets the rain fall from North-East monsoon from November through April and the wet zone gets the rain from May through October mainly. (see figure 1).

Reliable rainfall data is required when determining the supply from the system. Rainfall data for about the last 10 year period is preferable. This information can be obtained from the Colombo Meteorological Office.

If rain-fall data for a particular area is not available by identifying the area in the $1^{\prime \prime}$ contour maps at the Meteorological Office, monthly rainfall data can be obtained from the climatically closest station to this area.

For design purposes it is important to obtain monthly rainfall data. The Met: office sells one year monthly rain fall data at Rs. 15/-(1995). A computer print out on daily rain fall data too is available for sale.

A monthly rainfall data for selected stations relevant to the study is given in Annex 2. Figure I gives mean annual rainfall for the entire country.

6.2.2 Water Demand

In a household water is used for drinking, cooking, cleaning, and washing. In rural areas under the CWSSP each person may use between 45 to 120 liters per day, if there is no restriction.

The supply from a rainwater harvesting system takes place in a variable manner depending on the rainfall pattern of a place. In the wet season in a normal year (about 6 months of the year) it can supply upto six times the dry season supply. In this way where a dry season demand is 20 liters per perṣon per day, during half the year the demand can go up to 120 liters per person per day.

The next step involves estimating the total annual demand and comparing it with the supply possible from the relevant rainwater catchment area. If the supply exceeds the demand rainwater harvesting is technically feasible.

Table 6-1 sites examples with different rainfall average and roof catchment areas.

Table 6.1

Annual Average Rainfall mm	Roof Area M^{2}	Run off Coefficient	Annual Average Supply M^{3}	Annual Minimum Demand M^{3}	Feasibility
1300	40	0.8	41.6	36.5	Feasible
1300	20	0.8	20.8	36.5	$\begin{gathered} \text { Demand too } \\ \text { high } \end{gathered}$
1750	20	0.8	28	36.5	Demand too high
1750	30	0.8	42	36.5	Feasible
3500	14	0.8	39.2	36.5	Feasible

If the supply is less than demand, then a possible solution includes increasing the catchment area, or reducing the demand for rainwater by limiting it uses to say, drinking and cooking.

6.2.3 Water Supply

Graphs $\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ (Annex 10) give possible driest (in a ten year period) season supplies in liters per day from a $5 \mathrm{~m}^{3}$ storage for catchment areas upto 200 sqr. mtrs. for selected six meteorological station regions in Badulla, Matara and Ratnapura districts.

Table 6.2 is prepared using the above graphs. The catchment area is selected as $60 \mathrm{M}^{2}$.

Table 6-2

District	Roof Area $\mathbf{M}^{\mathbf{2}}$	Storage \mathbf{M}^{3}	Dry season supply in liters from one roof per day.	
			In a area with high average annual/rainfall	In a area with low average annual rainfall
Matara	60	5	150 (Aninkanda)	65 (Kekenadora)
Ratnapura	60	5	125 (Ratnapura)	48 (Ambilipitiya)
Badulla	60	5	77 (Haputale)	62 (Badulla)

Minimum water-supply volumes are for the driest months of the driest year, in a ten year period. Water-supply can go up to six times these amounts during the remaining months depending on how wet it is.

Table 6-3 gives the possible daily supplies, in different months, from a well managed system with a $60 \mathrm{M}^{2}$ catchment and $5 \mathrm{M}^{3}$ tank, at Ambilipitiya in the Ratnapura district, in a normal year.

In all other regions in the three districts, it is possible to get a better level of service than at Ambilipitiya from a well managed rain water harvesting system as rainfall at Ambilipitiya is among the lowest in the three districts.
table 6-3
Ambilipitiya in a Normal Year [System $\mathbf{6 0} \mathrm{M}^{\mathbf{2}}$ catchment $\mathbf{5 M} \mathrm{M}^{3}$ Storage]

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly mean R.F.	75.9	66.9	120	153	112	44	55	41	71.8	201	243	160
Monthly Supply M ${ }^{3}$ [Catchment $60 \mathrm{M}^{2}$ R.C. 0.8]	3.6	3.2	5.8	7.3	5.4	2.1	2.6	2	3.4	9.7	11.7	7.7
Taken from the months supply M^{3}	3	3	5.8	7.3	3	2.1	2.6	2	3	9.7	11.7	7.7
Taken from other monthly supply M^{3}	0	0	0	0	-2.3	+. 9	+. 4	+1	0	0	0	0
Possible Supply in a day in Liters	100	100	190	240	100	100	100	100	100	315	384	250

Conclusion: In a normal year, if the tank is half full at the end of May, this catchment can supply 100 liters per day throughout the dry season months upto September. This is a very reasonable level of service for a area as dry as Ambilıpitiya.

6.3. Economics

Initial per capita capital cost of a rainwater harvesting system is high, in relation to other types of water supply systems.

A typical rainwater harvesting systems consist of

1. Suitable roof catchment
2. Gutter \& down pipe system
3. A storage tank of adequate size.
4. Device to extract water from the tank.

Normally, the catchment will be an existing roof and gutters \& down pipes. These are considered part of the building.

The major cost being in the construction of tanks, the economic analysis given below refer to the cost of tank construction.

6.3.1 Cost Scenario

Graphs O,P,Q,R,S,T (Annex - 9) give the required tank storage volumes for roof areas upto 200 square meters in 6 selected Meteorological Station regions in the three district of Badulla, Ratnapura and Matara.

Graphs $\mathbf{O}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{T}$ takes into account monthly rainfall variation of a ten year period. Tank storage volume is the requirement for the ten year dry year.

Graphs $\mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}$ (Annex -8) prepared by mass curve analysis (numerical method) were used to prepare the graphs O, P, Q, R, S, T.

Table 6.4

District	Roof Area \mathbf{M}^{2}	Minimum Supply from a roof per day lit ($M^{3} / \mathbf{Y R}$)	Storage required in Cubic Meters	
			Station with high Avg Annual R.F.	Station with Low Avg. Annual Rainfall
Matara	60	100 (36.5)	(Aninkanda) 0.6	(Kekenadora) 9.5
Ratnapura	60	100 (36.5)	(Ratnapura) 2.5	(Ambilipitiya) 17.5
Badulla	60	100 (36.5)	(Haputale) 6.75	(Badulla) 12.5

Runoff coefficient $=0.8$
If five persons live in a house with a suitable roof catchment area of $60 \mathrm{M}^{2}$ and each person requires supply of 20 lit per day, the annual required supply is 36.5 cubic meters.

Where the roof area is taken as $60 \mathrm{M}^{2}$ Table 6.4 gives required storage values within each district.
eg. At Matara district required volume is approximately from 0.6 to 11 cubic meters depending on the rainfall of the area. At Rs. 1.25 per lit for constructing a storage tanks, costs per house of $60 \mathrm{M}^{2}$ catchment roof varies between 750 to Rs. 13,750.

Comment: Storage values given in Table 6.4 are for the 10 year driest year. In a normal year the level of service improves considerably, as can be seen from Table 6.3.

Table 6.5

Tank	Capacity \mathbf{M}^{3}	Total Cost	Pump	Cost per Lit Storage Rs.
Brick Dome	5	5592	450	1.21
Brick Dome	8	8129	450	1.08
Brick Dome	10	9175	450	0.97
Ferro-Cement	5	7166	NIL	1.43
Jar	1.1		NIL	ref. annex 13

Total cost exclude transport cost.
Annex 14 gives material and cost breakdown of the brick dome tanks.
Table 6.5 gives cost per liter of storage for four types of tanks. A brick dome tank is built below ground. Therefore the cost of, extraction pump is included.

Table 6.6

Total Tank Cost (Example)

DISTRICT	Roof Area $\mathrm{M}^{\mathbf{2}}$	Possible min Supply per day from a roof (house) Liters in a ten year dry year	Total Cost per Tank System	
			Area with high Avg. Rain Fall Rs.	Area with Low Avg. Rain Fall Rs.
Matara	60	100	750	11,875
Ratnapura	60	100	3125	21,875
Badulla	60	100	8438	15,625

Table 6.7

CWSSP Contribution as 80% of Total Cost

DISTRICT	Roof Area M ${ }^{2}$	Possible min Supply per day from a roof (house) Liters in a ten year dry year	CWSSP Cost per Tank System	
			Area with high Avg. Rain Fall Rs.	Area with Low Avg. Rain Fall Rs.
Matara	60	100	600	9,500
Ratnapura	60	100	2500	17,500
Badulla	60	100	6750	12,500

Tables 6-6\&6-7 gives general trend of the costs of rainwater harvesting in the relevant three districts, where the minimum supply for a house per day is 100 liters in a ten year dry year.

To bring the CWSSP contribution down to Rs. 5390/-, options are,

1. to increase the catchment area.
2. to lower to minimum service level, for the ten year dry year.
3. to select a relevant low cost tank option.

Various scenarios, to be considered in Badulla are as follows.
Table 6-8 gives the cost scenario when minimum supply per day in a ten year dry year from a roof is 50 liters.

Table 6.8

Catchment area M^{2}	40	60	80
Annual Supply (R.C.. M^{3}	56	84	112
Annual Demand M^{3}	18.3	18.3	18.3
Demand as \% of Supply	33	22	16
Required Storage as $\%$ of Supply. (From Rain Region graph A Annex 8)	9	4	1.5
Required Storage M^{3}	5	3.4	1.7
Total Cost of Storage Rs.	6250	4250	2125
CWSSP Cost Rs.	5000	3400	1700

Table 6-9 gives the cost scenario when minimum supply per day in a ten year dry year from a roof is 75 liters.

Table 6.9

Catchment area M^{2}	40	60	80	100
Annual Supply $(R . C=0.8) \mathrm{M}^{3}$	56	84	112	140
Annual Demand M^{3}	27.4	27.4	27.4	27.4
Demand as \% of Supply	49	33	25	20
Required Storage as \% of Supply. (From Rain Region graph A Annex 8)	18	9	5	2.5
Required Storage M^{3}	10	7.6	5.6	3.5
Total Cost of Storage Rs.	12,500	9,500	7,000	4,375
CWSSP Cost Rs.	10,000	7,600	5,600	3,500

Note: 1. In a normal year minimum supply per day is more than double.
2. Six months of the year, when it is wet supply per day from a roof can go up six times the supply volume, of the dry months, in the same system.

Possible daily supply in liters from a well managed Rain Water Harvesting System in a normal year in the Badulla Rain Region, consisting of different size catchments and a $5 \mathrm{M}^{3}$ storage tank, is given in Table 6-10.

Table 6-10

Catchment Area \mathbf{M}^{2}	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
20	70	70	70	70	70	70	70	70	70	70	70	70
30a	100	100	100	100	100	100	80	65	110	184	200	125
40	252	100	100	100	100	100	100	100	148	250	260	250
60	383	110	187	252	100	100	100	131	228	365	409	377

Note: a With a $5.5 \mathrm{M}^{3}$ Tank possible to manage a minimum supply of 100 LPD.

6.4. Social

Once it has been tentatively established that it is technically and economically feasible to construct a rain water harvesting system, the next step involves social and community assessment. This stage is critical to the success of the scheme.

Consideration must be given to traditional practices within the community. The role of women and children is carrying water, existing catchment possibilities, palatability of rain water, communal vs individual systems, and maintenance expenditure management.

At the end the community members should willingly choose the option of rainwater harvesting.

6.5. Design

The design stage of the project involves in sizing the storage tank. Two acceptable methods are discussed below.

6.5.1 Dry season demand versus supply method

To determine the required tank volume multiply the days of the longest dry period by the amount of water required per day.
e.g at Badulla.

To supply 100 lit per day per house to accommodate a 50 day dry period, the required storage volume is:

$$
100 \times 50=5000 \mathrm{M}^{3}
$$

This method gives only a rough estimate of the storage required. It does not take into account the variation in the annual rainfall pattern.

1

Table 6-11 gives water supply scenario from a $5 \mathrm{M}^{3}$ tank.
FIXED - \quad Storage Capacity 5000 Liters

Table 6-11

Length of Drought Days	Family of 6 available Water per Person per Day	Family of 5 Available Water per Person per Day
14	60	70
21	40	48
28	30	36
35	24	29
42	20	24
49	17	20
56	15	18
63	13	16
70	12	14
77	11	13
84	10	12
91	9	11

Note : The possible service level in 70 to 90 day dry spell is considered adequate for most basic needs such as drinking and cooking.

6.5.2 Mass curve analysis method

A more accurate method of sizing a tank, involves an analysis of monthly rainfall data using the mass curve technique. Best is to use approximately the latest 10 years of data. As an example, the data for the Badulla area is analysed below.

Badulla Monthly Rainfall data (mm) is in Table 6-12.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
1985	171.2	76.1	185.4	75.6	82.2	16.9	52.0	133.6	90.8	233.3	188.9	245.1	1551.10
1986	721.5	136.8	281.0	250.1	120.4	2.0	71.3	98.0	65.8	376.2	131.4	207.8	2462.30
1987	206.5	42.7	85.7	218.7	171.6	3.6	10.2	62.9	175.0	273.8	165.2	88.4	1504.30
1988	48.4	59.0	198.7	249.0	35.6	30.0	51.9	246.1	136.8	147.1	350.9	241.5	1795.00
1989	201.0	14.9	80.2	114.1	51.3	39.0	216.7	76.5	249.6	295.7	267.6	106.4	1713.00
1990	386.0	118.8	156.0	149.0	101.3	8.4	105.3	43.0	172.5	179.1	151.7	332.3	1903.40
1991	347.9	39.1	101.1	219.0	90.3	48.0	25.4	31.0	147.4	155.9	153.1	300.8	1659.00
1992	85.3	0.0	0.0	46.6	85.2	0.3	48.0	32.6	63.2	112.1	584.1	245.0	1302.40
1993	63.9	36.4	76.6	97.7	236.3	86.6	101.7	85.2	134.2	270.0	241.1	329.8	1759.50
1994	247.6	129.6	42.3	159.1	17.2	26.5	17.2	37.2	197.4	320.0	328.4	343.5	1866.00
Average	247.9	65.3	120.7	157.9	99.1	26.1	70.0	84.6	143.3	236.3	256.2	244.1	1751.6
Standard Deviation	190.6	45.9	79.4	70.0	61.7	25.4	57.7	62.3	56.0	81.1	131.1	85.3	292.6

Rain Fall Analysis - Badulla

SddCRRoportrow/ Angust 7, 1995 9:09am

1
 !
 I

I
I
I
!
!
!
I
I
!
!
!
|
I
'

6.5.2.1 Design (example Badulla)

\author{

1. Roof size $60 \mathrm{M}^{2}$
 Run off coefficient 0.8
}
2. Average yearly supply $=$ Area x runoff coeff. x average annual rainfall
$=60 \times 0.8 \times 1.75$
Average annual rainfall $=1750 \mathrm{~mm}$ (1985 to 1994)
3. Table of Mass Curve Analysis
4. Decide monthly
demand (supply) = 1500 liters
5. From the mass curve analysis (Table 6-13)
the storage requirement
is determined as $=464548.8-461548.8=3000$ liters
(Total amount stored in the 85th Month minus 87th Month)
$\begin{array}{ll}\text { Comment: } & \begin{array}{l}\text { In the above case it is possible to give an extra level of service with a } 5000 \\ \text { liter storage tank, which can be constructed within CWSSP criteria in Badulla. }\end{array}\end{array}$

RAINWATER HARVEST STUDY
RAINFALL MASS CURVE ANALYSIS - MONTHLY
BADULLA 1985 TO 1994
(Numerical Method)
ROOF AREA $=60 \mathrm{M}^{2}$
RUN OFF COEFFICIENT $=0.8$

Month	Monthy Rainfall	Monthly Supply Liters	Cumulative Supply Liters	Monthly Demand Liters	Amount Stored Liters	Total Amount Stored Liters	Required Tank Volumn Liters	
1	0.0	0.0	0.0	0	0.0	0.0		48
2	0.0	0.0	0.0	0	0.0	0.0		48
3	0.0	0.0	0.0	0	0.0	0.0		48
4	75.6	3628.8	3628.8	1500	2128.8	2128.8		48
5	82.2	3945.6	7574.4	1500	2445.6	4574.4		48
6	16.9	811.2	8385.6	1500	-688.8	3885.6		48
7	52.0	2496.0	10881.6	1500	996.0	4881.6		48
8	133.6	6412.8	17294.4	1500	4912.8	9794.4		48
9	90.8	4358.4	21652.8	1500	2858.4	12652.8		48
10	233.3	11198.4	32851.2	1500	9698.4	22351.2		48
11	188.9	9067.2	41918.4	1500	7567.2	29918.4		48
12	245.1	11764.8	53683.2	1500	10264.8	40183.2		48
13	721.5	34632.0	88315.2	1500	33132.0	73315.2		48
14	136.8	6566.4	94881.6	1500	5066.4	78381.6		48
15	281.0	13488.0	108369.6	1500	11988.0	90369.6		48
16	250.1	12004.8	120374.4	1500	10504.8	100874.4		48
17	120.4	5779.2	126153.6	1500	4279.2	105153.6		48
18	2.0	96.0	126249.6	1500	-1404.0	103749.6		48
19	71.3	3422.4	129672.0	1500	1922.4	105672.0		48
20	98.0	4704.0	134376.0	1500	3204.0	108876.0		48
21	65.8	3158.4	137534.4	1500	1658.4	110534.4		48

Rain Water JJavosling . $P_{\text {ago }} 34$
SddSCRaporthwh/ August 7, $19959.09 a m$

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	1
1	1
1	1

Month	Monthy Rainfall	Monthly Supply Liters	Cumulative Supply Liters	Monthly Demand Liters	Amount Stored Liters	Total Amount Stored Liters	Required Tank Volumn Liters	
22	376.2	18057.6	155592.0	1500	16557.6	127092.0		48
23	131.4	6307.2	161899.2	1500	4807.2	131899.2		48
24	207.8	9974.4	171873.6	1500	8474.4	140373.6		48
25	206.5	9912.0	181785.6	1500	8412.0	148785.6		48
26	42.7	2049.6	183835.2	1500	549.6	149335.2		48
27	85.7	4113.6	187948.8	1500	2613.6	151948.8		48
28	218.7	10497.6	198446.4	1500	8997.6	160946.4		48
29	171.6	8236.8	206683.2	1500	6736.8	167683.2		48
30	3.6	172.8	206856.0	1500	-1327.2	166356.0		48
31	10.2	489.6	207345.6	1500	-1010.4	165345.6		48
32	62.9	3019.2	210364.8	1500	1519.2	166864.8		48
33	175.0	8400.0	218764.8	1500	6900.0	173764.8		48
34	273.8	13142.4	231907.2	1500	11642.4	185407.2		48
35	165.2	7929.6	239836.8	1500	6429.6	191836.8		48
36	88.4	4243.2	244080.0	1500	2743.2	194580.0		48
37	48.4	2323.2	246403.2	1500	823.2	195403.2		48
38	59.0	2832.0	249235.2	1500	1332.0	196735.2		48
39	198.7	9537.6	258772.8	1500	8037.6	204772.8		48
40	249.0	11952.0	270724.8	1500	10452.0	215224.8		48
41	35.6	1708.8	272433.6	1500	208.8	215433.6		48
42	30.0	1440.0	273873.6	1500	-60.0	215373.6		48
43	51.9	2491.2	276364.8	1500	991.2	216364.8		48
44	246.1	11812.8	288177.6	1500	10312.8	226677.6		48
45	136.8	6566.4	294744.0	1500	5066.4	231744.0		48
46	147.1	7060.8	301804.8	1500	5560.8	237304.8		48
47	350.9	16843.2	318648.0	1500	15343.2	252648.0		48
48	241.5	11592.0	330240.0	1500	10092.0	262740.0		48

1

Month	Monthy Rainfall	Monthly Supply Liters	Cumulative Supply Liters	Monthly Demand Liters	Amount Stored Liters	Total Amount Stored Liters	Required Tank Volumn Liters	
49	201.0	9648.0	339888.0	1500	8148.0	270888.0		48
50	14.9	. 715.2	340603.2	1500	-784.8	270103.2		48
51	80.2	3849.6	344452.8	1500	2349.6	272452.8		48
52	114.1	5476.8	349929.6	1500	3976.8	276429.6		48
53	51.3	2462.4	352392.0	1500	962.4	277392.0		48
54	39.0	1872.0	354264.0	1500	372.0	277764.0		48
55	216.7	10401.6	364665.6	1500	8901.6	286665.6		48
56	76.5	3672.0	368337.6	1500	2172.0	288837.6		48
57	249.5	11976.0	380313.6	1500	10476.0	299313.6		48
58	295.7	14193.6	394507.2	1500	12693.6	312007.2		48
59	267.6	12844.8	407352.0	1500	11344.8	323352.0		48
60	106.4	5107.2	412459.2	1500	3607.2	326959.2		48
61	386.0	18528.0	430987.2	1500	17028.0	343987.2		48
62	118.8	5702.4	436689.6	1500	4202.4	348189.6		48
63	156.0	7488.0	444177.6	1500	5988.0	354177.6		48
64	149.0	7152.0	451329.6	1500	5652.0	359829.6		48
65	101.3	4862.4	456192.0	1500	3362.4	363192.0		48
66	8.4	403.2	456595.2	1500	-1096.8	362095.2		48
67	105.3	5054.4	461649.6	1500	3554.4	365649.6		48
4	43.0	2064.0	463713.6	1500	564.0	366213.6		48
69	172.5	8280.0	471993.6	1500	6780.0	372993.6		48
70	179.1	8596.8	480590.4	1500	7096.8	380090.4		48
71	151.7	7281.6	487872.0	1500	5781.6	385872.0		48
72	332.3	15950.4	503822.4	1500	14450.4	400322.4		48
73	347.9	16699.2	520521.6	1500	15199.2	415521.6		48
74	39.1	1876.8	522398.4	1500	376.8	415898.4		48
75	101.1	4852.8	527251.2	1500	3352.8	419251.2		48

Month	Monthy Rainfall	Monthly Supply Liters	Cumulative Supply Liters	Monthly Demand Liters	Amount Stored Liters	Total Amount Stored Liters	Required Tank Volumn Liters	
76	219	10512.0	537763.2	1500	9012.0	428263.2		48
77	90.3	4334.4	542097.6	1500	2834.4	431097.6		48
78	48.0	2304.0	544401.6	1500	804.0	431901.6		48
79	25.4	1219.2	545620.8	1500	-280.8	431620.8		48
80	31.0	1488.0	547108.8	1500	-12.0	431608.8		48
81	147.4	7075.2	554184.0	1500	5575.2	437184.0		48
82	155.9	7483.2	561667.2	1500	5983.2	443167.2		48
83	153.1	7348.8	569016.0	1500	5848.8	449016.0		48
84	300.8	14438.4	583454.4	1500	12938.4	461954.4		48
85	85.3	4094.4	587548.8	1500	2594.4	464548.8		48
86	0.0	0.0	587548.8	1500	-1500.0	463048.8		48
87	0.0	0.0	587548.8	1500	-1500.0	461548.8		48
88	46.6	2236.8	589785.6	1500	736.8	462285.6		48
89	85.2	4089.6	593875.2	1500	2589.6	464875.2		48
90	0.3	14.4	593889.6	1500	-1485.6	463389.6		48
91	48.0	2304.0	596193.6	1500	804.0	464193.6		48
92	32.6	1564.8	597758.4	1500	64.8	464258.4		48
93	63.2	3033.6	600792.0	1500	1533.6	465792.0		48
94	112.1	5380.8	606172.8	1500	3880.8	469672.8		48
95	584.1	28036.8	634209.6	1500	26536.8	496209.6		48
96	245.0	11760.0	645969.6	1500	10260.0	506469.6		48
97	63.9	3067.2	649036.8	1500	1567.2	508036.8		48
98	36.4	1747.2	650784.0	1500	247.2	508284.0		48
99	76.6	3676.8	654460.8	1500	2176.8	510460.8		48
100	97.7	4689.6	659150.4	1500	3189.6	513650.4		48
101	236.3	11342.4	670492.8	1500	9842.4	523492.8		48
102	86.6	4156.8	674649.6	1500	2656.8	526149.6		48

[^6]SdsCRaportirwh/August 7, 1995 9:09am

I

Month	Monthy Rainfall	Monthly Supply Liters	Cumulative Supply Liters	Monthly Demand Liters	Amount Stored Liters	Total Amount Stored Liters	Required Tank Volumn Liters	
103	101.7	4881.6	679531.2	1500	3381.6	529531.2		48
104	85.2	4089.6	683620.8	1500	2589.6	532120.8		48
105	134.2	6441.6	690062.4	1500	4941.6	537062.4		48
106	270.0	12960.0	703022.4	1500	11460.0	548522.4		48
107	241.1	11572.8	714595.2	1500	10072.8	558595.2		48
108	329.8	15830.4	730425.6	1500	14330.4	572925.6		48
109	247.6	11884.8	742310.4	1500	10384.8	583310.4		48
110	129.6	6220.8	748531.2	1500	4720.8	588031.2		48
111	42.3	2030.4	750561.6	1500	530.4	588561.6		48
112	159.1	7636.8	758198.4	1500	6136.8	594698.4		48
113	17.2	825.6	759024.0	1500	-674.4	594024.0		48
114	26.5	1272.0	760296.0	1500	-228.0	593796.0		48
115	17.2	825.6	761121.6	1500	-674.4	593121.6		48
116	37.2	1785.6	762907.2	1500	285.6	593407.2		48
117	197.4	9475.2	772382.4	1500	7975.2	601382.4		48
118	320.0	15360.0	787742.4	1500	13860.0	615242.4		48
119	328.4	15763.2	803505.6	1500	14263.2	629505.6		48
120	343.5	16488.0	819993.6	1500	14988.0	644493.6		48

Though accurate it is too complicated a method to determine the storage capacity when a project involves close to a hundred houses of different roof catchment sizes.

Here it is useful to prepare graphs, applicable to any roof sizes and demand related to a set of rainfall data, relevant to an area or region.

- There graphs are named as Rain Region Graphs in this report. Details of these Rain Region graphs are given in the section 6.5.2.2.

6.5.2.2. Rain Region Graph

For the Badulla region rainfall data, the rain region graph is given in graph A of Annex 8.

Rain Region Graphs for

Haputale] Badulla District
Ratnapura	$\}$
Ambilipitiya	$\}$ Ratnapura District
Kolonna	$\}$
Kekenadora]
Aninkanda] Matara District

are given in Annex 8. These represent high \& low average rainfall regions in the three districts.

This is a useful graph though it was derived from a particular roof. It works for all demands for any roof area and with any run off co-efficient. This graph can be used in the field to analyse individual systems located in one area. The graph is prepared by repeating mass curve analysis for a set of data using different demands. These graphs can be plotted easily by regional technical staff.

Assumptions used in the above analysis.

- Demand is the same for every month.
- Demand is constant from year to year.
- Rainfall pattern in the future will be similar to pattern of rainfall data used.
- Evaporation from tanks is included in the run off co-efficient.

6.6. Construction

Construction of a Rainwater Harvesting system include the catchment, the gutter system, storage and a water extraction device.

6.6.1 Roof catchment

The roof should be made of suitable materials such as galvanized iron (G.I.) sheet. Thatched roofs are not suitable as decaying vegetative materials would add taste and colour to the water. However this water can be used for livestock irrigation and to flush toilet. There should be no trees over shadowing the roof as falling leaves also would act similarly. If Gl roofs are painted the paint should be non toxic. Generally there is a fear of using asbestos roofs as rainwater catchment. Some authorities maintain that this fear is not justified as the fibre causes cancer only when inhaled (Annex 12). Tiled roofs have the drawback, that they are difficult to clean, and are susceptible to algae growth. The best option seem to be Gl sheets painted with non toxic paint.

Most roofs in rural Sri Lanka are made of or fast becoming made of GI sheet or tiles.

6.6.2 Surface catchment

Where there is no suitable roof catchment rainwater can be harvested by construction of an impervious surface on the ground itself.

Chicken wire re-inforced concrete floor costs about Rs. $250 / \mathrm{m}^{2}$
A cheaper catchment surface can be made by laying a piece of plastic sheeting in a shallow excavated and levelled area as given in the drawing. The estimated cost to be around Rs. $50 / \mathrm{m}^{2}$ for a $60 / \mathrm{m}^{2}$ area.

LOW COST GROUND LEVEL CATCHMENT

SWCRCR Roortwhid Angout 7, 1995 9:09an

1 1 1 1
 I
 ! I I I I I I I
 I I

6.6.3 Gutter System

Effective guttering is an important part of the roof catchment systems. GI and UPVC can be used for gutters and down pipes. Sizing will depend on the roof area.

A facility to catch the first flush or bypass for flushing the roof is essential. For small systems this can be done by simply fixing a small length of flexible hose at the end of the down pipe. When the roof is being flushed the flexible hoses should be taken out of the storage tank inlet, and directed to a drain. Once the roof is clean this could be inserted back into the storage tank.

Just before the rainy season the roof is usually cleaned by sweeping off the impurities collected on it such as dust, leaves, bird dropping etc. The first rainfall is then used to flush the roof by keeping the bypass open.

$$
\text { Table } 6-14
$$

Standard PVC Gutters and Down Pipes for a $\mathbf{6 0} \mathbf{m}^{\mathbf{2}}$ roof.
(length of gutters - 15 meters)

Item	Unit	Qty	Unit Cost	Cost
Gutters	meters	15	87	1305
Clips	No	25	13	325
Center Running Head	No	02	80	160
Down Pipe	meters	7.5	60	450
TOTAL				

Cost (May 95) Rs.

1

Table 6-15

Low cost $\mathbf{G I}$ sheet gutters and polythene tube down pipe for a $\mathbf{6 0} \mathrm{m}^{\mathbf{2}}$ roof. (Length of gutters - 15 meters)

Item	Unit	Qty	Unit Cost	Cost
Gl sheet	M^{2}	6	100	600
Nylon Rope	M	12	7	84
Polythene Tube	M	6	6.50	39
Other				100
TOTAL				823

Cost (May 95) Rs.

6.6.4 The Storage Tank

A satisfactory storage tank is the most important part of a Rainwater Harvesting System. Its construction must be simple to manage at rural level, and result in a durable tank.

Three trial tanks were constructed to test various tank options. Details are given in chapter 7.

[^7]

Table 6-16

Comparison of Different Tanks

Type of Tank	Total Cost M^{3} (1995)	Can be Built above Ground	Resistanc e to UV Light	Minor Repairs at Rural Level	Remarks
Fibre Glass	5500	Yes	Poor	Difficult	
HDPE	5500	Yes	Good	Difficult	
Ferrocement	1468	Yes	Good	Easy	Cost can be brought down
Brick dome	1318	No	Good	Easy	Can be built above ground with reenforcement.
Jar	1874	Yes	Good	Easy	Cost can be brought down

6.6.5 Water Extraction Device

When storage tanks are build above ground water can be extracted by fixing a tap at the bottom of the tank or by siphoning the water with a tube with a tap attached at the point of collection.

When storage is underground a low-cost home-made PVC pump can be used to extract the water.

!

Table 6-17 gives the material and cost breakdown.
Table 6-17

Rain Water Harvesting Low Head Home Made PVC Hand Pump

Item	Unit	Qty	Unit Cost	Cost
3/4" Foot Valve	No	01	150	150
3/4" Valve Socket	No	01	10	10
3/4" Bend	No	02	10	20
$11 / 4 \times 3 / 4$ Reducing Socket	No	01	22	22
1 1/4" Pipe	Mtr	0.5	65.6	32.8
3/4" Pipe	Mtr	4	30	120
Plunger	No.	1	30	30
TOTAL				424.8
Say				450/-

Costs (May 95) Rs.

7. Technical Options Tested

Three types of storage containers were constructed as trials. The objective being to build tanks with $5 \mathrm{M}^{3}$ storage capacity at a cost below Rs. $5400 /$-, excluding unskilled labour.

7.1 Ferro-Cement Tank

The-ferro-cement tank (built above ground) is based on an a idea by Neil Herath - Rural Water Supply Engineer (CWSSP). It is a pumpkin shaped $5 \mathrm{M}^{3}$ ferro cement tank was successfully constructed by R.M.N.D. Illukumbura Senior Technical officer Ratnapura CWSSP.

A skeleton mould, made out of shaped 1" 'L'irons, is fixed around a circular foundation with horizontal rings made of 6 mm mild steel bars at different heights to stabilise and to give the pumpkin shape. Two layers of $1 / 2^{\prime \prime}$ chicken-mesh are used as re-inforcement.

Material and cost break-down is given in Annex - 4.
Tank drawing is given in Annex - 3.

[^8]

Actual material plus skilled labour plus mould cost of the tank is Rs. 5441. Under normal circumstances the cost of the ferro-cement pumpkin shaped tank is above the project criteria.

However by over-coming various constraints and delays that occurred during the construction phase, it should be possible to bring down the cost to meet financial project criteria. The construction method had many novel features, and with experience, the construction time will be reduced saving on skill and labour costs.

[^9]Construction Phase scaffolding arrangement is given below :

Illukumbura suggests

- To reduce the time of skilled labour and cement waste.

1. The skeleton mould to have at least 8 verticals and $6 \mathrm{~mm} \Phi$ rebar (removable) horizontal rings, every 10 cm vertically.
2. To plaster the exterior of the walls first and to remove the mould from inside the tank to do the inside plaster, and complete the tank.

This trial tank was built at Paradise School premises in Kuruwita Ratnapura. The co-operation and help of the school principal Mrs P.I. Wimalasiri must be mentioned here with gratitude.

"

7.2 Brick-dome tank (built under ground)

The brick masonry tank was built at a potential rainwater harvesting site at Badulla. With actual material plus skilled labour the cost of the tank is Rs. 4298. In addition the transport of materials cost Rs. 1000/-. Under normal circumstances the brick rainwater storage tank will be acceptable within the project criteria and will be affordable to the householder in terms of labour and cash.

The roof of the tank is made of $1 / 4$ brick thick in the shape of a dome without the use of a mould. The tank can be completed by a crew of one skilled worker and three helpers in three days, excluding excavation.

An engineer and a skilled worker from the NERD Centre Ja-Ela, conducted a training course in the construction of the tank, for the technical staff and village masons involved in the project in the Badulla District. The tank is currently being inco-operated into a rainwater harvesting system.

The trial tank construction at Badulla, included the following input from the Regional Office.

- Selection of a site at a project village.
- Supply \& transport of materials to site.
- Provision of transport for trainees and trainers, from the Regional Office to the site for 3 days.

The Regional Director and District Engineer gave their fullest support in arranging these inputs. Special mention must be made of young resource engineer Wijaya Widyaratne and CRO Sunil Ratnasiri for their positive attitude, which enabled the work to get organized with short notice, to be completed on time.

Material and cost break-down in Annex 6.

Tank drawing in Annex - 5.

```
Rain Wator Harvasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 49
SHJCNPaportimulL Angutt 7,1995 9:09am
```


7.3. Cement Jars

Cement Jars of 1 to $2 \mathrm{M}^{3}$ capacity are popular rainwater storage containers used in Thailand. Investigations reveal that these Jars are not made in Sri Lanka. Available data on cement jars were collected.

Trial Jar of one above $1 \mathrm{M}^{3}$ capacity was constructed at National Engineering Research and Development Centre Ja-Ela.

One layer of $1 / 2^{\prime \prime}$ chicken mesh fixed on to a skeleton made of 6 mm re-bar placed 9" apart both ways (horizontally and vertically) and plastered with 1:3 cement sand mortar to a 1 " thick wall. The inside is made water-proof by painting with cement slurry.

Cover is made separately with $1 / 2$: "chicken mesh" re-inforced cement mortar and fixed on to the lower section, which has the shape of a bucket.

Drawing is given in Annex - 11 .

Cost break down is given in Annex 13.

7.4 Clay pot or Jars

Clay pot of upto 200 liter capacity are made at Molagoda on the Kandy, Colombo Road.

Market price of a 200 liter Clay Jar or Pot is Rs. 1500/-. Cost per liter Rs. 7.50.

Conclusion - Cost per liter is too high compared to the cost of all other types of storage tanks.

8. Pilot Project

Three villages in the three districts, where standard options, are not feasible due to technical economic and social reasons, were identified and visited.
They are:

8.1. Madawatugoda Upper Section, in Omalpe Ratnapura District.

Here about 40 tile-roofed small households live on the slope of a high hill. Few springs are available below house levels, but they are used to irrigate the paddy lands below, and the farmers do not allow them to be used for piped domestic supply.

Two visits were made to Madawatugoda during the period of study. The climatically closest meteorological station to Madawatugoda is at Kollone, with an average annual rainfall of 1.7 meters. (1955-1965).

Available tile \& GI sheet roofs can be used as catchment areas. Roof areas are generally above $40 \mathrm{M}^{2}$.

Graph N gives minimum dry season supplies from varying roof-catchment in a day in a ten year dry year. Required storage is given as $5 \mathrm{M}^{3}$ which could be constructed within project criteria. As catchment roof areas differ from house to house with a $5 \mathrm{M}^{3}$ storage tank the service level too changes. However the dry season service level will be a substantial improvement from the present status of water-supply of the majority of the households.

Bar Graph 3. 1 \& 3.2

Here rainwater harvesting is technically and economically feasible to improve the present status in water supply. Bar graph above gives the supply possible from typical system in a normal year. System include $60 \mathrm{~m}^{2}$ catchment \& $5 \mathrm{~m}^{3}$ tank.

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

The option can be put forward to the beneficiaries, and if they choose it as the preferable option, the design work can start.

8.2. Dematawelhinna Village in the Badulla District.

Dematawelhinna village is situated about 6 miles from the Regional Office, Badulla on top of the slope of a hill, 205 families live here. Houses are built of mud bricks. Most houses have Gl corrugated-sheet roofs. Roof areas vary between 30 to $100 \mathrm{~m}^{2}$. In the dry season women collect water in pots from the water holes located at the bottom of the hill.

Rainwater harvesting is a new concept to the village. Presently about 10 to 20 pots of water is required per day per house. When explained the building of tanks big enough to store the number of pots of rain water required per daytimes the number of dry period days, it is easily understood by the householders.

With the advice of the DD/T the first brick-dome trial tank was constructed at a household in this village. Since then the understanding \& enthusiasm on rainwater harvesting has increased according to Resource Engineer Mr. Widyaratne. Number of householders have made requests for rainwater storage tanks.

Other options, such as gravity pipe systems, dug wells are not feasible at Dematawelhinna, according to CRO and villages.

A pump-water scheme is possible. For this water must be bought from the Water Board and pumped up a nearly 100 m and stored for distribution. The Regional Office estimate is Rs. $140 /$ - month per house maintenance. This is not affordable to the villagers, according to the Chairman of the CBO for running cost and most villagers have no regular income.

At a meeting held at the village presided by Regional Director CWSSP Badulla, an awareness presentation on rainwater harvesting was conducted. Since over one hundred applications requesting rainwater harvesting systems were received by the CWSSP Regional Office Badulla. Design and Construction of this project is expected to begin in August ' 95 .

The climatically closest meteorological station to Dematawelhinna is at Badulla, with an average annual rainfall of 1.75 meters (85-94). Graph X (Annex - 10) a gives possible dry season supply in liters from a roof catchment in a day from a $5 \mathrm{M}^{3}$ storage tank system in a ten year dry year.

Available roofs are mostly Gl and vary in area. These can be used as roofcatchment.

With a $5 \mathrm{M}^{3}$ tank which can be constructed within CWSSP criteria, it is possible to improve the present water-supply status to different levels depending on the size of the catchment roofs. Supply from a typical system in a normal year is depicted in the bar graph below.

[^10]\[

$$
\begin{gathered}
\vdots \\
\vdots
\end{gathered}
$$
\]

Therefore rainwater harvesting is technically and economically feasible to improve the present status of water supply.

8.3. Dorsar Kanda Village Matara

A visit was made to the village with CRO/T and the Community Facilitator.
The village is situated on a hill about 6 Km from the Matara Regional Office. Half of the families live close to the bottom of the hill where shallow wells are possible.

The highest point is about 40 m above ground-water level. A few houses have permanent roofing made of tiles. Most houses have thatched roofs.

Most householders have taken house building loans recently and have started to build better houses with permanent roofs. Electricity is available at the bottom of the hill. A dirt road is available upto the top of the hill.

A few members of the CBO were contacted including the President, and the priest of the village. It is their aspiration to get both water and electricity to their houses, which they see available at low-income houses close by.

However, they are not ready to pay more than their counterpart in the town for pipe water. This issue needs more investigation and analysis.

The original design included a pump pipe scheme.

The current rainwater-harvesting practice is only to collect small quantities of water from tree trunks.

Climatically closest meteorological station to Dorsarkanda village is at Kekenadora, with an average annual rainfall of 1.23 meters. (80-89). Graph Y gives possible dry season supply in liters from roofs of varying sizes in a day, using a $5 \mathrm{M}^{3}$ storage tank system in a ten year dry year.

Available roofs are mostly thatch and are not suitable for rainwater harvesting. To do rainwater harvesting, first a suitable catchment must be constructed.

Once suitable catchment is available, rainwater harvesting becomes technically and economically feasible to improve the present status of water supply.

Supply from a typical system in a normal year is depicted in the bar graph below. System consists of $60 \mathrm{~m}^{2}$ catchment $\& 5 \mathrm{~m}^{3}$ tank.

Bar Graph 3. 3

WV Dor sarkanaa

1
!
I
I
|

|
|
I
!
!
!
I
|
I
1

9. Conclusion and Recommendation

9.1. Technical

The rainwater Harvesting Action research concludes that rainwater harvesting is technically feasible in the three districts of Badulla, Ratnapura and Matara.

Rainfall is adequate and most buildings have suitable roof-catchment.

The research recommends the design and construction of the three pilot projects already identified, at Badulla, Ratnapura and Matara. Monitor these projects after construction and review the technical, economic and social aspects and the policy on rainwater-harvesting accordingly.

9.2. Economic

The study concludes that it is possible to build a 5000 liter storage tank with brick (underground) or ferro-cement (over ground) to cost less than Rs. 5400 excluding unskilled labour. However, the level of service from a $5 \mathrm{M}^{3}$ storage tank will vary according to the rainfall pattern of the location and the size of the catchment area used.

The research recommends the continued construction of ferro-cement type trial tanks in order to bring the cost down further and improve the design.

9.3. Social

A vast majority of potential beneficiaries specially the lower income groups do not understand the full benefit of rainwater-harvesting. Reliability of rain as a source and the quality of rainwater are their main concerns.

It is recommended to conduct an awareness campaign under the CWSSP, targeted to potential consumers on rainwater harvesting.

The potential beneficiaries include houses located at higher elevation and away from the existing sources, where specially women have to walk long distances to fetch water.
!

9.4. Design

The study recommends the preparation and use of Rain Region Graphs to design the size of tanks, for a set of rainfall data. The required tank sizes can be determined for different catchment areas and demands, by the use of 'Rain Region' graphs. Rain Region graphs should be prepared at Head Office or Regional Office levels of CWSSP with available monthly rainfall data for each region where the rainfall pattern is similar.

Higher storage is expensive to build. The alternative is to reduce the demand in a ten year dry year. For drinking and cooking 6 lit per capita per day can be considered as standard. Where roof-catchment is limited, the next option is to build low-cost ground level catchment with underground storage tank.

9.5. Construction

The construction of Pilot Projects should be supervised direct from the Regional Offices with maximum community involvement.

Training on low-cost tank construction should be given to relevant masons and supervisors prior to actual construction. These training costs must be budgeted for in addition to the pilot projects.

With relevant experience gained from the pilot project the next step should be to train Technical Officers of the Partner Organizations in designing and the construction of the rainwater-harvesting systems.

9.6. Quality

The quality of rainwater depends on how clean the atmosphere is. The cleanliness of the material of the catchment surface, gutters and down pipes, the storage tank and the water extraction device, determines the quality more significantly.

The atmosphere is considered to be clean in the rural and small town areas where the CWSSP is being implemented.

The best surface for a catchment is the G.I. or Aluminium sheet roofs, Tiles, asbestos and plastic are only satisfactory.

!

 I

|
| I |
!
I
| I ! | I

The gutters and down pipes made of GI or PVC or polythene are considered satisfactory.

Storage tanks should be covered and made mosquito proof. Where there is any chance of pollution, the pot method of chlorination can be used to keep the water clean.

Water should be extracted from the tank by means of a pump or siphon pipe or gravity tap and not by bucket to prevent human contamination.

Rain water harvesting has the distinct advantage of being a separate system for each household. This prevents any outside contamination of the tanks.

RAINWATER HARVESTING - ACTION RESEARCH

Task No.

1. Design a functional water storage system capable of holding 5,000 litres and costing not more than Rs.5,400 (excluding unskilled labour costs).
2. Construct sufficient number of prototypes of the above to ensure that after appropriate artisan training they can be constructed without major difficulty in a village . situation using typically available local labour and materials.
<3. Conduct a brief survey of the experience to date with rainwater harvesting in sri Lanka and record any significant lessons of either technical or social significance.
3. Visit and investigate the two villages (Badulla \& Matara) where options other than rainwater do not appear to be available. Assess the level of interest/demand of the villagers and, if favourable, seek their agreement to participate in a pilot project.
4. With the assistance of CWSPU District staff, conduct a pilot project in the two villages in a manner such as will generate maximum community involvement and contribution.
5. Review likely demand and physical potential for groundlevel rainwater harvesting and, if appropriate, make recommendations for further development.
6. Based on the pilot experience and ather relevant Sri Lankan experience, make appropriate recommendations for the incorporation of rainwater harvesting options in the CWSSP
7. prepare summary training material so as to transfer necessary skills to CWSPU technical staff.

TIME ALLOCATED
A. TECHNICAL

B COMPUNITY

REMUNERATION RATE

CWSPU standard rates to be paid.

Main Reyorts and Publications consulted

1. World Bank executed UNDP Project INT/82/002 Information \& Training for Low-cost Water Supply \& Sanitation. Rainwater roof catchment systems Washington. World Bank. 1986. 50p. ISBN-08213-0799-1
2. Rajapakse R.K.C. Sri Lanka's contribution towards Rainwater Catchment Technology. Sri Lanka. 1983 21p
3. Cowater International, Inc. Rural Water Supply District Development Plans, Matara District Sri Lanka. 1991 108p. ref. p. 26,29,35,39,42
4. Cowater International Inc. Rural Water Supply District Development Plan Ratnapura District Sri Lanka. 1991. 107p. ref. p. 25,29,34,39,41
5. Cowater International Inc. Rural Water Supply District Development Plan Badulla District Sri Lanka. 113p. ref. p. 30,36,42,44
6. Dharmabalan P. High Water Bill Can Rain Water Supplement Part or Whole of it. National Water Supply \& Drainage Board, Sri Lanka. 1989. 5p.
7. Tarawa Water Supply Project. Report on Ferro Cement Tanks. Sydney. Australian Construction Services. 1988. 10p.
8. AFPRO. Evaluation Study Report on Rainwater Harvesting Structures in Kanya Kumari District, Tamil Nadu, New Delhi. AFPRO. 1993. 44p. PIN 110058.
9. Wijetunga S.K. \& Wijegoonewardene S.J.P. Assessment of the Application of Appropriate Technologies in the Improvement of Rural Water Supply in Sri Lanka. Colombo. ITDG. 1992. 66p.
10. Lee Micheal D. \& Visscher Jan Teun, Water Harvesting. A Guide for planners \& Project Managers Technical Paper Series No. 30. Hague. IRC. 1992. 96p.
11. Michealides G. Allybobus M \& Young P.J. Optimised Design and Water Quality Study of Roof Top Rainwater Catchment, Mautitius. Wat. Supply Vol. 4, Seychelles p. 117-122, 1986 Pergamon Journals Ltd. U.K.
12. Gunting. Sapari \& Ghazali. Variation in Rainwater quality from Roof Catchments. Malaysia. Wat Res. Vol 23 No. 6 pp 761-765 1989, Pergaman. U.K.
13. Michealides. Investigation into the quality of roof harvested Rainwater for Domestic use in Developing Countries. Dundee University U.K. 10p.
14. Good. Roof Runoff as a Diffuse Source of Metals and Aquatic Toxicity in Storm Water Wat. Sci Tech. Vol 28 No. 3 - 5 pp 317-321 1993. IAWQ U.K.
15. GOULD A. Review of the Development, Current Status \& Future Potential of Rainwater Catchment Systems for Household Supply in Africa. Rainwater catchment Systems. 10p.

1
 I I I I I I I I I I I \}

Annex 2

RAI MFALL AMALYSIS
STATION \& UPPER OHIYR ESTATE

YEAR	TOTAL	RAIAK	PROEABILITS	10 Hear Howing Year	Averege Fing-
1967	1901.9	1	0.03226	6 Cl -69	23.5.6
1981	1942.7	2	0.06452	61. -70	2333.3
1974	1956.5	3	0.09677	62-31	2366.0
1984	2079.5	4	0.12903	65-72	2369.6
1968	2155.5	5	0.16129	64-33	2289.7
1966	2192.6	6	0.19355	65-74	2277.4
1961	2207.5	7	0.22581	6E - 35	2239.2
1975	224E. 5	0	0.25006	6r - $\mathbf{r a}^{6}$	2321.3
1970	2255.7	9	0.29032	66- 0^{7}	2469.3
1982	2273.1	10	0.32258	69- P6	2509. ${ }^{\text {a }}$
1980	2305.2	11	0.35484	70-39	2506.5
1973	2306.9	12	0.38310	71-80	2511.4
1962	2330.1	13	0.41935	72-81	2452.2
1972	2366.0	14	0.45161	73-82	2442.9
1979	2442.3	15	0.48381 ?	34-83	2457.0
1983	2417.9	16	0.51613	75-84	2659.4
1969	2475.4	17	0.54839	76-85	2707.4
1989	2519.5	18	0.58065	77-6E	2745.0
1971	2534.9	19	0.61290	7日-67	2834.1
1978	2560.3	20	0.64516	? 9 - 8 e	2848.0
1965	2628.6	21	0.67342	8G-89	2855.7
1960	2679.2	22	0.70968		
1988	2690.9	23	0.74194		
1985	2727.2	24	0.77419		
1976	3013.8	25	0.80615		
1963	3105.9	26	0.83971		
1977	3381.8	27	0.87097		
1986	$3397 . ?$	28	0.90323		
1904	3980.1	29	0.93548		
198?	4264.6	30	0.96774		

1

N
年 色
بَّ 留
 言
 ？
N N゙刃心 至
 ！
 $\stackrel{C}{c}$ צовитาวก ：
 录
 嫘
 $\stackrel{\square}{9}$
 童
 品
 a

I

$\xrightarrow[1]{-1}$
召
000000000000000000000000000000
 1111111111111111111

NNNNKNNNNNNNNNNNNANNN

$\frac{5}{2}$
N ${ }^{\text {an }}$学

คnの 吾
 吾
ค 兑

를
ตั์ّ
品
 呈亳

召

00000000000000000000000

111111111111

聂N No

 勇

 꿈
 良

－
 $\stackrel{\text { n }}{\substack{m \\ 5}}$
\＆ 9
音
 品
NNま$\stackrel{\rightharpoonup}{\mathbf{D}}$

1

0000000000000000000000
 1I7104floyd

쿠룰․․․․
 裟
$\frac{3}{2}$
 亲
 亭
 ？
 考
 $\frac{n}{2}$

 OHy

 等
\therefore onn $\stackrel{\circ}{7}$
 를
 뮴
 a
－

ondor

ONDN AOAOASNNNNN

N No

 I

 I

I
|
I
I
I

1

 1111111111111111111皆

N．
 r N M

$\stackrel{e}{E}$
$\stackrel{\square}{9}$

？咅귬

1

-1
\mathbf{Q}
$\mathbf{1}$
끚줄10000000000000000000000000000
 1111111111111111罰罚

 $0 N 0$

，

言茄范 7
ติّ 咅
ฯลัดที 곰
 童
 inf
aus

árini 色를
年 管
วลัดี 욕
 를
ionv
© ${ }_{9}^{9}$－vo楒号

 Pan $\stackrel{\rightharpoonup}{p}$
 召
000000000000000000000000000000 －

 咅
苑
－²5Nㅡํ ？3
 咅
吾
－™ oúcor ${ }_{E}^{C}$
 －Nonξ
oovi 플
 嫘
年 $\stackrel{8}{9}$
 를
के g

orio $\overrightarrow{-1}$
$\overrightarrow{7}$

 －

000000000000000000000000000000品

 1111111111111111

 檽
 S
 霊
 寻

를

Rin in mod

E

$\stackrel{\circ}{3}$
 的药为品
 亳

I

 离

 $\xrightarrow{\vec{a}}$
 909090009990990990090990990900
 1111111111111111

 而
而
 亲

 | 7 |
| :---: |
| 0 |

 雱
 $\frac{D}{7}$
 $\underset{-}{7}$
 E
 $\stackrel{c}{F}$

ह
 裚
 $\stackrel{\square}{1}$
 禀
 象T뮴
540 แ゙N以$\xrightarrow{-7}$

1
 $\frac{\text { 足 }}{\substack{10}}$
-1
-7
7
$\stackrel{T}{?}$$\stackrel{2}{2}$
000000000000000000000000000000
 1111111111111111116

N
0
0
0
0 ？
 7
 咅

勇年
E
one

解

品

I

I

I
I
I
I
I
I
\boldsymbol{I}
 雰
 $\stackrel{\rightharpoonup}{0}$
 F
 $\xrightarrow{\text { D }}$
000000000000000000000000000000d117188日0女d
0
促

 $\underset{2}{2 \times 1}$
路菏 osí
룬16$-{ }^{4}$
－ 9.4
408
0.7
0 $\frac{7}{7}$$0 \cdot \pi$
 碞
N芯NO
 号
\circ
\sim $\stackrel{y}{F}$
on＇$\stackrel{D}{5}$
 告
 $\stackrel{\square}{7}$

 픋鬲| $\overrightarrow{-}$ |
| :--- |
| $\underset{7}{7}$ |

0000000000000000000000

111111111111100

 芴
 0 on 9
 를
 雷

 咅
 泀
 근

oóno$\stackrel{\xi}{F}$

owniのo．por咅

品
$\stackrel{\rightharpoonup}{\vec{T}}$
 1111111111111111

 ン

$\overrightarrow{0}$
$\overrightarrow{7}$

000000000000000000000000000000

苟

碞

納

I

00000000000000000000000000

 11111111111111111

 로루융 $\frac{2}{7}$
 宽
 7
 雸

品
 $\stackrel{\rightharpoonup}{\mathbf{a}}$

000000000000000000000000000000

留品芯

导
ㅇ휼 ヶั 监
ッドNざ 解
咅
 吾
\％） $\cong$$\underset{\text { E }}{\underset{~}{E}}$
7nc
 Ngan
乭
 －箅
โが 解 $\stackrel{8}{7}$

g
 $\stackrel{\rightharpoonup}{3}$
 至
 崮
 可

 $\underset{\underset{Z}{7}}{7}$
 妾

 $\frac{4}{3}$
 $\underset{7}{9}$
 돌
 $\stackrel{\square}{\square}$
 OMG GONOACAOQOATO

```301
```


I

4000

1：1111111111111111111＊

 \vec{a}

䒽边

ค ค่ำ
 놀

学
 NWं 豆
 分
 ذino寻
mac
亩家家
 $\stackrel{\xi}{\xi}$
部耍 为怘
 朐
\＆${ }_{0}^{9}$ $\stackrel{0}{3}$
 를
品
 ค解

10 O 1 | $\overrightarrow{0}$ |
| :--- |
| $\overrightarrow{7}$ |

 而
0
$\overrightarrow{-1}$
-1
$\stackrel{\rightharpoonup}{7}$
 砢
000000000000000000000000000000

 | 命 |
| :--- |
| D |

 －禺家를
 变
 「
心岕芯 旁
 㪯
ค岕空 $\underset{c}{c}$
 㺃审灾帚
RAIHFALL fitalysis

Annex - 4

5M ${ }^{3}$ RAIN WATER HARVESTINGTANK - RATNAPURADISTRICT
(FERRO-CEMENT TYPE)
MAY 95
MAJOR COSTS (TRIAL CONSTRUCTION)

$\boldsymbol{\|}$
 I

Brick Dome Type

Badulla District
February 1995

Size	$D=6^{\prime} 4^{\prime \prime}$
$5 \mathrm{m3}$	Hwall $=5^{\prime}$
	Hdome $=1^{\prime} 6^{\prime \prime}$

Material	Unit	Quantity	Unit Cost	Cost	Cost internal	Cost external
Cement	Bag	8.6	265	2279		2279
Sand	ft3	33	3.5	115.5		115.5
Metal (3/4')	ft 3	9	18	162	81	81
Bricks (2")	nos.	750	1.5	1125		1125
				3681.5		
Transport				1000	300	700
Skilled labour	hour	28	22	616		616
Unskilled labour	hour	96	12.5	1200	1200	
					1581	4916.5
					Contrib	
					24\%	76\%
					HH	CWSSP

Conclusion

Under normal circumstances a brick rainwater storage tank
will be acceptable within the ${ }_{i}$. oject criteria and will be affordable to the householder in terms of labour and cash

Material + skilled labour	Rs.	4297.5
Material + skilled labour + transport	Rs.	5297.5
Material + skilled labour + transport and unskilled labour	Rs.	6497.5

1

$G R A P H-A$
ANNEX -8

GRAPH - B
ANNEX - 8

GRAPH - C
ANNEX - 8

GRAPH - D
annex - 8

1
 I

 I
 I
 I
 I
 I
 |
 |
 I
 I
 I
 |
 !
 1

1

I

GRAPH -Q
ANNEX - 9

1

GRAPH - U
ANNEX - 10

!
 I
 I
 I

I
I
I
I
I
I
I
I
I
I
I
I
I

$$
\begin{aligned}
& \text { GRAPH - } V \\
& \text { ANNEX - } 10
\end{aligned}
$$

GRAPH - Z
ANNEX - 10

1

1

1

RHIC NETWORK PRIORITY: Asbestos Roofing and Safety

by Dan Campbell, RHIC Manager

RHIC periodically receives requests for information and advice on the potential negative health impacts on drinking water harvested from roofs made from asbestos/cement (AV) sheeting. Such roofing sheets are common in many countries and offer important advantages such as ease of local manufacture, durability, and relatively low prices. Because of the very limited information available on health issues of rainwater harvesting from asbestos roofing, RHIC tnvites readers to share any information you may have on this important topic. RHIC would like to learn of any policies or experiences in water consumption from A/C roofs from the RHIC network.

Some experts advocate that materials containing asbestos should never be used as roofing material because asbestos fibers can be loosened if roofing sheets are cut or damaged, causing the potential for human ingestion. Asbestos reseanch has centered on human hazards due to ingestion through the lungs by breathing, and clearly demonstrated that this is hazandous to human health, causing cancer, gastro-intestinal tract and pulmonary fibrosis. Research is much more limited on human ingestion of asbestos through the alimentary system by drinking or eating. In fact, RHIC staff have not identified any viable information or research on the health consequences of human consumption of rainwater that contains asbestos fibers.

Asbestos is a generic name for a group of six naturally occurring hydrated polysilicate minerals (amosite, chrysotile, tremolite, actinolite, anthophyllite, and crocidolite). Asbestos/cement pipe contains an average of 170 g of asbestos per kg (80% chrysotile and 20% crocidolite). These minerals separate into microscopic fibers that are heat resistant, flexible, durable, and virtually indestructible in most uses. Asbestos fibers are very stable in the environment, do not evaporate into air or dissolve in water, and do not break down over time.

Due to these stable characteristics, asbestos fibers have been used in a wide range of products such as water and sewage pipes, roofing sheets, electrical insulators, and heating insulation. Asbestos is commonly found in most domestic water supplies. Typical asbestos concentrations in rivers and lakes are considered to be about 1 million fibers per liter.

> Stow sand and gravel filters can remove up to 80% of asbestos fibers and other particulate matter and can be designed to serve small communtities as well as indlvidual famllis.

For information on filter dosign contact RHIC.

Asbestos levels also depend upon neighboring industrial sources. In Canada, the asbestos content of untreated water from the Ottawa River has been reported to be 9.5 million fibers per liter. Based on surveys in Canada, it was found that about 5 percent of the Canadian public consume water with asbestos concentration exceeding 10 million fibers per liter and about 0.6 percent consume water with concentrations exceeding 100 million fibers per liter. Levels range up to 2000 million fibers per liter in some asbestos mining communities.

According to the World Health Organization (WHO), 1984 guidelines on drinking water quality, the most effective method for removal involves chemical coagulation with iron salts and polyelectrolytes followed by filtration. Ordinary sand filtration removes about 90 percent of the individual asbestos fibers from water supplies.

One of the few studies available on rainwater quality from asbestos roofing was conducted in Thailand in 1989. This study showed that E. coli. levels were considerably higher in runoff from A/C roofs than from galvanized iron. Some research indicates this is because sunlight is more effective in killing bacteria on metal surfaces than on A/C surfaces.

In addition to the above research, the RHIC document collection includes records of one rainwater harvesting project that was influenced by the use of A / C roofing. In the late 1980's, the U.S. Agency for International Development in Honduras decided not to include rainwater catchments on rural schools because the Ministry of Education insisted on using locally manufactured A/C roofing for reasons of cost savings and job creation by using local products.

In the U.S., a great deal of research has been conducted by the Environmental Protection Agency (EPA) and other organizations on the health impacts of consuming water from asbestos-cement pipes. On July 12, 1989, under the US Toxic Substances Control Act (TSCA), the EPA banned most asbestos-containing products, including A / C pipe. A/C pipe, however, was included in the ban because of the risk posed by exposure to airborne asbestos during A / C pipe manufacture, transport and installation. The EPA concluded that consumption of drinking water transported by A/C pipelines posed no significant health risk because of the pipe material and that existing A/C pipelines did not need to be removed because of the ban.

The current EPA drinking water standard for asbestos, which became effective in July 1992, is set at 7 million fibers/liter for fibers longer than 10 mm . The 1984 WHO guidelines do not contain a guideline for asbestos in water supplies. WHO directives state that:

I

RHIC NETWORK NEWS

O Dr. Al-Homoud is looking for information and experts on the design and construction of ponds and small desert dams which can be used for water harvesting in the desert. His address is: Dr. Azm S. Al-Homoud, Assistant Professor, Civil Engineering Dept., Jordan University of Science \& Technology, PO Box 3030, Irbid, Jordan, Phone: 295111, FAX: 295123.

- Mr. Nissen-Petersen has recently left Botswana for Namibia to work for 6 months on a UNICEF water tank and well program. He can be reached at: Erik Nissen-Petersen, ASAL Consultants Lıd., PO Box 867, Kitui, Kenya, Phone: 0141-22706 \& 22123, FAX: 0141-22571 \& 2-740524.
- In South Africa, a local non-governmental organization known as SAWIC maintains a bibliographic database of nearly 200,000 references and is interested in receiving research and project reports from other organizations involved in rainwater harvesting. The Centre publishes 2 journsls, entitled WATER SA and the SA Water Bulletin. which are available on request. For further information, contact: Angela Rethman, Project Manager, South African Water Information Centre (SAWIC), PO Box 395, Pretoria 0001, South Africa, Phone: (012) 841-2048, FAX: (012) 862869.

O Brian Skinner is seeking information on wire-reinforced cement mortar tanks or jars that have been well-tried under field conditions. This includes plain wire or barbed wire reinforced containers as well as those using ferrocement. He also is seeking construction details of urreinforced mortar jars. Please contact him as soon as possible if you have information. Brian Skinner, WEDC, Loughborough Univer-

Network Priority, continued from page 7

"the health hazards associated with occupational exposure to airborne asbestos are well documented. The harmful effects, however, of swallowed asbestos on human health have not been determined. Studies in progress should permit a more complete evaluation of any hazard resulting from the swallowing of asbestos, but available data are, at present, insufficient to determine whether a guideline value is needed. The hypothesls that ingested asbestos fibers cause cancer cannot be ruled out at the present time."

With such uncertainty about the use of asbestos cement roofing materials and water pipes and the potential health risks, it is especially important that the results of diverse field experience and research become available for analysis. Please assist in this issue by sharing with RHIC your experiences and information on this topic.
sity of Technology, Leicestershire, LE11 3TU, England, Phone: (44) 509-222392, FAX: (44) 509-211079.

- Alan Fewkes is developing a microcomputer software program for sizing rainwater catchment systems and he is keenly interested in relevant infomation and contacts with others who may also be interested. Alan Fefwkes, Faculty of Environmental Studies, Nottingham Polytechnic, Burton Street, Nottingham NG1 4BU, United Kingdom, Phone: (0602) 418418, FAX: (0602) 484266
- Todd Boulanger seeks information on agencies that fund commumity workshops on rainwater catchments, water quality, and environmental monitoring. He is also interested in reports and data on the lead concentrations of different types of building materials. If you can assist, contact Todd at the following address: Todd Boulanger, Water Resources Research Center, University of Hawaii at Manoa, Holmes, Hall 283, 2540 Dole Street, Honolutu, Hawaii 96822, Phone: (808) 956-7381, FAX: (808) 956-6870
- The Intemational Association for Envirommental Hydrology (IAEH) is new association created to encourrage effective commmenication across all countries and between all disciplines that relate to water and the environment. It promotes links between the scientific community and practicing environmental hydrologists and water professionals. The Association publishes the Journal of Environmental Hydrology and the Environmental Hydrology Report which are both available at no cost to ássociation members. Membership fees are $\$ 96$ per year for non-students. For further information, contact: Roger Peebles, IAEH, PO Box 1088, Alexandria, Virginia 22313, USA, Phone: (703) 683- ${ }^{-2}$ 9768, FAX: (703) 683-6137.

WATER AND SANITATION FOR HEALTH PROJECT

For additional information about activitios and reports highigghtod in this issue, contact:

WASH Operations Center
1611 North Kont Street, Room 1001
Arington, Virginla 22209 USA
Water and Sanitation for Health Profect, Contract No. DPE 5973-Z-00-8081-00, Project No.836-1249. Sponsored by the Office of Heatth, Bureau for Research and Dovelopment, U.S. Agency for interrialionad Development, Washington, DC 20523.

Cement Jar $1.1 \mathrm{M}^{3}$

Trial Tank build at NERD Centre Ja-Ela. May 95

Description	Actuals used in the trial				Estimate Possible to do with		Householder Cost	CWSSP Cost
	Unit	Unit Cost	Qty	Cost	Qty	Cost		
Cement	Bag	265	4	1060	2.5	663		663
Sand	ft^{3}	4	10	40	10	40		40
1/2 $2^{\text {n }}$ Chicken Mesh	ft^{2}	4	80	320	80	320		320
$6^{7 m} \mathrm{Rods}$	length	25	9	225	3	75		75
				1645				
Skill Labour	HR	22	24	528	8	176		176
Unskill Labour	HR	12.5	24	300	48	600	600	
				828				
Welding				200		NIL		
				2673		1874	600	1274
							HH	CWSSP
							32\%	68\%
Cost per Liter				2.43		1.87	. 55	1.16

CONGIUSIPN: COSt is shove CWSSP criteria, of $1.08 \mathrm{p} \cdot \mathrm{r}$ liter maximum cost per liter can be brought down by building jars of larger capacity (eg. $1.5 \mathrm{M}^{3}$) and more

Annex - 14

$5,8 \& 10 M^{3}$ BRICK DOME TANKS
 QUANTITIES AND COSTS (1995)

VOLUME	Floor	WAIL	DOME	$\begin{array}{r} 1: 3 \mathrm{P} \\ \\ \text { COATI } \\ \hline \end{array}$	LASTER NEAT CEMENT	$1: 2$ COATII	QTY	UNTTCOST	cost	REMARK
	Area (ft ${ }^{2}$)									
$\begin{gathered} 5 M^{3} H 4^{\prime} \\ D 7^{\prime} 6^{\prime \prime} \end{gathered}$	53	99	54	260	210	210				
Cement Bag	2	1.5	1.6	1.6	0.4	1.5	8.6	265	2279	- Transport not
Brick No	-	560	190	-	-	-	750	1.5	1125	included
Sand ft^{3}	5	10	5	7	-	6	33	3.5	116	- Dome volume not
Metal 3/4' ft^{3}	6	-	-		3		9	18	162	taken
Mason HR	2	4	6	6	4	6	28	22	616	- Dome thickness
Labour HR	6	24	18	18	12	18	96	12.5	1200	2" brick
									5498	Cost Rs. 1.10/Lit
	Area (ft ${ }^{2}$)								.	
$8 \mathrm{M}^{3} \mathrm{H} 4$	81	124	85	375	286	286				
Cement Bag	3	2	2.5	2.3	0.5	2	12.3	265	3259	
Brick No	-	700	800	-	-	-	1000	1.5	1500	
			300				300		450	
Sand ft^{3}	8	13	8	10	-	8.2	47.2	3.5	165	
Metal 3/4'ft ${ }^{\text {3 }}$	9	-	-		4		13	18	234	- Dome thickness
Mason HR	3	5	9	9	5	8	39	22	858	4"Brick
Labour HR	9	30	28	26	16	24	133	12.5	1663	
									8129	Cost Rs. 1.02/Lit
	Area (ft ${ }^{2}$)									
$10 \mathrm{M}^{3} \mathrm{H} 5$,	81	160	85	405	316	316				
D9'6"										
Cement Bag	3	2.4	2.5	2.5	0.7	2.5	13.6	265	3604	- Dome thickness
Brick No	-	905	600	-	-	-	1505	1.5	2258	$4^{\prime \prime}$ Brick
Sand ft^{3}	8	16	8	11	-	10	53	3.5	186	
Metal 3/4" ft ${ }^{3}$	9	-		-	4		13	18	234	
Mason HR	3	6	9	9	6.5	10	44	22	968	
Labour HR	9	39	28	28	20	30	154	12.5	1925	
									9175	Cost Rs. $0.92 / \mathrm{Lit}$

\pm
\square

RAINWATER HARVESTING SYSTEM COST ANALYSIS.SYSTEM CONSISTS OF 5M ${ }^{3}$ TANK \& 60M ${ }^{2}$ CATCHMENT

(1995) Rs.

	Ferro Cement Tank CWSSP Cost	Ferro Cement Tank HH Cost	Brick Dome Tank CWSSP Cost	Brick Dome Tank HH Cost	Material for Home Made Pump	Material for low cost Gutter for $60 \mathrm{M}^{2}$ RF	Material for Standard Gutter for $60 \mathrm{M}^{2} \mathrm{RF}$	Low Cost Ground Catchment $30 \mathrm{M}^{2}$	Labour for Low Cost Gutter	Labour for Standard Gutters	Labour for The Pump	Transport	Total Costs
	5500	1400	4300	$\begin{aligned} & 1300 \\ & + \\ & 1000 \end{aligned}$	450	850	2250	1550	200	400	100	500	
1	5500						2250			400			8150
11	5500					850			200				6850
III	5500						2250			400		500	8650
IV			4300		450		2250			400	100		7500
V			4300		450		850		200		100		5900
V1			4300		450		850		200		100	500	6400
VII			4300		450						100		4850

I
 I I | I I I I I I

[^0]: $\mathbb{R a i n}_{\text {Wator Harvating }}$. Page 8 SddCRR poortrub/Angut 7, 19959.09 am

[^1]:
 SddCRaport.ruh/LAugut 7, 19959:09am

[^2]: Rain Water Harusting . Pago 14 SddC/R aportruh/ Angust 7, 1995 9:09am

[^3]: Rain Water Harvesting . Pago 16 SddC/Raporthouh/August 7, 1995 9:09am

[^4]: Rain Water Jarusting
 $p_{\text {ag: }} 17$
 SddCRRaport.nuh Angust 7, 1995 9:09am

[^5]: Rain Water Jarvasting . Page 20
 SddCRRaportruh/ August 7, 1995 9:09am

[^6]:

[^7]: SAdCRR.porifuub/ Angust 7, 1995 9:09an

[^8]: Katn Water Jtarvasting . $\boldsymbol{P}_{\text {age }} 45$
 SddCR(Raortrub/LAngust 7, 1995 9:09am

[^9]:

[^10]:
 SddCRRaport.ruh/Angust 7, 19959:09am

