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Chapter 1 

BACKGROUND 

1.1 Initiation 

The college of Civil Engineers of Guayaquil (CIG), a society 
of professional engineers in Ecuador, runs continuing educa
tion courses throughout the year for its members. This year, 
the CIG asked Professor Enrique LaMotta of the Escuela Poli-
tecnica Nacional in Quito to teach a short course on waste
water treatment. CIG also asked LaMotta to suggest a teacher 
for a short course on water supply planning. Knowing of the 
work of Professor Donald T. Lauria of the University of North 
Carolina (UNC) in this field, LaMotta suggested his name. CIG 
requested Lauria's participation through the AID Mission in 
Quito which in turn asked WASH to make arrangements. The 
initial request for Lauria's service was made in April 1982 
with a proposed date for the course in August. Although the 
specific details were as yet uncertain, Lauria agreed to give 
the course. 

1.2 Options 

As planning developed, two broad options for the course were 
offered to WASH for consideration. One was to conduct a work
shop that would provide participants with an opportunity to 
use the computer for low-cost water supply planning, and the 
other was to present a lecture series in which several topics 
would be covered but the audience would remain essentially 
passive. 

With the workshop format, a two-hour lecture would be given on 
a particular subject after which the participants would be 
divided into groups of from five to ten persons. Each group 
would be assigned a task based on the subject of the lecture. 
The groups would spend about two hours on the assignment 
during which the teacher and his assistants would move from 
one group to another serving as consultants. The assignments 
would be based on case studies of the participants' choosing 
using local data, maps and reports. Participants would be 
asked to bring these materials with them, and the teachers 
would assist in turning them into manageable projects. After 
completion of the case studies, a lecture on the next subject 
would be presented and the process would be repeated. During 
the workshop, four or five different subjects would be 
covered, including both theory and applications. 

The alternative to a workshop was a course consisting mainly 
of lectures. This would make it possible to cover more 
material, but learning would be less thorough because the 
participants would not be given an opportunity to apply the 
concepts. Courses of this type are most appropriate for 
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introducing a range of subjects and for stimulating the 
participants to work on their own. Workshops, by comparison, 
are aimed at producing new skills which can be rather quickly 
applied. 

Regarding the subject matter of the course, two alternatives 
were proposed. The first was concerned with the planning and 
design of facilities other than treatment plants. The title 
would be "Engineering Project Design" and the major subjects 
would include: 

1. Cost functions 

2. Staging of construction 

3. Pumping stations 

4. Networks 

5. Reservoirs. 

The alternative focus of the course was "Low-Cost Water Supply 
Planning" which would be focused on the design of municipal 
water facilities in developing countries, especially pipe 
distribution networks, which is the most expensive component. 
This course would be similar to numerous courses Lauria has 
given in LDCs for the World Bank. Major subjects for this 
course would include: 

1. Cost functions 

2. Branched networks 

3. Looped networks 

4. Financial feasibility. 

The intention with both courses was to use the microcomputer. 
In the case of a workshop, the computer would be applied to 
the case studies on which the participants were working. In 
the case of a lecture series, it would be used for demonstra
tions. While it was hoped that microcomputers would be avail
able in Ecuador, the possibility existed of bringing a 
computer from the United States. Because many participants 
were expected, Lauria recommended that he be assisted by at 
least one but preferably two doctoral students from his 
department. 

1.3 Final Plan 

After extensive discussion between the teachers and WASH, it 
was decided to adopt a workshop rather than a lecture series 
format. The "Engineering Project Design" title was selected 
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rather than focusing almost exclusively on distribution net
works. Approval was given for Lauria to be assisted by Mr. 
Keith Little who is a doctoral student working under his 
direction. In addition, Little has been supported by the World 
Bank through their contract with UNC to develop software for 
the microcomputer that would be used in the course. Because 
the prospects for follow-up work in Ecuador were uncertain, a 
second assistant was not approved. The teachers were autho
rized to bring their own microcomputer to Ecuador. In addi
tion, CIG made arrangements for the local distributor of Apple 
computers to provide two of their machines and several monitor 
screens. The course was scheduled to start August 11 and end 
August 14. 
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Chapter 2 

COURSE DESCRIPTION 

2.1 Staff 

Because of its heavy involvement in offering continuing educa
tion courses for its members, CIG has a knowledgeable staff 
for handling arrangements. The main coordinator for the course 
was Engineer Carlos Oporto C. who was assisted by Engineer 
Carlos Assemany A. The coordinators were responsible for 
liaison between the teachers, CIG, and assisting agencies. 
Messrs. Lauria and Little were assisted in the classroom by 
Professors LaMotta and Gonzalo Ordonez of the Escuela Poli-
tecnica Nacional. LaMotta's services had been formally 
arranged through the AID Mission in Quito. Both LaMotta and 
Ordonez worked as consultants with the teachers during the 
sessions in which the computer was applied to case studies. In 
addition, they periodically assisted with explanations and 
commentary on lectures. 

2.2 Description 

The course was attended by about 120 participants, all of whom 
were engineers, although some are not working in the environ
mental field. The course met six hours daily for the first 
three days and for about three hours the last day. A session 
was held each morning form 8:00 to 10:00 am at the university 
during which Lauria lectured in Spanish on a variety of sub
jects. The presentations were devoted to theoretical prin
ciples and concepts. Each evening from 6:00 to 10:00 pm, a 
second session was held in the Uni Hotel. The evenings were 
mainly devoted to developing case studies that provided 
opportunities to apply the theory to problems using the 
computer. For these sessions, the participants were arranged 
in groups of about 12 at tables, each of which was equipped 
with a monitor linked to a microcomputer. 

2.3 Objectives 

The overall goal of the course was to introduce concepts and 
techniques for the improved planning of the major components 
of community water systems in developing countries. The 
specific objectives were four-fold: 

1. To provide basic instruction on and demonstrate the 
role of statistical regression analysis, microeconomic 
theory, mathematical modeling, and computer program
ming in the design of water systems; 
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2. To apply these concepts and techniques to real cases 
in Ecuador; 

3. To provide an opportunity for the participants to work 
with mathematical models and the computer rather than 
to be merely observers; 

4. To investigate interest in a technical assistance 
program for Ecuador in which these tools could be in
corporated in the routine water supply planning work 
of the country. 

2.4 Content 

An outline of the subjects covered in the course is shown in 
Table 1. Most of the topics required use of computer programs 
for data analysis and optimization which had been developed at 
the University of North Carolina with research support from the 
World Bank. Instruction was given in the evening sessions on 
using these programs. A brief description of the major lectures 
given in the morning sessions is as follows. 

2.4.1 Statistical Analysis 

The purpose of the lecture was to show how mathematical equa
tions can be fitted to cost data using linear regression 
analysis, especially equations with more than a single in
dependent variable. The resulting equations can be used for 
predicting the costs of water systems. The lecture covered 
determination of goodness of fit using R2 and F statistics. A 
summary of the material covered is included in the User In
structions (see Appendix F.) 

2.4.2 Economies of Scale 

Once equations have been fitted to data, it is easy to de
termine the economies of scale of the various water system 
components. If power functions have been fitted, the exponent 
of the independent variable is a measure of cost elasticity 
with respect to capacity. For example, an exponent of 0.7 for a 
water treatment cost function (which is a typical value) 
implies that by doubling the capacity of a plant, construction 
costs will increase by only about 70 percent. Using local data, 
economies of scale were found to be large for pipelines and 
considerably smaller for treatment plants and pumping stations. 
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2.4.3 Optimal Design Periods 

Components with large economies should be designed with more 
excess capacity than where economies are small. Optimal design 
periods were shown through the use of mathematical models to 
depend on economies of scale and the discount rate. The role of 
other factors on design periods was also discussed, such as the 
length of the planning period and the rate at which demand 
changes over time. 

2.4.4 Branched Networks 

Piped water distribution networks are generally the most ex
pensive components in commuity water systems. Because of their 
expense, it is especially important in developing countries 
that networks be well designed and that costs be minimized. In 
cases where branched networks can be used (i.e., networks 
without closed circuits), it is possible to use linear pro
gramming for determining optimal pipe sizes. A mathematical 
model and computer program for designing branched networks 
using LP was described, as was the basic technique of linear 
programming. User instructions for the program are Appendix G. 

2.4.5 Looped Networks 

While branched networks can frequently be used in rural and 
small communities, they are often unacceptable in larger towns 
and cities where circuits must be closed. Unfortunately, linear 
programming cannot be directly used for the optimal design of 
looped networks. Rather, network design must depend on the 
trial-and-error use of Hardy Cross or Newton Rathson models, 
which were described. Also described was a heuristic program
ming approach for the nearly optimal design of networks that 
starts first by designing the primary pipes as a branched 
system followed by a sequence of rules for selecting the 
secondary links needed to close circuits. 

2.4.6 Pumping Stations 

Particular attention is usually needed for sizing of wet wells 
in pumping stations. The principles of wet well design are es
sentially equivalent to those for water storage tanks and 
distribution reservoirs. Models were developed for determining 
the size of wet wells that would minimize costs. These models 
considered both single and multiple pumping units of both equal 
and unequal size. 
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2.4.7 Reservoirs 

Where they are needed, water storage reservoirs are a partic
ularly costly component of municipal systems. The conventional 
approach for sizing reservoirs involves Rippl analysis, which 
unfortunately suffers from several limitations. A model was 
presented for the least-cost design of reservoirs using linear 
programming. The model can handle both single and multiple-
purpose units. The heart of the model is a linear decision rule 
for operation. The model can accommodate probability con
straints on demand. It is described in Appendix J. 

2.5 Assessment 

Arrangements for the course were excellent; CIG was well 
organized and thoroughly attended to details. In general, 
facilities were satisfactory. CIG required participants to 
check in at the beginning of each session to assure attendance; 
punched time cards were used for this purpose. Only those par
ticipants who attended all the sessions were eligible for con
tinuing education credits. This practice worked well and is 
highly recommended. For the evening sessions, breaks were ar
ranged with coffee and refreshments. CIG is skilled in running 
short courses, and their operation was very professional and of 
the highest caliber. 

The duration and arrangement of the course were adequate, 
although six hours of classroom teaching per day borders on the 
excessive. An arrangement of two hours of theory in the morning 
followed by three hours of practice in the evening for four and 
one-half days might have been better. A national holiday mid
week prevented this schedule from being adopted. 

Professors Enrique LaMotta and Gonzalo Ordonez helped explain 
some particularly complicated matters and were very useful as 
consultants during the time the students worked on their case 
studies. This arrangement worked well and is recommended for 
future courses. Mr. Little was taxed in trying to teach use of 
the computer to such a large group. Despite the fact that a few 
computers were available for the course, he could work with 
only two of them which limited the rate at which case studies 
could be solved. A better arrangement would have been to in
clude two doctoral students who could have spent more time with 
the participants demonstrating computer software and enabling 
investigation of more alternatives. 

There were too many participants in this course for thorough 
learning in a workshop format. With the objective of hands-on 
experience in using the computer, it would have been better to 
limit attendance to 40 persons. With over 100 participants, it 
was necessary to rely more on demonstrations than solution of 
cases. However, each participant had the opportunity to design 
at least one real system using local data. 
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The maps and basic data supplied by CIG for the case studies 
were excellent. However, the cost data for water system com
ponents were only fair, which made it difficult in some cases 
to perform regression analyses. This in turn interfered with 
determining optimal design periods. 

Some problems were encountered in making the Apple computers 
operate satisfactorily. It turned out to be essential that a 
computer had been brought to the course from the United States. 

The course was well received. By the time it ended, the 
President of CIG asked about steps to provide further instruc
tion in the subjects that had been introduced. Actually, CIG 
offered to buy the computer that had been used in the course to 
make it available for its members. The counterpart of CIG in 
Quito is similarly interested in a course of this type for its 
own program of continuing education. Finally, interest was 
expressed by some of the faculty members at the Escuela Poli-
tecnica Nacional in Quito for follow-up training in these 
subjects. 
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Chapter 3 

RECOMMENDATIONS 

A course of the type held in Guayaquil only makes engineers 
aware of new concepts and techniques; it cannot enable the 
engineers to use these techniques routinely in their work. A 
goal for the future would be to develop a technical assistance 
program that would provide practicing engineers with a thorough 
understanding of the concepts and techniques (including skills 
for using the computer programs of this course) that are neces
sary to integrate these approaches into operational planning 
and design situation. That a demand for such assistance exists 
was demonstrated by the strong response to the Guayaquil 
course. 

In developing any additional courses one should be guided by 
the following concepts: 

o The next stage of tranferring the technique should be 
focused on helping practicing engineers in operational 
agencies to integrate these practices into their daily 
work. This is a long-term effort in which present day 
engineers need to be retrained and new engineers need 
to be indoctrinated in the techniques. The availabil
ity of local resources such as computers, etc. will be 
a major element in the direction of this effort. 

o Any future courses should be organized so that one or 
more of the local professors who attended the Guaya
quil course (i.e. LaMotta or Ordonez) would be the 
organizer as well as an instructor. Professor Lauria's 
role would be that of a principal instructor and a 
course advisor. To do this Lauria should work with the 
local professors to adapt the existing software 
package to such computing capability as is available 
in Ecuador. 

o The next courses should be sponsored by one or more of 
the operating agencies (for example: IEOS, Quito 
Water, etc.). Carefully prepared case studies of 
typical often-used local problems should be used as 
the main teaching tool. 

o the local universities should try to include the 
"Ecuadorian" version of these concept into their 
engineering courses. Professors LaMotta and Ordonez 
should be encouraged to take a leading role in helping 
to adapt the concepts to Ecuadorian human, financial, 
technical and organizational resources. 

The discussion that follows focuses on the next steps of how 
USAID/Ecuador should respond to the request for a course in 
Quito. 
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It is important to respond to the request for a course in Quito 
since the request demonstrates interest in improving water 
supply planning to meet the goals of the UN Decade, but local 
engineers feel that their skills need to be enhanced for them 
to be adequate to this task. In discussions with the AID 
Mission and Engineer LaMotta, it appears that an appropriate 
time for this course might be January 1983. Either in connec
tion with the course or as a separate exercise, it would be 
important to provide in-depth training to a small group of 
engineers to make them thoroughly familiar with these tech
niques. This group would be expected to use this technology in 
their work, and they in turn would assume the responsibility of 
providing similar training for their colleagues. At this time, 
it is not entirely clear who should receive the training, but 
based on discussions with the AID Mission, it appears that the 
most likely group would be the national water supply planning 
agency, IEOS. 

IEOS employs a large number of sanitary engineers for the plan
ning and design of water systems. At present, this agency has 
no computers but instead performs all design computations by 
hand. The consequence of this is that engineers are limited to 
investigating relatively few design alternatives, making it 
difficult to produce least-cost designs and to tailor them to 
the affordability of users. The AID Mission at present has 
given a $6 million loan to IEOS which includes three compo
nents, viz. project implementation, training, and equipment. By 
channeling technical assistance through IEOS, it is likely that 
an excellent opportunity would exist to apply the computer 
techniques to the project implementation component of this 
loan. 

In addition to working directly with an agency such as IEOS, it 
would be desirable to employ the assistance of the Escuela 
Politecnica Nacional. By involving some professors in this 
technical assistance project, they would become a more valuable 
resource capable of responding to requests for assistance in 
the future. In addition, they would be able to teach these con
cepts and techniques to students in university courses thereby 
strengthening their preparation for employment in the water 
supply sector. 

At this point, there appear to be three options for the pro
posed course in January: (1) offer the course for the civil 
engineering professional society, as was done in Guayaquil; (2) 
offer the course exclusively for IEOS; and (3) offer training 
to both the civil engineering group and IEOS. 

An advantage of the first option is that it provides broad 
exposure to concepts and techniques for the public and the 
private sectors, both of which are engaged in water supply 
planning. It also establishes firm contact with the profes
sional society that is likely to play an important role in the 
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water field. A disadvantage is that a course by itself without 
plans for follow-up will not necessarily make a significant 
step toward long-term improvement of planning. 

The second option is appealing on the grounds that IEOS is the 
agency that is fundamentally responsible for community water 
supply, and by training its engineers, positive steps would be 
taken to strengthen the institution and significantly affect 
the water sector. Also, as noted above, the AID loan to IEOS 
would appear to be an excellent vehicle for assuring that the 
tools and techniques of this assistance find their way into 
practice. A disadvantage is that consulting engineers and 
others not employed by IEOS would be excluded from this 
training. 

The third option is a compromise that attempts to combine the 
first two. Under it, a course similar to the one in Guayaquil 
would be given to engineers working in both the public and 
private sectors, and this would be followed by a few days of 
intense training to a select group in IEOS who would be 
expected to take the leadership in learning these techniques, 
applying them routinely in their work, and teaching them to 
their colleagues. This option would lay the foundation for 
long-term assistance and would provide considerable flexibility 
in how the assistance might be channelled. Without considerably 
more information on how the water sector is organized in 
Ecuador (which is essential for choosing among the three op
tions) , this plan appears to be the most appropriate. 

Assuming the third option, work should be started to arrange 
for a follow-up course in Quito, probably in January. The 
number of participants should probably be limited to a maximum 
of 20, all of whom should be sanitary engineers engaged in 
water supply planning and design. The teaching staff should 
include help from Professors LaMotta and Ordonez, and it should 
involve two doctoral students from UNC to assist with computer 
applications. During the visit for this course, a definite 
strategy should be developed for providing technical assistance 
in low-cost water supply planning. Methods for exchange of in
formation and interrelationships between IEOS and private con
sulting engineers should be determined. 

For the course in Quito, it is recommended that AID purchase 
one or two microcomputers that could later be made available to 
local engineers and possibly used in connection with its loan 
to IEOS. DNC is prepared to assist in purchasing this equip
ment. The U.S. cost of a well equipped microcomputer is roughly 
$6,000, although an Apple II can be bought for about half this 
amount. 
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( APPENDIX A C 

WATER AND SANITATION FOR HEALTH (WASH) PROJECT 
ORDER OF TECHNICAL DIRECTION (OTD) NUMBER 105 

Ju ly 18, 1982 

TO: 

FROM: 

SUBJECT: 

Dr . Dennis Warner, Ph. D. , P.E. 
WASH Cont rac t P r o j e c t D i r e c t o r 

Mr. V i c t o r W. R. Wehman J r . 
A . I . D . WASH P r o j e c t Manager 
A.I .D./SaT/H/WS 

tor —v 

, P.E., R.S. ^ i f i w S 

Provision of Technical Assistance Under WASH Project Scope of 
Work for USAID/Ecuador 

REFERENCES: A) QUITO 2443, 7 Apr i l 82 
B) Memo Ol inger (PRE/H)/Wehman (S&T/H), 21 A p r i l 82 
C) WASH t e l e x no. 207, 27 A p r i l 82 
D) QUITO 3341 , 12 May 82 

1 . WASH contractor requested to provide technical assistance to USAID/Ecuador 
as per Ref. A, rpara. 2 , 3 and 4. 

2. WASH contractor/subcontractor/consultants authorized to expend up to 28 
person days of e f f o r t over a 3 month period to accomplish t h i s technical 
assistance e f f o r t . 

3 . Contractor authorized up to 21 person days of in ternat ional and/or 
domestic per diem to accomplish th i s e f f o r t . 

4 . Contractor to coordinate w i th LAC/DR/HN (P. Feeney), LAC/DR/ENGR 
(Rod MacDonald), and Ecuador desk o f f i ce r (R. Lindsey) and should provide 
copies of t h i s OTD along wi th per iodic progress reports as requested by S&T/H 
or LAC bureau personnel. 

4 . Contractor authorized to provide up to two (2) in ternat ional round t r i p s 
from consultants home base through Washington ( fo r b r i e f i ng and demonstration 
of software to WASH CIC s t a f f ) to Ecuador (Quito and Guayaquil) and return to 
home base through Washington D.C. (WASH CIC fo r debr ie f ing) during l i f e of 
t h i s OTD. 

6. Contractor authorized local t ravel w i th in Ecuador as necessary and 
appropriate to meet mission needs NTE $400 without p r io r wr i t t en approval of 
AID WASH Project Manager. 

7. Contractor authorized to obtain local s e c r e t a r i a l , f a c i l i t a t o r , 
professional , graphics, or reproduction services in Ecuador as necessary to 
accomplish tasks. These services are i n addi t ion to the level of e f f o r t 
speci f ied in para. 2 and para. 3 above NTE $1,200 without pr io r w r i t t e n 
approval of AID WASH Project Manager. 



^ ., c 
8. Contractor authorized to expend up to $1,600 for training materials, 
software demos, supplies, workshop materials, and/or print/support services 
associated with workshop. 

9. Contractor authorized to provide for car or vehicle rental in Ecuador, i f 
necessary, to fac i l i t a te e f for t . Mission is encouraged to provide mission 
vehicles, i f available. 

10. Contractor w i l l insure avai lab i l i ty of appropriate Apple micro-computer 
equipment, accessories, software, and training aids for workshop needs. 
Appropriate shipment as carry-on excess baggage is authorized to fac i l i t a te 
a i r movement from U.S. to Ecuador i f local Ecuadorian Apple micro-computer 
equipment not available for contractor team and timing. 

11. Contractor w i l l insure that a detailed workshop training agenda/curriculum 
is provided to WASH CIC along with a copy of a l l pertinent software/ 
documentation before consultants authorized to travel to Ecuador. These 
materials should be specif ical ly referred as primary references in WASH 
Project Off ic ial OTD f i l e . 

12. Contractor's consultants are authorized to lecture, or to operate Apple 
micro-computer and various software packages in either demonstrations or 
training sessions with the Ecuadorian workshop attendees. 

13. WASH contractor w i l l adhere to normal established administrative and 
financial controls as established for WASH mechanism in WASH contract. 

14. WASH contractor should def in i te ly be prepared to administratively or 
technically backstop f i e l d consultants and subcontractors. Contractor should 
secure cable commitment from USAID/Ecuadorindicating that the USAID is 
prepared to insure and expedite customs clearance in and out of Ecuador of a l l 
micro-computer carry-on baggage and associated software. S&T/H/WS WASH 
Project Manager w i l l then allow consultants to enter into international travel 
for the purprose of the scope of work defined in Ref. A. 

15. Contractor to provide f inal workshop report within 30 days of return to 
U.S. with observations, discussions, recommendations, and conslusions. 

16. Mission should be contacted immediately and technical assistance in i t ia ted 
as soon as convenient to USAID/Ecuador and GOE. 

17. Appreciate your prompt attention to th is matter. Good Luck. 
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UNULA^IMtU 

(Department of St 
PAGE 61 OUMO B2443 0722032 3171 0 i l 2 t t AI0239S 

ACTION AI0-3S 

ACTION OFFICE IASA-B3 

INFO UOP-03 LADS-B: PPCE-OI POPRJJ«I \,ftfy-a) HO-D< AAST-BI 

STUD-B1 EKGR.-82 ^ H L B - i l l ' j » 0 - * 2 ' > REt'O-Ol OAEN-B1 HAST-01 

INFO OCT-OB ARA-16 ArtAD-Jli-' f ' e j < E j t J | ! « b 2 W 

UF-e-i---—J—--«fl35i6fl B72221Z /3S 
B B71726I APR 12 

Hi AMEHBASSY QUITO 

TO SECSTATE WASHDC 3910 

UNCLAS OUITO 2«43 

AIDAC 

E.O. 12065: "W/A 

SUBJECT: WAS PROJECT ASSISTANCE 

t . MISSION HAS RECEIVED A REQUEST FROM THE CIVIL ENGINEERING 

•SOCIETY Of THE PROVINCE Or GUAYAS TO PROVIDE ASSISTANCE IN 

THE PRESENTATION OF ONE OF ITS EIGHT WEEK-LONG SEMINARS. 

BASED ON MISSION URBAN DEVELOPMENT OFFICER MILLER CONVERSA

TIONS IN JANUARY IN WASHINGTON WITH PRE/H.OLINGER AND 

WASH J IM BEVERLY, KISSION REQUESTS THE VASH PROJECT 

AS THE SOURCE OF THIS ASSISTANCE; 

2 . AS PART OF ITS PROFESSIONAL DEVELOPMENT PROGRAM, THE 

SOCIETY HAS SCHEDULED A TRAINING SEMINAR FOR THE WEEK OF 

AUGUST 11-17 CN THE SUBJECT OF "COST EFFICIENCY IN THE 

DESIGN AND IttPLEMENTATION OF SANITARY ENGINEERING FACILITIES 

IN DEVELOPING COUNTRIES." THE SCCIETY HAS SPECIFICALLY 

REOUESTED THE PARTICIPATION OF A DR. DONALO T. LAURIA FROM 

THE DEPARTMENT OF ENVIRONMENTAL SCIENCE AND ENGINEERING OF 

THE UNIVERSITY OF E3RTK CAROLINA IK CHAPEL HILL. WE UMER-

STAKD DR. LAURIA IS AVAILABLE THROUGH WASH, THAT AN ECUA-

SGREAN COLLEAGUE Or DR. LAURIA HAS RECOMMENDED RIM, AND 

THAT THE SOCIETY WOULD EE PARTICULARLY PLEASED IF OR. 

LAURIA CCJLD CONDUCT THE SEMINAR. 

3. THE SCCIETY IS A LARGE, PROFESSIONAL ASSOCIATION WHOSE 

HEMEER ENGINEERS ARE ACTIVE IN ALL PHASES OF THE CONSTRUC

TION C'JSINESS THROUGHOUT THE COUNTRY, INCLUDING LOU-COST 

BOUSING PROJECTS OF GOE HOUSING INSTITUTIONS. IN THE 

CONTEXT OF USAID'S STRATEGIES OF TECHNOLOGY TRANSFER, INTE

GRATED URBAN CEVELCPHSKT, AND SUPPORT FOR THE PRIVATE 

SECTOR, ni:sicn WOULD LIKE TO BE. RESPONSIVE TO THE SOCIETY. 

CONSEOUENTLY, HISSIO* RE0UESTS AID/V PURSUIT OF WASH SUPPORT 

AND THE PARTICIPATION OF DR. LAURIA. 

4. THE PARTICIPANTS III THE SEMINAR WOULD BE APPROXIMATELY 

2SB V I C I l ENGINEERS FROM THE GUAYAQUIL AREA. THE LOCALE 

AHD LOGISTICS WCULD BE PROVIDED BY THE SOCIETY, INCLUDING 

BEPRS3CCTICN OF COURSE MATERIAL. THE TRAINER WOULD BE 

EXPECTED TO CCKDUCT SEMINARS OF FOUR HOURS A DAY ON THE 

SUBJECT OF EFflCIEHT SAM I TAP* ENGINEERING DESIGN AND TECH

NOLOGIES. OK. LAURIA APriRENUY HAS GIVEN SUCH AS COURSE AND 

SHOULD EE : : i l ! t : " 0 r n FATHER INFORMATICS CI. IFEClFlCS 0? 

TOPIC: TO BE ccvrssc. 

i. MI*: iC" I' I / j IFi- . ILUR WITH C?. IC'.'RIi., IV* Eit-D Or. THE 

SSCIETY'S 5i.CCM-ii;D«Tie:i. VOJlO EE SSITSfiEO WIT* HIS 

P«r. ICI fAI i i : . . IF ••£ >i 1.01 K ia ' i iE iE , A :iM!i»PL» 

CvAiint: :?.:.iih I T X - J E-P-C- VCUU EI I - I I :? - - . 

I . PiEiSt ion:r t : :o?:i * : POSSIBLE. 
TC'.'LE 
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UNITED S T A T i INTERNATIONAL DEVELOPMENT COOV ,<ATlON AGENCY 

AGENCY FOR INTERNATIONAL DEVELOPMENT 
WASHINGTON1. D C 20523 

A p r i l 2 1 , 1982 

MEMORANDUM 

TO: S&T/HEA, V i c t o r Wenman 

FROM:" PRE/H, Davi a d i n g e r fcj 

SUBJECT: WASH Technical Assistance to USAID/Quito 

Attached hereto is a telegram from USAID/Quito requesting WASH assistance 
managing a week long seminar on cost eff iciency in design and implementation 
of sanitary engineering f a c i l i t i e s . 

The services of Dr. Don Lauria of the University of North Carolina are 
speci f ical ly requested since his work is known to the sponsoring Civ i l 
Engineering Society and he has worked on WASH assignments previously. 

In a phone conversation today, John Mi l le r , Housing and Urban Development 
Officer in Quito requested an early indication as to whether i t w i l l be 
possible to meet th is request, since the Civ i l Engineering group is quite 
eager to f ina l i ze their schedule. I have, therefore, taken the l iber ty of 
discussing this matter with David Donaldson of WASH. 

Although the dates proposed are injnid-August, an early response as to the 
a v a i l i b i l i t y of Dr. Lauria would be"appreciated by a l l concerned. 

Attachment: as stated 

cc: USAID/Ecuador, J . Mi l ler 
WASH, D. Donaldson 
PRE/H, P. Vitale 

-15-



ACTION r UNCLASSIFIED r INCOMING 
COPY department of State - TELEGRAM 
PAGE 01 QUITO 03341 171S43Z S332 093356 AIO5107 
ACTION AIO-35 

ACTION OFFICE STHE-01 
INFO LASA-03 LADP-83 LAOR-03 PPCE-01 PDPR-C1 PPPB-03 PPEA-01-

HO-04 AAST-01 ENGR-02 RELO-01 TELE-0 1 MAST-01 
/026 Al 417 

INFO OCT-00 INR-10 EB-08 ARA-16 AMAD-01 CCO-00 PASO-00 
/07 0 W 

001170 171612Z /51 38 
R 121954Z MAY 8 2 
FM AMEMBASSY QUITO 
TO SECSTATE WASHOC 4 304 

UNCLAS QUITO 3341 

AIDAC 

OJRECT RELAY 

C O R R E C T E D C O P Y (FOR D I R E C T RELAY, PASSING) 

FOR: WEHMAN, 5T/HEA CWSS; OLINGER, PRE/H; VITALE, PRE/H ' 

E. O. 12065: N/A 
SUBJECT: TELEGRAM RELAY 

TO: DONALDSON 
WASH COORDINATION AND INFORMATION CENTER 
1611 N. KENT STREET, ROOM 1002 
ARLINGTON, VIRGINIA 22209 - - . 
(PHONE 703 (243-8200) ) 

REF: COMMERCIAL TELEX 4/27/82 

1. SUBJECT: YOUR CABLE 207, RE DR. LAURIA. 

2. MISSION HAS DISCUSSED WITH GUAYAS ENGINEERING SOCIETY 
THE POSSIBILITY OF MOVING THE DATES OF LAURIA' S COURSE 
FROM AUGUST 11-17. UNFORTUNATELY, DUE TO PREVIOUS 
SOCIETY COMMITMENTS, IT IS NOT POSSIBLE. MISSION 
'THEREFORE RECONFIRMS OUR REQUEST FOR AUGUST 11-17 AND 
ASKS WASH PROJECT FOR CONFIRMATION. 

3. LAURIA SHOULD PLAN TO MEET WITH MISSION IN QUITO 
PRIOR TO AND AFTER COURSE. FOR YOUR INFORMATION. AUGUST 
10 IS AN ECUADOREAN HOLIDAY SO THAT LAURIA SHOULD MAKE 
TRAVEL ARRANGEMENTS TO BE IN QUITO AUGUST 9. 

4. PLEASE SEND COURSE OUTLINE AND LAURIA RESUME, IN SPANISH. 
TO JOHN MILLER, USAID, QUITO, APO MIAMI 34039. 
YOULE 

NOTE BY OC/T: PASSED ABOVE ADDRESSEE. 

UNCLASSIFIED 
-16- • 



APPENDIX B 

Itinerary 

Date Day Place 

10 August Tuesday Chapel Hill to Guayaquil 

15 August Sunday Guayaquil to Quito 

17 August Tuesday Quito to Chapel Hill 

-17-



APPENDIX C 

Officials Contacted 

Colegio de Ingenieros del Guayas 

Carlos Balladares V., President IX Jornadas 
Pablo Baquerizo N., President CIG 
Carlos Oporto C., Course Coordinator 

AID-Quito 

Herbert Caudill, Jr., Coordinator AID-IEOS 
Kenneth R. Farr, Chief, Office of Health 

Escuela Politecnica Nacional 

Enrique LaMotta, Professor Environmental Engineering 
Gonzalo A. Ordonez, Professor Civil Engineering 



APPENDIX D 

Course Outline 

Guayaquil, Ecuador 

Wednesday, August 11, 1982 

Morning (2 hrs.) 

Analysis of Cost Data 
Regression Analysis 
Determination/Interpretation Economies of Scale 

Evening (4 hrs.) 

Regression Analysis of Data 
Optimal Design Periods 

Thursday, August 12, 1982 

Morning (2 hrs.) 

Design of Branched Pipe Networks 
Linear Programming 

Evening (4 hrs.) 

Use of Computer for Designing Branched Networks 

Friday, August 13, 1982 

Morning (2 hrs.) 

Design of Looped Pipe Networks 
Design of Pumping Stations 

Evening (4 hrs.) 

Use of Computer for Designing Looped Networks 

Saturday, August 14, 1982 

Morning (3 hrs.) 

Design of Multipurpose Reservoirs 
Illustrative Reservoir Example 

-19-
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JOURNAL OF 
THE ENVIRONMENTAL 

ENGINEERING DIVISION 
MODELS FOR CAPACITY PLANNING 

OF WATER SYSTEMS 

By Donald T. Lauria,' M. ASCE, Donald L. Schknger,' 
and Roland W. Wentworth,1 A. M. ASCE 

INTRODUCTION 

It is common practice in the field of sanitary engineering for designers to 
provide capacity in water systems beyond that needed for satisfying immediate 
requirements. Facilities are usually sized with sufficient capacity to meet 
anticipated flows several years in the future. The period during which facilities 
are expected to have excess capacity is called the design period which is sometimes 
as short as 10 yr for treatment plants and as long as 50 yr or more for pipelines 
and conduits. 

Sanitary engineers are well equipped with standards for selecting design periods. 
In the past 10 yr-15 yr, however, these standards have been seriously questioned, 
and a number of mathematical models have been developed in the search for 
more nearly optimal designs. The underlying concept of these models is that 
the amount of excess capacity to be provided is a function of the tension between 
economies of scale and social time preference as reflected by the discount 
rate. On one hand, economies of scale make it attractive to build beyond immediate 
needs as incremental costs are proportionately small: on the other, society is 
disinclined to tie up valuable resources in facilities that remain unproductive 
for long periods of time. The models reveal that only after careful consideration 
of these two factors can proper design periods be selected. 

Among sanitary engineers, Lynn (5) was one of the first to address the problem 
of optimal scale. His work was preceded, however, by Chenery (1) who developed 
a simple model for determining the optimal scale of capacity expansions. 
Chenery's model was refined and extended by Manne (6) whose work has received 

Note.—Discussion open until September 1. 1977. To extend the closing dale one month. 
a written request must be filed with the Editor of Technical Publications. ASCE. This 
paper is part of the copyrighted Journal of the Environmental Engineering Division. 
Proceedings of the American Society of Civil Engineers. Vol. 10?. No. EE2. April. 1977. 
Manuscript was submitted for review for possible publication on February 12. 1976. 

'Assoc. Prof., Dept. of Environmental Sci. and Engrg., Univ. of North Carolina, Chapel 
Hill. N.C. 

'Special Projects Engr.. Hackensack Water Co.. Wechawken. N.J. 
'Environmental Engr., Camp. Dresser and McKee. Inc.. Boston. Mass. 
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much attention from sanitary engineers. Indeed, Munich (8), Rachford, et al. 
(9), Scarato (12), and Thomas (13) all apply Manne's model or their extensions 
of it to the water engineering field: recently, the model has appeared in a basic 
sanitary engineering text by Rich (10). Outside of sanitary engineering, Manne's 
model has generated considerable interest; two of the many texts in which 
it appears are those by Rudd, et al. (II) and Zimmerman, et al. (14). 

A basic problem with Manne's model is that the mathematical expression 
for the optimal design period is an implicit function. In order to calculate optimal 
capacities, trial and error or numerical techniques are necessary. Because this 
seriously limits the usefulness of the model, an approximating equation is 
presented in this paper by which optimal design periods can be calculated directly. 
A second approximating equation is presented herein for the optimality condition 
developed by Thomas (13) in an extension of Manne's model. Whereas Manne's 
work is limited to capacity expansions, Thomas is concerned with the optimal 
scale of a project for which the level of demand exceeds the capacity of supply • 
facilities at the beginning of the planning horizon. Thomas' model, also presented i 
by Rudd, et al. (11), is referred to in this paper as the Initial Deficit Model. 

The main thrust of this paper is an extension of the Marine and Thomas 
models for a type of problem commonly encountered in water engineering. 
A model is developed for determining the optimal waiting period prior to 
construction of a system for which an unsatisfied demand exists at the beginning 
of the planning horizon. This is called the Waiting Period Model, and like the 
models of Manne and Thomas, the optimality condition is an implicit function 
that cannot be solved directly for the decision variable. Consequently, an 
approximating equation is presented. Although the Waiting Period Model is 
applicable to situations in the United States, it is perhaps more useful for water 
supply planning in developing countries. 

The appeal of Manne's model is its simplicity, stripping away peripheral 
considerations in order to focus on the essential elements of the problem. 
However, this results in a certain oversimplification that makes the model of 
questionable value for real planning purposes. For example, demand is assumed 
to increase linearly with time, facilities are assumed to have infinite economic 
life, costs are assumed to remain constant over time, and the planning horizon 
is assumed to be infinite. Inasmuch as these assumptions apply to all the models 
of this paper, questions of applicability can be raised. Manne, however, has* 
responded to many of the criticisms of his assumptions in Ref. 6, to which: 
the reader is referred; this defense is not repeated herein. 

CAPACITY EXPANSION nfooei 

In this and the following section, only brief summaries of the models are; 

presented. For more detail, the reader should see Refs. 7 and 13. 
Manne's Capacity Expansion Model assumes that demand increases linearly 

with time t into the indefinite future, as shown in Fig. I; the annual rate of 
demand increase is D, which has typical units of millions of U.S. gallons per. 
day per year. At the beginning of the planning horizon (when t = 0), the capacity 
of supply facilities is assumed to equal the rate of demand. If it is required 
that capacity never be less than demand, the first expansion is needed when 
t - 0. Assuming an excess capacity period (i.e., a design period) of .v yr. 
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the expansion will have capacity of xD mgd, and its cost will be C(.\D) dollars. 
At time t = x, excess capacity of the first expansion will be exhausted; 

by then, demand will have grown equal to capacity. With conditions at f = 
x essentially identical to those at t = 0 (i.e., demand increasing linearly to 
an infinite time horizon and construction costs and the discount rate unchanged), 
another expansion of scale xD with cost C(.tD) will be required. Repeating 
this pattern for each point of zero excess capacity, the following expression 
of total present value construction cost for the infinite planning horizon can 
be written as 

C(xD) [^ exp(-nu) 
n-0 -I 

(1) 

in which exp i-rnx) = present worth factor for year nx; and r = annual discount 
rate expressed as a decimal. In this and succeeding expressions of present 
value costs, continuous rather than discrete discounting is assumed to facilitate 
use of the calculus in deriving optimality conditions. 

•»{ 

Cmcity 
\ 
> \ 

^ 

2. 3. 
TIMEfrd.t UMCITY (agd), iD 

FIG. 1.—Capacity Expansion Model 
(1,000.000 gal/day = 37,800 m'/day) 

FIG. 2.—Typical Construction Cost 
Function (1.000.000 gal/day = 37,800 
m'/day) 

The term in brackets in Eq. I is the sum of a geometric progression that 
has the value of 

V exp(-rnx) = 
I 

I - exp(r.v) 
(2) 

In the water engineering field, the expansion cost in Eq. I commonly is a 
concave power function of the form shown in Fig. 2. The equation of this 
function is 

C{xD) = k(xD)a . (3) 

in which k and a = constants, the latter called the economy of scale factor; 
k = cost of a l,000.000-gal/day system, seen by substituting xD = l into Eq. 
3; and a = percentage change in cost per percent change in scale, or equivalently, 
the ratio of marginal to average cost. Substituting F.qs. 2 and 3 into Eq. I 
results in Eq. 4. an expression of total present value cost in terms of excess 
capacity period x (the decision variable) and parameters k. D, r, and <i: 



K(XU)' 
(4) 

I - exp (-rx) 
To find the optimal design period, x*. that minimizes total present value cost. 

TABLE 1.—Comparison of x* Values from Eqs. 5 and 6 

Discount 
rate, r 

(1) 

0.05 

0.10 

0.15 

0.20 

Economy-of-scale 
factor, a 

(2) 

0.5 
0.6 
0.7 
0.8 
0.9 
0.5 
0.6 
0.7 
0.8 
0.9 
0.5 
0.6 
0.7 
0.8 
0.9 
0.5 
0.6 
0.7 
0.8 
0.9 

.v* from numerical 
solution Eq. 5 

(3) 

25.128 
18.948 
13.509 
8.616 
4.142 

12.564 
9.474 
6.754 
4.308 
2.071 
8.376 
6.316 
4.503 
2.872 
1.380 
6.282 
4.737 
3.377 
2.154 
1.035 

x* from approx
imating Eq. 6 

(4) 

23.925 
18.634 
13.501 
8.573 
3.945 

11.962 
9.317 
6.751 
4.287 
1.972 
7.975 
6.211 
4.500 
2.858 
1.315 
5981 
4.659 
3.375 
2.143 
0.986 

Error as a 
percentage 

(5) 

4.79 
1.66 
0.06 
0.49 
4.77 
4.79 
1.66 
0.05 
0.49 
4.77 
4.79 
1.66 
0.06 
0.49 
4.72 
4.79 
1.66 
0.05 
0.49 
4.72 

« 
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FIG. 3.—Initial Deficit Model (1,000,000 gal/day = 37,800 m3/day) 

the derivative of Eq. 4 with respect to x is set equal to zero; the resulting 
optimality condition is 

rx* 
a = (5) 

exp [rx*) - I 

Eq. 5 shows that the optimal design period depends only on the economy 
of scale factor a and the annual discount rate r under the assumptions of this 
model. Given values for each, Eq. 5 reduces to an expression containing the 
single unknown, x*. It is impossible to solve Eq. 5 explicitly for x*; trial-and-error 
methods, or preferably numerical techniques such as Newton's method, must 
be used. To avoid this necessity, cross plots of Eq. 5 have been reported by 
Manne (6), the first writer (4), Rachford, et al. (9). and others for selected 
values of rand a. More useful, however, is the approximation 

2.6(1 - a )" 2 

x* = (6) 
r 

In Eq. 6, the parameters, 2.6 and 1.12, were obtained using linear regression 
techniques. In this analysis, Eq. 5 was solved for 20 values of x* using Newton's 
method with a-values of 0.5, 0.6, 0.7, 0.8, and 0.9 and r-values of 0.05, 0.10, 
0.15, and 0.20. The,stopping criterion for Newton's method was 10 ' yr. The 
values of a and r were selected as being particularly relevant in the field of 
sanitary engineering. 

The form of the model proposed for regression analysis derived from Eq. 
5 in which a series expansion was made of exp (rx*). Additionally, it was 
known that x* = 0 when economies of scale are absent (i.e., when a = I), 
which suggested inclusion of (1 - a) as an independent variable in the regression 
model. 

The standard error of estimate based on the 20 residuals obtained from the 
difference between x* values from Eqs. 5 and 6 is 0.34 yr, and the correlation 
coefficient is 0.998. The excellent agreement between values of x* from Eq. 
5 and approximation from Eq. 6 is shown in Table 1. 

INITIAL DEFICIT MODEL 

The previous model is for expansions only: it assumes that demand and capacity 
are equal at the beginning of the planning horizon. It is common, however, 
for demand to exceed capacity at the start of planning, giving rise to the Initial 
Deficit Model of this section. This situation exists when users switch from 
an existing supply facility to an entirely new one, when a new demand suddenly 
presents itself, or when supply facilities simply have not been provided to satisfy 
demands. Examples of initial deficit include the installation of treatment plants 
for housing developments formerly served by septic tanks, the construction 
of water and wastewater systems for new towns, and the abandonment of local 
community facilities in favor of regional systems. In most of the towns of 
developing countries and in many places in the United States where public 
water and wastewater systems are lacking, capacity deficits are encountered 
when planning to provide these facilities is finally begun. 

The Initial Deficit Model of this section retains the assumptions of the previous 
model, but in addition assumes that D0, the rate of demand at f = 0, is unsatisfied. 
As shown in Fig. 3, the project to be constructed at the beginning of the planning 
horizon will have excess capacity for .x, yr, at the end of which time a planning 
situation identical to that of the Capacity Expansion Model will be encountered. 
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The planning problem is to determine the optimal value of the initial design 
period, x*, the methodology for which has been developed by Thomas (13). 

Thomas' approach is similar to Mannc's. An expression is written for total 
present value cost which includes the construction cost of the initial project 
(the first term in Eq. 7) plus the present value cost of an infinite number of 
future expansions (the second term in Eq. 7). The resulting objective function 
is 

kixD)' 
k(Da + x.D)' + exp(-rx,) •— ("). 

1 - exp(-rjc) 

Note from Fig. 3 that D„ can be replaced by xaD, in which x0 = hypothetical 
elapsed period, in years, from the point of zero excess capacity prior to the. 
start of planning to f = 0, assuming demand has increased at rate D. 

In this model, the two decision variables are A, and x. The optimal value -
of x, the design period for expansions, is found from the derivative of Eq. 
7 with respect to x set equal to zero; the optimality expression is identical 
to Eq. 5 for which approximating Eq. 6 can be used. The optimal value of 
x,. the excess capacity of the initial project to be constructed at f = 0. results 
from the derivative of Eq. 7 with respect to .v, set equal to zero. The optimality , 
condition is 

rk(xD)« 
Da[k(D0 + x*D)'-,]=txp{-rx*)- (8) 

i 1 - exp(-rx) 
ro 
Y> The interpretation of this expression is as follows. The term in brackets on 

the left-hand side is the average cost of the optimally scaled initial project. 
Previously it was mentioned that a is the ratio of marginal to average cost, 
from which it follows that a times the term in brackets [ ] is the marginal 
cost of the initial project. Multiplying the product a[ ] by D, the amount 
by which demand increases every year, results in the approximate incremental 
cost of adding an extra year's capacity to the optimally scaled initial project. 
In mathematical symbols, the left side of Eq. 8 is roughly equal to k[D„ + 
U* + \)D]° - k[D0 + x*D]°. 

On the right-hand side, r k(xD)" = annual interest cost of any future expansion.; 
The denominator is the same present worth factor of Eq. 4; it discounts the 
infinite series of annual interest costs to year x,. These costs are in turn discounted 
to year zero by the term, exp (-r.t*). Thus, Eq. 8 states that the initial project 
is optimally scaled when the incremental cost of providing one more year's 
capacity is equal to the present value of annual interest costs of all expansions. 
Alternatively stated, the initial project should be scaled so that its cost is equal 
to the difference between the cost of a project with an extra year's capacity 
and the present value annual interest cost of all future expansions. The optimality 
condition of Eq. 8 can be simplified by replacing D„ with xtlD and dividing 
through by kD" to obtain 

r x° 
al.T + .v.*)"-' = exp(-r.v*) W 

1 - exp (-rx) 
Eq. 9 shows that x* is a function of r. a. v„. and .v. but .v itself (or more 
ovnriiv, itio iintirrvil VMIIIP nf vl ilpnends on r and a and can be replaced in 
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TABLE 2.—Comparison of xf Values from Eqs. 9 and 10 

Discount 
rate, r 

(1) 

0.05 

0.10 

0.15 

. 
0.20 

Economy-
of-scale 
factor, a 

(2) 

0.5 

0.6 

0.7 

0.8 

i 

0.9 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 

0.6 

0.7 

0.8 

0.9 

0.5 

Elapsed 
period, x„. 

in years 
(3) 

10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
to 
40 
70 
10 
40 
70 
10 

xj from 
Eq. 9 

(4) 

29.70 
36.22 
39.88 
23.50 
29.32 
32.44 
17.85 
22.72 
25.22 
12.44 
16.11 
17.90 
6.96 
9.08 

10.06 
16.24 
20.41 
22.54 
13.02 
16.62 
18.40 
10.01 
12.93 
14.32 
7.06 
9.17 

10 15 
3.98 
5.15 
5.66 

11.52 
14.62 
16.14 
9.29 

11.93 
13.19 
7.18 
9.28 

10.26 
5.08 
658 
7.26 
2.86 
3.68 
4.03 
9.05 

xf from 
Eq. 10 

(5) 

28.73 
35.36 
38.95 
23.18 
28.94 
31.94 
17.69 
22.40 
24.78 
12.20 
15.67 
17.38 
6.60 
8.58 
9.56 

15.80 
19.93 
22.00 
12.86 
16.35 
18.07 
9.91 

12.69 
14.05 
6.90 
8.90 
9.89 
3.76 
4.91 
5.49 

11.23 
14.27 
15.76 
9.18 

11.72 
12.96 
7.09 
9.11 

10.10 
4.95 
6.40 
7.12 
271 
3.54 
3.97 
8.84 

Error, as a 
percentage 

(6) 

3.28 
2.37 
2.33 
1.36 
1.31 
1.54 
0.90 
1.39 
1.75 
1.91 
2.71 
2.92 
5.24 
5.47 
4.94 
2.71 
2.33 
2.40 
1.24 
1.63 
1.80 
1.01 
1.84 
1.86 
2.30 
2.92 
2.58 
5.50 
4.69 
3.04 
2.51 
2.40 
2.36 
1.22 
1.76 
1.71 
1.20 
1.85 
1.58 
2.57 
2.75 
1.91 
5.41 
3.71 
1.40 
2.32 



TABLE 2.—Continued 

(1) (2) 

0.6 

0.7 

0.8 

0.9 

(3) 

40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 
10 
40 
70 

(4) 

11.54 
12.72 
7.33 
9.42 
10.40 
5.68 
7.33 
8.08 
4.02 
5.19 
5.71 
2.37 
2.89 
3.16 

(5) 

11.26 
12.45 
7.23 
9.25 
10.24 
5.60 
7.20 
7.99 
3.92 
5.07 
5.65 
2.14 
2.81 
3.16 

(6) 

2.40 
2.14 
1.40 
1.81 
1.53 
1.47 
1.82 
1.13 
2.58 
2.29 
1.00 
9.65 
2.60 

-0.12 

I 
ro 
i 

CL4P9ED PERIOO 111). • • 

FIG. 4.—Optimal Initial Design Period 
Versus Elapsed Period 

FIG. 5—Waiting Period Model 
(1,000.000 gal/day = 37.800 m'/day) 

Eq. 9 by values from Eqs. 5 or 6. The model thus shows that the optimal 
design period for initial construction x* is a function of the annual discount 
rate r, the economy of scale factor, a, and the elapsed period, x0. Given values 
for these parameters, Eq. 9 is an expression with the single unknown, x*. 
As in the case of the Capacity Expansion Model, however, it cannot be solved 
explicitly for x*; trial and error or numerical methods must be used. 

Newton's method with a stopping criterion of 10~' yr was employed for 
solving Eq. 9 for 140 values of x*. To obtain these solutions, the discount 
rate, r, was varied from 0.05-0.20 in 0.05 increments, the economy of scale 
factor, a, was varied from 0.5-0.9 in 0.1 increments, and the elapsed period, 
x„. was varied from 10 yr-70 yr in 10-yr increments; 60 of the .vf values are 
shown in Table 2. Graphical analysis of the I40 values suggested a model that 
was used in linear regression analysis to develop an approximating equation 
solved explicitly for A* ; the result is 

= x + <rr (X + X)° 
(10) 

l^ui t n idi A . -^ A I\JI A — vr, i .^. , u i c v/pumai uwsign p \ . u v u vsi in*, initial 

project is greater than the design period of expansions when an initial capacity 
deficit exists. Optimal initial design period versus elapsed period is shown in 
Fig. 4. 

Table 2 includes a comparison of exact and approximate xf values obtained 
from solution of Eqs. 9 and 10, respectively; the differences are seen to be 
small. From the 140 residuals obtained by subtracting the x* values from the 
two equations, the standard error of estimate was found to be 0.34 yr, and 
the correlation coefficient was 0.999. 

WAITIMO PERIOD MODEL 

The previous models are preliminary to that of this section developed by 
the writers primarily for, but not limited to, the case of water supply planning 
in developing countries. In earlier models, the restriction that capacity equal 
or exceed demand essentially eliminates timing as a decision variable; construction 
is to take place at the beginning of the planning horizon and at subsequent 
points of zero excess capacity. In the model presented in this section, however, 
an unsatisfied demand exists at f = 0 as in the initial deficit case, but the 
decision is made to let demands go unsatisfied from local facilities for y yr 
before constructing the first system, as shown in Fig. 5. This is the situation 
that normally prevails in developing countries. A comparable case in the United 
States is one where excess demands beyond the capacity of local supply facilities 
are satisfied by importing water from a neighboring system. Once construction 
or expansion of the local system is made, however, capacity must always equal 
or exceed demand, as before. The three decision variables of this model are 
y, the waiting period before constructing the first system; x,. the excess capacity 
period of the initial project; aiid x, the excess capacity period of future expansions. 

During the waiting period from the beginning of the planning horizon to the 
time of initial construction, costs are incurred. In the case of water supply 
in developing countries, demands are usually only partially satisfied from natural 
sources or vendors resulting in health and other social costs. Where demands 
are met by importing as in the United States, fees must be paid for service 
from the neighboring system. For purposes herein, it is assumed that a cost 
of p dollars is associated with each gallon of water demanded but not supplied 
from the local system. A general analysis of this penalty cost for developing 
countries is presented by the first writer (4). 

Proceeding as in previous models, optimality conditions can be developed 
from an expression of total present value cost in terms of decision variables. 
At any time t in the waiting period, the rate of unsatisfied demand is (Du 

+ Df); the rate of penalty cost accrual is p times this amount, convertible 
to present value through use of the present worth factor, exp {-rt), in which 
r = annual discount rate, as before. Integrating from time 0 to >• results in 
the following expression of present value penalty costs: 

/ 

P 
cxp(-rf)p(Do + Dt)dt = 

D 
D.. + — 

- exp(-rv) ( D „ + — + /)>•) (II) 
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Assuming a construction cost function of the type in Fig. 2 represented by 
Eq. 3. the expression of total present value penalty and construction costs 
for an infinite time horizon is 

/ : 
exp(-rt) p(D„ + Dt)dt + exp{-ry)k{D0+ yD+ xtD)" 

•o 
k{xD)a 

+ exp[-r(y + x,)] (12) 
I - exp(-nc) 

the second and third terms of which are present value initial construction and 
expansion costs, respectively. Optimal values of the decision variables can be 
found by setting the appropriate partial derivatives of Eq. 12 equal to zero 
and solving. 

The derivative with respect to x results in an expression identical to Eq. 
5 of Manne's expansion model. The derivative with respect to x, results in 
Eq. 13 which is equivalent to Eq. 8 obtained by Thomas for the Initial Deficit 
Model but slightly different in symbols: 

rk(xD)" 
Do[k(D 0 +Dy+Dx*)«- ' ] = exp(-rx*) (13) 

1 - exp(-rx) 

Note on the left side that Dy has been added to the term in parentheses to 
account for increasingdemand during the initial years of deficit. The interpretation 
of Eq. 13 is unchanged from that presented for Eq. 8, but it applies at time 

• t = y; i.e., the initial project is optimally scaled when the incremental cost 
en of providing one more year's capacity is equal to the present value of annual 

interest costs of all expansions discounted to year y. 
The optimal waiting period is determined from the derivative of Eq. 12 with 

respect to y. The resulting expression is cumbersome: 

rk{xD)a 

p(D0 + Dy*) = rk(D„ + Dy* + Dx,)" + e x p ( - r x , ) - -
I - exp(-rx) 

- Da[k(D0 + Dy* + D x , ) - ' ] (14) 

Note, however, that the last two terms on the right-hand side are identical 
to the right and left-hand terms of Eq. 13. except for the asterisks. If the 
initial project is optimally timed and scaled (i.e., if y = y* in Eq. 13 arid 
x, = x* in Eq. 14), then the last two terms of Eq. 14 are equal and can 
be eliminated because they are different in sign. The resulting optimality condition 
is 

p(D„ + Dy*) = r[k{D„ + Dy* + Dx*)u] (15) 

This completes development of the optimality conditions for the Waiting Period 
Model. The optimal design period of expansions x* can be calculated from 
Eq. 5. or approximated from Eq. 6 given values for r and a. The optimal 
timing, y*. and design period of the initial project, v*. can be dctcrnSncd 
by solving Eqs. 13 and 14 simultaneously as shown in Appendix I given values 
for x*. /). D„. D, and fc.T'nis, however, is difficult and requires use of numerical 
techniques and the electronic computer. 
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Before presenting an approximating equation for the optimal waiting period, 
it is useful to examine Eq. 15, the condition that must be met if the waiting 
and design periods of the initial project are to be optimal. Note that the term 
in parentheses on the left side of Eq. 15 is the rate of unsatisfied demand 
at / = y, the time of initial project construction: multiplying by p results in 
the rate of penalty cost accrual at t = y, with typical units in dollars/year. 
The right side of Eq. 15 is the annual interest cost of the initial project. Thus, 
Eq. 15 says that construction of the first project should be delayed until its 
annual interest cost is equal to the rate of penalty cost accrual. 

Eq. 15 can be rearranged to provide useful insights into capacity planning. 
Solving for y* results in 

rk(D0 + Dx* + Dx*)" D„ 
y* = •- _ „ 6 ) 

pD D 

which shows that the optimal waiting period decreases as the penalty price, 
p, increases, i.e., if the cost of importing water from a neighboring community 
is high, or if the s/ocial loss from letting demands go unsatisfied is high, (hen 
local facilities should be constructed sooner than if p is low. The value of 
p for which no waiting is optimal (denoted p) can be found by setting y* 
= 0 in Eq. 16 and solving; the resulting expression is 

rk(D0 + Dx*)' 

' " o. "" 
Note that Eq. 17 applies to the Initial Deficit Model of the previous section 
since that model is identical to the Waiting Period Model with y* = 0. Should 
the planner, then, use Thomas' model for determining the optimal scale of 
a project and decide to build at t = 0. a penalty price of p would be implicitly 
assigned to each gallon of unsatisfied demand. Eq. 17 provides the means for 
imputing p; note that it is simply the product of the discount rate and initial 
project cost divided by the unsatisfied rate of demand at the time of construction. 

Values of p greater than p result in negative waiting periods. If y* is negative, 
it would have been optimal for construction to have taken place sometime in 
the past (i.e., before the start of the planning period). Since this is obviously 
impossible, implementation should take place at t = 0. If, however, the actual 
penalty price is less than p. construction should be delayed; the optimal amount 
of delay y* can be calculated from the simultaneous solution of Eqs. 13 and 
14 as shown in Appendix 1. Alternatively, an estimate of y* can be obtained 
from 

y* = aF» - x „ (18) 

kD° 
in which F = (19) 

pD 

a = 0.012 a-*-1 r"' (20) 

P = 5.58 a1 ' r° '» (21) 

Note that one of the independent variables of Eq. 18 is F, defined in Eq. 
19: F is identical to the "penalty factor" employed by Erlenkottcr (2). Note 



be multiplied by x" and x, respectively, without changing the value of F if 
x = I yr. The numerator of F is thus seen to be the cost of a system with 
capacity to meet I yr of demand, and the denominator is the rate of penalty 

TABLE 3.—Comparison of (JC„ + y*) Values from Eqs. 18 and 24 

Discount 
rate, r 

(11 

0.05 

0.05 

0.05 

0.05 

0.10 

0.10 

0.10 

0.10 

Economy-
of-scale 
factor, a 

(2) 

0.5 

0.6 

0.7 

0.8 

0.5 

0.6 

0.7 

0.8 

Penalty 
factor, F 

(3) 

55.207 
91.630 

120.713 
145.555 
167.552 
40.188 

62.886 
79.833 
93.690 

105.568 
30.228 
44.146 
53.745 
61.207 
67.372 
23.748 
31.904 
36.999 

40.726 

43.675 
32.3% 
51.461 
66.283 

78.792 
89.798 
23 829 
35.501 
43.976 
50.826 

56.666 
17.929 
24.857 
29.509 

33.092 
36 042 
13.887 
17.727 

20.075 
21.785 
23.139 

*o + )'* from 
exact Eq. 24 

(4) 

20.000 

40.000 
60.000 
80.000 

100.000 
20.000 
40.000 
60.000 
80.000 

100.000 
20.000 
40.000 
60.000 
80.000 

100.000 
20.000 
40.000 
60.000 
80.000 

100.000 
20.000 
40.000 

60.000 
80.000 

100.000 
20.000 
40.000 
60.000 
80.000 

100.000 

20.000 
40.000 
60.000 

80.000 
100.000 

20.000 
40.000 
60.000 
80.000 

100.000 

x0 + y* from 
approximate 

Eq. 18 
(5) 

18.274 
35.689 
51.369 
65.777 
79.219 
18.807 

39.805 
59.356 
77.600 
94.770 
20.072 
43.565 
65.159 

85.016 
103.461 
22.347 

45.845 
65.750 
83.052 
98.457 

21.957 
43.893 
64.109 
83.040 

100.990 
20.944 
44.617 

66.969 
88.134 • 

108.331 
19.938 
42.519 

63.283 
82.537 

100.603 
18.708 

36.676 
51.681 
64.748 
76.460 

Error, as a 
percentage 

(6) 

8.63 
10.78 
14.38 
17.78 
20.78 

5.97 

0.49 
1.07 

3.00 
5.23 

-0 .36 
-8 .91 
-8 .60 
-6 .27 
-3 .46 

-11.73 
-14.61 

-9 .58 
-3 .81 

1.54 

-9 .78 
-9 .73 
-6 .85 
-3 .80 
-0 .99 
-4.72 

-11.54 

-11.62 
-10.17 

-8.33 
0.31 

-6 .30 
-5.47 
-3 .17 
-0 .60 

6.46 
8.31 

13.86 
19.06 
23.54 

cosi accrual, in aonars/year aner i yr oi anowing uemanu IU go uusmisiicu. 
Therefore, F is the ratio of capital to penalty costs and has units of time. 
In using Eq. 18, F must be in years if y* and x0 are in years. It is important 
to note that F is inversely related to p; high importing or social costs imply 
low values of F. 

Eq. 18 was developed from two-stage regression analysis of exact values 
from the solution of Eq. 24 in Appendix I. In solving Eq. 24, it was easier 
to treat F as the unknown than y*. The economy of scale factor, a. was 
successively set equal to 0.5. 0.6, 0.7, and 0.8, and the discount rate, r, was 
set at 0.05 and 0.10. The sum, x0 + y*. appearing as a single variable in Eq. 
24, was assigned 50 values in the range of 2 yr-100 yr. A total of 400 exact 
values of F were obtained using Newton's method, 40 of which are shown 

3 " 

10 40 60 80 

PENALTY FACTOR (»r.). F 
0 20 40 10 

PENALTY FACTOR (jr.). F 

FIG. 6.—Optimal Waiting Period Versus 
Penalty Factor for Alternative Economy 
of Scale Factors 

FIG. 7.—Optimal Waiting Period Versus 
Penalty Factor for Alternative Discount 
Rates 

in Table 3. Graphical analysis of these values suggested the form of the model 
proposed for regression analysis. 

Table 3 includes exact and approximate values of xB + y* from Eqs. 24 
and 18. respectively. The standard error of estimate based on 400 residuals 
obtained from the difference between .x0 + y* values from the two equations 
is 6.2 yr, and the correlation coefficient is 0.977. Fig. 6 shows the variation 
of .v„ + y* with F for alternative values of a and with r = 0.05. The optimal 
waiting period is seen to increase sharply as F increases (i.e., as the penalty 
cost, p. decreases), especially when economies of scale are small. For systems 
with greater economies (i.e., lower a-values), the increase in waiting period 
with F is less severe. Fig. 7 shows that for a given economy of scale factor, 
the optimal waiting period increases as F increases and has the sharpest rise 
when the discount rate is high. 

EXAMPLES 

In previous sections, Eq. 6 is presented for calculating the approximate optimal 
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design period for expansions, Eq. 10 for the optimal design period of the initial 
projects, and Eqs. 18-21 for the optimal waiting period. Use of these equations 
is illustrated in this section. In general, the examples apply more to water supply 
planning in developing countries than in the United States. 

It is assumed that the cost of water supply and distribution facilities for 
small communities abroad is $300,000 for a system with lO'-U.S. gal/day 
(3,785-m'/day) capacity; this is the value of k in Eq. 3. Additionally, the economy 
of scale factor, a, is assumed to be 0.7. These values roughly correspond to 
those obtained by the first writer (3) from analysis of 65 new gravity systems, 
which provide disinfection but no other treatment constructed in Central America 
between 1965 and 1969. 

Consider a community of 5,000 persons with average per capita water demand 
of 30 U.S. gal/day (0.114 m'/day). The existing rate of demand is 150,000 
U.S. gal/day (568 m'/day) which is assumed to increase linearly at the rate 
Dof 5.000 U.S. gal/day/yr (18.93 m'/day/yr). Assume that the rate of demand 
has grown equal to the capacity of existing facilities in which case now is 
the time for an expansion if capacity is to equal or exceed demand. From 
Eq. 6. the design period, jt*. with a = 0.7 and r = 0.05 is found to be 13.5 
yr. Multiplying by D, the required capacity x*D is 67.500 U.S. gal/day (255 
m'/day) which, from Eq. 3 has approximate construction cost of $45,000. 

Now assume that the same community has no existing water system in which 
case the current demand for supply from local facilities goes unsatisfied; D„ 
= 150.000 U.S. gal/day (568 m'/day)- The number of elapsed years to the 
previous point of zero excess capacity x0 is D0/D, or 30 yr. If the decision 
is made to build a supply system immediately, its design period x.* can be 
calculated from Eq. 10; the result with x* = 13.5, a = 0.7, r = 0.05, and 
x0 = 30 is xf = 21.3 yr. Thus, the initial project should have capacity (D„ 
+ JC*D) equal to 256,400 U.S. gal/day (971 m'/day); its cost from Eq. 3 
is about $116,000. 

Instead of building the system immediately, it may be desirable to delay 
construction, in which case the waiting period model applies. It has been shown 
that if the project is implemented at the beginning of the planning period, its 
optimal cost is about SI 16,000. From Eq. 17, the penalty price implicitly assigned 
to unsatisfied demand by building now is p = 0.05 x 116,000/5.000 x 30 x 
365 = 1.06 x I0-4 $ /U.S. gal (2.8 x 1 0 ' $ /m') . Equivalently, p is 10.6 
tf/10' U.S. gal (2.8 tf/m'). The question now is whether the benefit of publicly 
supplied water p from a local system differs from this value of p. The equivalent 
question for the United States is whether the price of importing water from 
a neighboring town p is different from p. If p > 10.6 <f/\03 U.S. gal (2.8 
tf/m5), construction should proceed immediately. If, however, p is less than 
this amount, construction should be delayed. There is, of course, considerable 
difficulty in obtaining a value for p; alternative methods are considered in Ref. 
4. For purposes herein, assume that p = 9 4 /10 ' U.S. gal (2.38 <2/m'). 

In order to determine the optimal waiting period, it is first necessary to calculate 
the penalty factor, F. from Eq. 19. For this purpose, the parameters upon 
which F depends are expressed in terms of dollars, gallons, and years. The 
value of k in cost Eq. 3 is $300,000 when \D has units 10* U.S. gal/day. 
Equivalently k = $0,304 ($15.10) when xD is measured in U.S. gallons per 
year (cubic meters per year). The penalty price p is 9 x 10-' $ /U.S. gal (2.38 
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x I0"2 $ /m 3) . and the rate of demand increase Dcorresponding to 5,000 U.S. 
gal/day/yr is 1.825 x 10" U.S. gal/yr/yr (6.908 m'/yr/yr). Substituting these 
values into Eq. 19 results in a value of F = 44.8 yr. From Eqs. 20 and 21. 
a = 0.01936 and p = 2.0468 for a - 0.7 and r = 0.05. The resulting value 
of y* from Eq. 18 with x0 = 30 is 16 yr. Construction should thus be delayed 
about 16 yr, at which time the rate of unsatisfied demand is expected to be 
230.000 U.S. gal/day (871 m'/day). This then will be the value of Da for 
the Initial Deficit Model; the corresponding value of x„ is 46 yr. From Eq. 
10, the optimal excess capacity period should be 23 yr implying the need for 
an initial project with capacity 0.345 x 10* U.S. gal/day (1,306 m'/day), which 
from Eq. 3 is estimated to cost $143,000. 

SUMMARY AND CONCLUSIONS 

Many of the underlying assumptions of the models of this paper are identical. 
To a large extent, they have not been explicitly stated, since this work has 
focused primarily on Optimality conditions rather than model development. These 
assumptions are Considered at length in Ref. 7 and are briefly summarized 
and examined as follows. 

Among the more obvious assumptions are linearly increasing demand and 
instantaneous project implementation. It is also assumed that facilities are unable 
to produce beyond maximum capacity, that target demands are fixed (i.e., 
infinitely price inelastic), that cost functions for both initial construction and 
expansions are identical and constant over time, and that the planning horizon 
is infinite. 

The assumption of linearly increasing demand is of doubtful accuracy except 
possibly for large municipalities. Medium and small cities in the United States 
and abroad are more likely to have geometrically increasing demand. The 
inaccuracies resulting from this assumption, however, are not serious. Muhich 
(8) compared optimal design periods for both geometric and linear rates of 
growth under several different conditions and found that although the periods 
associated with linear growth are somewhat longer, differences in total present 
value costs are negligible. 

The assumptions of instantaneous project implementation and inflexible capac
ity are unrealistic but do not appear to be serious. Projects may require a 
year or two for implementation, and steps may be taken to extend excess capacities 
for a few years once design limits have been reached. These differences, however, 
are generally small compared to project design periods. Regarding the assumption 
of fixed target demand, evidence exists that municipal water use in the United 
States is indeed price inelastic except in rare cases. It appears that village 
demands in developing countries are similarly price inelastic since public water 
systems abroad are used primarily for supplying basic human requirements. 

The assumption that the same cost function applies to initial projects as well 
as expansions is not well founded. Unfortunately, separate functions have not 
been reported in the technical literature. While they may indeed be different, 
it is likely that their economy of scale factors would be similar. It is unrealistic 
to assume that costs remain constant over time, but it is, after all. opportunity 
costs that are of concern rather than raw construction costs. Consequently, 
fluctuations in the economy that affect all costs more or less equally have 



little bearing on these models. The assumption ot an infinite planning nonzon 
can be easily relaxed by restricting rt to finite value in the present worth factor 
of Eq. 2. For discount rates of about 10% and larger, a horizon limited to 
only a few rather than an infinite number of expansions has little effect on 
optimal design periods. 

The economic life of facilities is assumed to be infinite. The more realistic 
case of finite life can be easily accommodated by including a multiplier in 
the cost function as shown by Manne (7); optimality conditions are unaffected. 
The cost function itself refers to entire undifferentiated systems which in reality 
consist of separate components. Water treatment plants, for example, include 
settling tanks, filters, and numerous additional facilities, and complete municipal 
systems include supply, treatment, and distribution works. Strictly speaking, 
model results are valid for integrated systems only if the economy of scale 
factor a is identical for all components. Regarding a, its value must be in 
the range 0-1. 

Operating and maintenance costs are ostensibly ignored herein. Actually, they 
are assumed to be proportional to the amount of water supplied in the case 
of the Capacity Expansion and Initial Deficit Models. Since demand must be 
exactly satisfied in these first two models, it follows that such costs are 
predetermined and do not affect optimality conditions. This is not true, however, 
for the Waiting Period Model. Since part of the demand goes unsatisfied from 
local facilties, explicit account must be taken of operating costs, even under 
the assumption that they are proportional to output. Basically, such account 
can be taken by subtracting the unit cost of operation from p in the first term 
of Eq. 12. This is equivalent to stating that p does not represent social or 
importing cots, but rather the difference between such costs and the cost per 
gallon of operation. In reality, economies of scale are associated with operation, 
but they do not seem to be of such magnitude as to grossly invalidate this 
interpretation. 

While a few additional assumptions might be cited, they are of minor 
consequence. More important are the conclusions that can be drawn from the 
work presented herein. These are primarily associated with the Waiting Period 
Model. Perhaps most noteworthy is the fact that the optimal waiting period 
prior to construction is a function of the tension between system costs and 
the losses associated with not satisfying demand from local facilities; such tension 
is reflected by F, the penalty factor. As shown in Figs. 6 and 7. the optimal 
waiting period is extremely sensitive to F. 

In order to decide how long to wait before construction, a numerical value 
is needed for p, i.e., information is required either on the costs of importing 
(if demands are to be satisfied from a neighboring system) or the social benefits 
of publicly supplied water (if demands are not met). In the latter case, such 
values are extremely difficult to obtain, which generally requires investment 
decisions to be made in their absence. The mere act of deciding, however, 
implicitly assigns a value to such benefits; it can be estimated from Eq. 17. 
Assuming previous investment decisions were intended to be optimal, even if 
in fact they were not, their imputed benefits can be easily calculated by dividing 
the product of discount rate and construction cost by the rate of unsatisfied 
demand at the time of construction. The water supply benefits associated with 
pending current decisions under consideration can be similarly estimated. While 

sucn calculations can rcsuu ••• CAICHUVC UI»>.3 i» ••••pu.„v. ^ ....„„, 
importance for guiding future investment is questionable. The ability to impute 
benefits may be useful, but it does not relieve the planner of the need to more 
accurately assess them by willingness-to-pay or other measures. 

Total present value costs associated with the Waiting Period Model are relatively 
insensitive to nonoptimal values of the decision variables. This was determined 
from Eq. 12. Results for the case of r = 0.05, a = 0.7, JC„ = 30, and F = 
50 (for which y* = 21.49, x* = 21.29, and x* = 13.51) are fairly representative. 
With any two of the decision variables at their optimal values and the third 
at half its optimal value, the increase in total present value cost did not exceed 
2%. Similarly, with the third at twice its optimal value, the increase did not 
exceed 2.5%. Costs are most sensitive to x, and y. 

An important conclusion from the Initial Deficit Model by Thomas (12) is 
that the optimal design period for systems with initially unsatisfied demand 
is always greater than that for expansions. In developing countries, it is not 
uncommon to find community water systems designed for 20 yr or more. 
Instinctively, such design criteria seem excessive in light of higher discount 
rates abroad than, in the United Slates. However, 20-yr design periods may 
not be far from optimal due to the fact that most construction is for new 
systems with existing unsatisfied demand. Correspondingly, 20-yr design periods 
are probably far too long for expansions. 

/WCNOIX I.—DrrERMMA'noN OF OPTMAL WMTWO PEMOO 

Mathematical expressions for optimal values of the decision variables in the 
Waiting Period Model include Eqs. 5, 13, and 14; furthermore. Eq. 15 is obtained 
from the simultaneous solution of Eqs. 13 and 14. Replacing D0 in Eq. 15 
by DxQ, the expression can be rewritten as 

/kD'\ 
x„+ y' = ( — ) r ( * . + y* + *.*)• (22) 

substituting F for kD" / pD and solving for .v * yields 

(23) 
ix + y . \ . / o 

This expression for x* in terms of y* and parameters can now be substituted 
into Eq. 13 to obtain the following expression, which contains only y* as the 
unknown: 

rxa ( fp) ' 0 - '^ 0 

(x„ + y*Ya',)/a = exp 
a[\ - exp ( - r x ) ] 

<*„ + >•') 

/*„ + >•• y 

(24) 

Note that y* is always summed with x0, which makes it possible to consider 
x„ 4- y* as a single unknown. It is also important to note that (x„ + >*) 
= 0 when F = 0, and from Eq. 19 it is seen that F -» 0 as p -» *. 
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To determine .v,, + y* from Eq. 24, values are needed for x, r, a, and F ; 
x (actually .v*) can be obtained from Eq. 5. given values for r and a, and 
Fcan be evaluated from Eq. 19, given values for k, D, a, and p. Even with 
such data, Eq. 24 cannot be solved explicitly for x„ + y* ; in this study, Newton's 
method was used for solution. Once y* is evaluated, x* can be calculated 
from Eq. 23. 
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APPENDIX III.—NOTATION 

The following symbols are used in this paper: 

a = economy of scale factor; 
CUD) = construction cost of system with capacity xD; 

D = annual rate of demand increase; 
D,t = initial unsatisfied rate of demand; 

F = penalty factor; 
k = cost of system with unit capacity; 
n = number of expansions; 
/> = penalty cost of unsatisfied demand; 

- ° — = imnlirit i v m l t v rnsl n<;<:orintPrl wi th no wnitino ner iod: 
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r = annual discount rate; 
t = time; 
x = design period of expansions; 

x* = optimal design period of expansions; 
x0 = elapsed period; 
x, = design period of initial project; 
x* = optimal design period of initial project; 

y = waiting period; and 
y* = optimal waiting period. 

I 
i 
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1 

ABSTRACT 

SPSS is a computer package which provides a wide variety of statistical 

services. Of greatest interest to us is the "regression" feature, which 

allows us to develop and compare different equations describing dependent 

and independent variables from input of raw statistical data. In the 

following example, statistics from 16 network designs are analyzed to 

develop relations for 

1) Cost as a function of length and average diameter* 

2) Cost as a function of tap spacing and per capita flowt 

3) Average diameter as a function of per capita flow and network length. 
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RAW DATA 

2 

R 
Service 

Radius (m) 

100 

100 

100 

50 

50 

50 

8 

8 

Q 
Per Capita 
Flow (LPCD) 

20 

50 

100 

20 

50 

100 

50 

100 

L 
Network 
Length (m) 

1450 

1450 

1450 

3007 

3007 

3007 

10788 

10788 

5 
Average 

Diameter (mm) 

59.0 

88.0 

110.5 

42.6 

61.2 

79.8 

35.6 

43.0 

C 
Cost in 
$l,000's 

26.7 

37.4 

46.4 

44.4 

58.1 

72.9 

142.1 

160.6 

100 

100 

100 

50 

50 

50 

13 

13 

20 

50 

100 

20 

50 

100 

50 

100 

2080 

2080 

2080 

3780 

3780 

3780 

12580 

12580 

45.8 

66.8 

85.8 

35.4 

50.8 

65.2 

34.4 

42.7 

31.9 

42.2 

52.8 

49.8 

63.0 

76.8 

159.5 

184.9 
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MODELS TO BE TRIED 

Cost as a function of length and diameter 

1) C = K + aL + aD 

2) C - K La Db [for SPSS: ln(C) = ln(K) + a ln(L) + b ln(D) 

3) C = K e*1 e b D [for SPSS: ln(C) - ln(K) + aL + bD] 

Cost as a function of service radius and per capita flow 

4) C - K Ra Qb (for SPSS: ln(C) = ln(K) + a ln(R) + b ln(Q)] 

5) C = K e3* e b Q [for SPSS: ln(C) « ln(K) + aR + bQ 

Average diameter as a function of per capita flow and network length 

6) D - K Q2 Lb [for SPSS: ln(6) - ln(K) + a ln(Q) + b ln(L)] 

5 «= K e a Q ebL [for SPSS: ln(D) - ln(K) + aQ + bL 
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SIMPLIFIED REGRESSION INPUT INSTRUCTIONS* 

"CARD NUMBER" Represents the order in which the data is to be read in, 
and does not itself appear on the card. 

"CARD NAME" (where shown), indicates the name of the SPSS function, 
which must appear in the first 15 columns of the card. 

"CARD INPUT" Represents the instructions which are supplied by the user 
to the program, in columns 16-80 of each card. 

Card 
Number 

Card 
Name 

RUN NAME 

VARIABLE LIST 

INPUT MEDIUM 

N OF CASES 

INPUT FORMAT 

Card 
Input 

The title the user wishes to appear on 
the output for identification of the run. 

The names (up to eight characters in 
length) of the variables in the raw 
data to be supplied. These must appear 
in the same sequence as they appear in 
the data. Variable names are separated 
by commas. 

The form in which data will be read in 
(CARD or TAPE or DECK or OTHER). 

The number of complete observations input 
as raw data. A "complete observation" 
consists of a set of dependent and 
independent variables. 

The format of input data. (FIXED or 
FREEFIELD or BINARY). FIXED format 
indicates data will appear in fixed 
fields, which must then be specified 
(e.g. FIXED (F10.5, 15, F8.2)). 
FREEFIELD implies that data will be separated 
only by commas. 

*More complete documentation is available from Statistical Package for 
the Social Sciences by Norman H. Nie, C. Hadlai Hull, Jean Jenkins, 
Karin Steinbrenner and Dale H. Bent. (McGraw Hill, 1975). 
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5 

Card 
Number 

Card 
Name 

6 et seq. COMPUTE 

7 et seq. REGRESSION 

8 et seq. (regression design 
card. No name is 
entered in the 
first 15 spaces, 
however.) 

9 et seq. OPTIONS 

10 et seq. STATISTICS 

11 READ INPUT DATA 

Card 
Input 

(optional). If variable transformations 
are desired, they must be specified here. 
This is done by writing an equation in 
which a new variable name is on the left 
side of an - sign, and the transformation 
of the input variable is on the right side. 
Examples and specifications of these 
transformation functions are attached. 
A new COMPUTE card must appear for each 
transformation. 

The variables (both those input and those 
developed in COMPUTE statements) which will 
be included in regression equations described 
in cards 8 et seq. These are listed to the 
right of the expression VARIABLES =, with 
variable names separated by commas. If these 
cannot all fit on one card, then the first 
line should end after a complete variable name 
and comma, and the remaining varaibles may 
be listed on the following line starting in 
column 16. A SLASH MUST FOLLOW THE LAST 
VARIABLE NAME. 

The proposed regression models to be 
examined are typed in columns 16-80. These 
are specified by writing REGRESSION = 
dependent variable name WITH independent 
variable 1, independent variable 2, etc. 
(e.g. REGRESSION = Z WITH X,Y). These 
cards must follow immediately after the 
REGRESSION cards (card number 7 et seq.). 
A regression design card is required for each 
model. A slash follows all regression 
models except the last. The mode of the 
regression must also be specified.... 
see Note 1. 

(optional.) Additional manipulations of 
data or output which may be performed. 
These are identified by number. A list of 
these options is attached. 

(optional.) The additional statistics 
besides basic regression data (regression 
terms, r^, F-tests, standard errors, 
etc.) which the user wants. A list of these 
statistics follows. These optional 
statistics are listed by number. 

No card input required. This card simply 
signifies that the data follows. 
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Card Card 
Number Name 

12 et seq. (no name) The raw data being input for analysis, 
in the sequence and format specified in 
the VARIABLE LIST and INPUT FORMAT cards. 

13 et seq. FINISH No card input. This signifies the end 
of the program. 

Note 1: There are three ways in which SPSS can perform regressions: 
simple regression, hierarchical regression, and stepwise 
inclusion subject to statistical significance. 

In simple regression, all variables are introduced into the 
equation simultaneously. This is signified by following all 
the variables on the right hand side with an even number in 
parenthsses. (e.g. REGRESSION- Z WITH X.Y (2)/). 

In hierarchical regression variables are introduced stepwise 
so that models using less than all of the variables are 
developed. Each variable is followed by even numbers in 
parentheses, with the higher numbered variables introduced 
first. Thus 

REGRESSION - Z WITH X(4),Y(2)/ 

will develop two regression equations: Z «= f(x) and Z = f(X,Y). 

In stepwise inclusion subject to statistical significance, variables 
are introduced sequentially at each level of inclusion according 
to the fraction of variance they explain, and subject to the 
satisfaction of statistical significance tests specified by 
the user. These tests are indicated immediately after the 
dependent variable and consists of the maximum number of 
dependent variables, the minimum F-test acceptable, and the minimum 
fraction of a variable's variance unexplained by previously 
entered variables. 

For example, 

REGRESSION- Z(4,5.2,.2) WITH A(5), B(5), C(3), D(l), E(l), F(l)/ 

Indicates that 

(1) variables A & B will be examined first, then C, then D, 
E, and F. 

(2) a maximum number of 4 independent variables will be 
considered in a regression equation. 

(3) Independent variables will only be entered which have 
F-test values greater than 5.2, and 

(4) That an Independent variable will only be entered if 
at least 20% of its variance is unexplained by previously 
entered variables. 
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Graphic Meaning Example 

/ Division V A R X - V A H A / V A R B 

• Mult ipl ication V A R X = V A R A - V A R B 

• Addi t ion V A R X - V A R A + V A R B 
Subtraction V A R X = V A R A - V A R B 

• • Exponentiation V A R X * V A R A > « 2 

In addition to these standard arithmetic operators, any of the variables or constants used in the 
expression may also be acted upon by one of the following prepared or packaged functions. 

Mnemonic 

SQRT 
LN 

LG10 
EXP 
SIN 
COS 
A T A N 

RND 

ABS 

TRUNC 

MOD10 

Meaning 

Square root 
Natural or 
Naperian logarithm 
Base 10 logarithm 
Exponential (car9) 
Sine' , 
CosineT 

Arctangent 
Round result to 
whole number 
Absolute value 
(ignores sign) 

Truncate value 
(whole number 
without rounding) 

Result is remainder 
of division by 10 

Example 

VARX"=SQRT(VARA) 

V A R X - L N ( V A R A ) 

VARX = LG10(VARA) 

VARX = EXP(VARA+VARC) 

VARX=SIN(VARA+VARB) 
VARX=COS(VARA) 
V A R X = A T A N ( V A R A I 

VARX = RND(VARA+V ARC/6) 

VARX=ABS!VARA) 

V A R X = T R U N C I V A R A ) 

VARX=MOD10(VARAJ 

'Argument is in radians. 

In order to make use of the above functions, it is necessary to follow the mnemonic of the 
function with an expression entirely enclosed in parentheses. The parenthesized expression may 
be the name of a single variable, or it may be a more complex expression containing one or more 
variable names and/or constants. 

The COMPUTE card, like most other SPSS cards, may be continued on successive card* 
if the entire statement cannot be completed on one physical card. When this is the case, columns 
1 to 15 of succeeding cards are left blank, and the rest of the statement is completed in columns 
16 to 80 of as many cards as needed. 

The COMPUTE control card, unlike many other SPSS cards, may contain no more than 
one transformation though a transformation may take more than one physical card to complete. 
Each new statement must begin with the word COMPUTE starting in column 1 of the control 
field. For these reasons it is incorrect to use a cord like the following.* 

1 16 
COMPUTE Nt>.V»8-VAP»«VA<«B FIRST V»R»NEtrV*P/V»«C V»R0J8«r IRSTVAR 

The use of this card would cause the run to be terminated and an error message to be reported 
When generating variable transformations by means of the COMPUTE card, the user need 

not be concerned with the amount of space (i.e., the number of digits) taken up by the results ol 
the transformation since space is automatically provided by the system. The user should re
member that if the calculated variables are intended for crosstabuhitions and other such proce
dures, there should be a reasonable number of categories for convenience. The user has at hand 
the RND and TRUNC functions, which convert mixed, i.e., numbers including decimal frac
tions, to whole numbers before the values are actually output onto the cases. 

'Note thai this h an incorrect control card (for demonstration onl>) 
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Along with ihe Statistic 4 plot, Y scores, predicted >" values, and residuals arc listed in 
raw-score (unstandardized) form. Also listed is the SEQNUM of each case, which is the 
sequence number of a case as it occurs in the file. The SEQNUM is generated by SPSS and is 
used as the vertical dimension of the Statistic 4 plot. To obtain the greatest utility from the plot. 
the user should attempt to sort cases along some meaningful dimension in a previous run 
Sorting cases into a time sequence, for example, would allow the user to explore for time 
dependence or autocorrelation. As an aid in interpreting the plot, the user may obtain the 
so-called Durbin-Watson statistic by specifying Statistic 5 on the STATISTICS card. A tabled 
sampling distribution for the Durbin-Watson statistic, along with a discussion of its use in 
testing for autocorrelation, is provided by J. Johnston (1972). 

Following the scatterplots requested by the user, standardized residuals and predicted Y' 
values may be output on the raw-output-data file for future use. The writing of standardized 
residuals and predicted V values is controlled by various combinations of Options 11 and 12 on 
the OPTION'S card. If neither Option 11 nor 12 is specified, the raw-output-data file will nut be 
produced. Option II used alone causes output of standardized residuals; Option 12 alone causes 
output of standardized Y' values. Finally, the use of Options 11 and 12 together causes output of 
both standardized residuals and predicted Y' values.1 

The default output format for the residual and/or predicted Y' values written on the 
raw-output-data file is 8F10.6. A maximum of eight residuals or Y' values, or a maximum of 
four pairs of residuals and >" values,.are written on each record. Output records of the residuals 
can be sequenced by specifying Option 10. In this case, the first 20 columns in the record are 
used for sequencing information, and only six residuals and/or >" values are written (in 6F10.6 
format) in columns 21 to 80. The sequencing information includes the SEQNUM in columns I 
to 8, record number per case in columns 9 and 10. and the first four characters of the file name 
(or subfile name if relevant) in columns 12 to 15. 

Figure 20.8 in SEC. 20.10 shows output generated with Options 11 and 12. When both 
residuals and predicted Y' values are output, they appear as residual for the first equation, then 
Y' for the second, and so forth. The following information is also output. 

1 A message indicating the number of residuals and/or predictors output, the number of cases, 
and the number of records written for each case. 

2 The value assigned to residuals and/or Y' values if they are missing (99.0). 
3 The possible range of valid values for residuals and/or Y'. Possible range is always -1-99.0 to 

-99.0 and extreme values beyond these limits are truncated. Since the residuals and pre
dicted Y' values are output in standardized form, this range is quite generous. 

4 A summary table showing the VARIABLE list and REGRESSION design statements for 
which residuals were output. The summary table also indicates the output record number, 
record columns, and the number of missing cases. 

20.6 OPTIONS AVAILABLE FOR SUBPROGRAM REGRESSION 

There are 15 options available with subprogram REGRESSION. Options are specified by 
the user on an OPTIONS card placed immediately after the REGRESSION procedure card. The 
OPTIONS card contains the control word OPTIONS beginning in column 1, and the list of 
desired options beginning in column 16. When more than one option is specified, option 
numbers are listed in order of increasing size, separated by commas. The general format of the 
OPTIONS card is 

'It Options 11 and/or 12 are used, an operating system control card defining the raw-output-data tile must he included 
(see Appendix E. F, G. or H). A RAW OUTPUT UNIT card may be needed to separate the residuals and/or predictors 
from raw output data written by other tasks in the run. When residuals and/or predictors are output, correlation matrices. 
etc. should probably not be output from the same REGRESSION task since they will all be written on the same 
raw-output-data tile. 
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OPTIONS 

16 

number list 

II (ho user wishes to specify, say. Options 4 and 9. the card would appear as 

«M I; NS 
16 

It should be noted that some options may be used only when one or more other options are also 
specified. For example. Options 5 and 9 presuppose that Option 4 is also specified. On the other 
hind, there are some options that are incompatible and may not be used on the same OPTIONS 
card: for example, Options I and 2 or 4 and 15 may not be specified for the same run. Options 
Vivified on the OPTION'S card are in effect for all VARIABLES lists and/or REGRESSION 
• ksign statements contained on the procedure card. 

OPTION 1 Inclusion of missing data. This option causes the subprogram to include all 
cases in the calculation of correlation coefficients regardless of any missing-
data values which may be defined. 

OPTION 2 Pairwise deletion of missing data. This option causes pairw i>e deletion of cases 
which contain missing-data values. With this option, a missing value for a 
particular variable causes that case to be eliminated from calculations involving 
that variable only. Pairwise deletion should be used when a researcher has many 
variables each with just a few missing values, and when listwise deletion (the 
default option) would reduce the number of cases farther than desired. The 
number of cases from which the degrees of freedom arc calculated is, under this 
pairwise deletion option, the minimum number of cases that any correlation 
coefficient required by the particular REGRESSION design statement is based 
upon. 

The user should be aware that serious problems may result from using 
pairwise deletion. As a result of computational inaccuracies, little confidence 
can be placed in multiple regression statistics when pairwise deletion is used. 
Occasionally, such anomalies as multiple correlation coefficients greater than 
1.0, or negative sums of squares and F ratios, are obtained with pairwise 
deletion. Consequently, Option 2 is often not justified and should be used with 
extreme caution. 

Default Option—Listwise Deletion of Missing Data. When neither Option I nor Option 2 
is specified, cases with missing values arc automatically eliminated from all 
calculations through listwise deletion. Thus, all means, standard deviations, 
and correlations are based on the same universe of data. While sample size may 
be decreased markedly, there arc sound statistical reasons for preferring listwise 
deletion, as can be seen in the discussion of pairwise deletion. For further 
discussion of the various treatments of missing data the reader may refer to Sec. 
19.4. 

OPTION 3 Suppression of variable labels. Selection of this option causes suppression of 
the variable labels on the printed output. While resulting in a slight increase in 
processing speed, the absence of variable labels makes the output less conve
nient to use, especially when it is to be read by persons unfamiliar with the 
user's data. 

OPTION 4 Matrix input. This option specifics that a matrix of correlation coefficients will 
be input by the user. Detailed specifications for the input of a correlation matrix 
are given in Sec. 20.4. 

OPTION 5 Input of means and standard deviations. This option indicates that means and 
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standard deviations are to be read-in preceding the input correlation m;itrix (sec 
Sec. 20.4.2). Option 5 may only be used when Option 4 is tilso used. 

OPTION 6 Suppression of step-by-step output. When this option is specified, only the 
summary table portion of the REGRESSION' output will be printed 

OPTION 7 Suppression of the summary table. When this option is specified, only the 
step-by-step portion of the REGRESSION output will be printed. 

OPTION 8 Matrix output. This option causes the correlation matrix or matrices used in the 
calculations to be output on a unit of the users choice. In this case, an operating 
system control card defining the raw-output-data file must be prepared (see 
Appendix E, F, G, or H). A RAW OUTPUT UNIT card may also be needed to 
separate the matrix from the raw output data produced by other tasks in the run. 
The format of the output matrix is compatible with that required for input to 
subprogram REGRESSION and thus may be used for matrix input on subse
quent runs. Means and standard deviations may also be output (see Option 15). 

OPTION 9 Input correlation matrix is indexed by the VARI ABLE LIST card. As described 
in Sec. 20.4, Option 9 indicates that the user will input only one large 
correlation matrix and that subsets of variables from the matrix will be used in 
various regression calculations. The use of this option is convenient when a 
large number of variables is to be read-in, and when several VARIABLES lists 
on the procedure card contain many variables in common. Option 9 cannot be 
used without Option 4. 

Options 10 through 14 pertain to analysis of residuals. 

OPTION 10 Causes se</ucncint; information to be entered in columns I through 20 of e<tch 
record on the rawontpiit-data file. SEQNUM is placed in columns I to S. the 
record number in columns 9 and 10. and the first four characters ol file or 
subfile name in columns 12 to 15.- Six residuals and/or Y' values arc" written on 
the record starting in column 21 with format 6F10.6. If Option 10 is not used, 
output format is 8F10.6 for residuals and V" values and no sequencing 
information is output. 

OPTIONS 11 and 12 If Option II is used alone, standardized residuals are output on the 
raw -output-data file. Option 12 alone will cause output o\ standardized Y' 
values. When Options 11 and 12 are used together, both residuals and >" values 
are output. If only plots arc desired, neither Option 11 nor 12 should be used. 

OPTION 13 This option is in effect only when pairwise deletion (Option 2) is being used and 
when data replacement is requested (RESII) = mdrp. where mdrp > 0). 

Option 13 will create standardized predictors which are <i weighted 
product of the existing data: 

M 

OPTION 14 

Wcichtcd 
b, , , number of independent variables in i egression equation 

standardized = r ? ——r—: ;— rr-, 
.. number of nontiussing independent variables 

where B, is the standardized regression coefficient (i. Z, is the standardized 
independent variable, and the summation is over all nonmissing variables 
entered in the regression equation. The standardized residual is then calculated 
from the weighted predictor. 

If the proportion of independent variables which arc missing exceeds the 
mdrp. the output residuals and/or predictors w ill not he weighted, but w ill have 
the value of 999.0. 

If Option 13 is not specified no weighting is done. 
Suppresses the printing of axes on the plots of standardized predictor versus 
standardized residual. (These plots are obtained by specifying Statistic (•>.) 
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OPTION 15 Output of means and standard deviations. This option causes means and 
standard deviations to be output on the raw-oulpul-data file in XI-10.4 format. 
Means and standard deviations arc output in separate sets, corresponding to 
separate VARIABLES lists, when more than one such list appears on the 
procedure card. 

Cards obtained with Options 8 and 15 can be used for input on subsequent 
REGRESSION runs using Options 4 and 5. The user must note that the format 
is unalterable, and is not suitable for mean and standard deviation values greater 
than or equal to 1,000,000 and less than or equal to -100.000. Option 15 
cannot be used with matrix input. 

10.7 STATISTICS AVAILABLE WITH SUBPROGRAM REGRESSION 

The optional statistics available with a REGRESSION run are specified by the user on a 
separate STATISTICS card. If present, the STATISTICS card is placed immediately after the 
OPTIONS card. If there is no OPTIONS card, the STATISTICS card is placed directly after the 
REGRESSION procedure card. 

There are seven optional statistics available. The STATISTICS card has the usual format: 
the control word STATISTICS beginning in column I and a list of desired statistics beginning in 
.olumn 16. In place of the list of statistics the user may put the keyword ALL. in which case 
all statistics are called for. However, only one of Statistics I. 3, and 7 will be printed, and 
Statistics 4, 5, and 6 are in effect only when the user has specified on the REGRESSION 
procedure card that an analysis of residuals is to be performed. (The manner in which an 
analysis of residuals is called for is discussed in Sec. 20.2.2.4.) If none of the following 
statistics arc desired, no STATISTICS card is placed in the deck. 

STATISTIC 1 Printout of the correlation matrix (matrices). If this statistic is called for, a 
correlation matrix is printed for each VARIABLES = list appearing on the 
REGRESSION procedure card. 

STATISTIC 2 Means, standard deviations, and number of valid cases. This statistic causes 
means and standard deviations to be printed for each VARIABLES-- list 
appearing on the REGRESSION procedure card. In addition, the number of 
valid cases on which means and standard deviations have been computed are 
printed. For pairwise deletion, the number of valid cases is the number of 
cases not having missing values for a given variable. For listwise deletion, the 
number of valid cases is the number of cases not having missing values on 
any of the variables on the VARIABLES = list. Note that missing-data values 
are all counted as valid when Option 1 is specified by the user. 

STATISTIC 3 Forced printing of the correlation matrix and warnina of had elements. 
Selection of this statistic forces the printing of the correlation matrix in the 
event that one or more correlation coefficients cannot be calculated. Correla
tion coefficients that cannot be calculated are represented in the matrix by the 
value of 99. If Statistic 3 is used without Statistic I or 7. the matrix will be 
printed only if one or more correlation coefficients are incalculable. If 
Statistic 3 is used with Statistics I or 7 (as when the keyword ALL is used). 
the correlation matrix will always be printed. 

Statistic 3 is useful as a warning when the user is performing REGRES
SION analysis on variables whose characteristics are somewhat unfamiliar. 
The appearance o( the correlation matrix will alert the user to bad variables 
which should be dropped from the analysis the next time around. 

Statistics 4 through 6 arc used in connection with analysis of residuals. Both Statistics 4 
and 5 are meaningful onlv if the file has been sorted in some relevant fashion (see Sec. 20.5). 

- 4 1 -
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STATISTIC 4 Causes output of a plot ofstandardized residuals avainst the sequent e if cases 
in <i file. This plol is obtained for only the last regression equation designated 
by the R1;SID = 0 keyword. The plot is accompanied by a listing of unstan 
dardi/.cd Y. r", and residuals. Only 500 eases will be plotted. 

STATISTIC 5 Computes the Ihuhin-Watson statistic for residuals. This statistic is based on 
ihe differences between the residuals of adjacent cases in a sequenced file and 
is used in a test for autocorrelation. 

hr>,-',->)2 

Durbin-Watson statistic = 

i' = l ' 

where e, is the residual for case / and n is the number of cases. 

STATISTIC 6 Requests a plot of standardized residuals against standardized V" values with 
residuals on the vertical axis. Two plots are printed per page. These plots can 
be examined for abnormalities as described in Sec. 20.1.2.6. 

STATISTIC 7 Printout of correlation matrix and number of cases. This statistic may be 
requested when pairwise deletion is specified (Option 2). When listwise 
deletion of missing data (default option) or inclusion of missing data (Option 
I) is used, requesting Statistic 7 will cause Statistic 1 to be printed instead 

Statistic 7 causes a matrix to be printed in which the lower triangle 
contains the correlation coefficients, the upper triangle contains the number 
of cases used in building each correlation coefficient, and the diagonal 
contains the number of nonmissing cases for each variable. If both Statistics 7 
and 1 arc requested, only Statistic 7 will be printed. 

20.8 PROGRAM LIMITATIONS OF SUBPROGRAM REGRESSION 

LIMITATION 1 

LIMITATION 2 

LIMITATION 3 

LIMITATION 4 

LIMITATION 5 

A maximum of 10 VARIABLES lists is allowed on a REGRESSION 
procedure card. Stated another way, a maximum of 10 correlation matrices 
will be constructed from raw data (or read with matrix input) on a single 
REGRESSION run. 

A maximum of 50 REGRESSION design statements is allowed per 
procedure card, irrespective of the number of VARIABLES lists appearing 
on the card. 

A maximum of 100 variables is allowed on any VARIABLES list, and a 
maximum of 200 variable names is allowed in the combined VARIABLES 
lists of the procedure card. Variables occurring in more than one VARI 
ABLES list are counted once for each list. 

A maximum of 400 variable names may be used in the combined RE
GRESSION design statements on any procedure card. Each occurrence o; 
a variable as either a dependent or independent variable counts as one i:; 
this total. A maximum of 100 different variables is allowed for. a single 
REGRESSION design statement. 

This limitation applies to the IBM 360-370 version of SPSS. Other users 
should consult Appendix F, G, or H, or their local computation ccnte: 
personnel. 
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INPUT FORMAT 
COMPUTE 
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COMPUTE 
COMPUTE 
COMPUTE 
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16 
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RCGRCSSIONsLCOST KITH NLENGTH,U8AR,2)/ 
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RCGRCSSION=LOBAR MITH LFLOW,*,.LNLCNGTH(2)/ 
RC6RCSSI0NsL0BAR MITH LPCO.NLCNGTHf2) 
1 
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W S»SS BATCH SYSTEM 

SPSS FOR OS/360. i,r»t,n. 

'J 

J 

•J 

J 

08/U/81 
PAGE 

http://VARIABLCSsSERVRA0.LPC0.NLCN6TH.0BAR


S»SS B*TCM 3»STE* 06/11/81 PACE 1 

,| SPSS FOR OS/340,"VERSION H, RELEASE ».0» HAT 15. 1979 

DEFAULT SPACE ALLOCATION,. 
WORKSPACE 358*0 BTTES 
TRAMSPACE 8120 8TTES 

ALLOWS FOR,, 31 TRftNSrORMATIONS 
200 RECOOC VALUES • LAG VARIABLES 
622 IF/COMPUTE OPERATIONS 

1 RUN NflRE 
2 VARIAaLE LIST 
5 INPUT KEOIU" 
4 N OF CASES 
9 INPUT FORMAT 
6 COMPUTE 

~7 COMPUTE 
8 COMPUTE 
9 COMPUTE 
10 COMPUTE 
11 REGRESSION 
12 
IS 
11 
15 
16 
17 
18 

*9 
20 STATISTICS 

BRANcH NETMORK STATISTICS FOR ZONE 1 » 2 » $A
NA'A« TEMCN 

ScRVRAD«LPcO«NLthGTH.OB*R«C°ST 
CARD 
16 ~ ' " "" ' 
FREEFIELO 
LSERVRADzLN(SERVRADI 
LFLOM«LN(LPCD| 
LNLEN6THSLN(NLENGTHI 
LOBAR*LN(OBAR| 
LCOST«LN(COST) 
VARIABLESsSERVRAD<LPCDtNLENGTH»DBAR«C0STtLC0STiLSERVRA0tLNLEN6TH« 
LFLOM.LOBAR/ 
"REGRE SSION=COST WITH NLCN6TH.O B*R«2)/ "" 

RE6RESSI0N*LC0ST WITH LNLENGTH>L0BA R<2>/ 
REGRESSION*LCOST WITH NLENGTH.OBAR(2)/ 
REGRESSI0N*LC0ST UJTH LSERVRAO«1|,LFL0W<2>/ 
RCGRESSIONsLCOST WITH SERVRA0.LPCD(2t/ 
REGRESSION=LOB«R MITH LFLOWtl).LNLENGTH(2)/ 
RCGRESSIONsLOBAR WITH LPCD.NLCNGTHC2J 
1 

••••• REGRESSION PROBLEM REQUIRES 1660 BTTES WORKSPACE. NOT INCLUDING RESIDUALS 

21 READ INPUT OAT* 

. . . . . . . . T 0 P - 0 t - F O R M - . - - - - - . 

._ 8RA,NCM_ NETWORK STATISTICS_FOR_jtONE_l_l 2_,.SANA»A, YEMEN 

FILE NONAME (CREATION DATE • 08/11/81) 

CORRELATION COEFFICIENTS 

08/11/81 PAGE 

A VALUE OF 99.00000 IS PRINTCO 
IF A COEFFICIENT CANNOT BE COMPUTED. 

SERVRAO 
LPCD 
NLrNGTH 
DBXR 

COST 
LCOST 
LSERVRAO 
LNLCNGTH 
LFLOW 
LOBAR 

O P A * T I I »T 

SERVRAD 

1.00000 
-0.19181 
•0.67339 
0.67316 
-0.86269 
.0.89816 
0.91606 

•0.91793 
•0.23080 

... 0.70006_ 

LPCD 

•0.19161 
1.00000 
0.21060 
0.16621 
0.12355 
0.50101 
-0.23009 
0.22316 
0.97232 

.. 0.«9311._ 

• OF;. F 

rrrV p p n 7 

NLENGTH 

-0.67339 
0.21060 
1.00000 

-0.62032 
0.97666 
0.93682 

-0,95330 
0.96865 
0.28505 

-0.66913 

^.<r , , 9 

OBAR 

0.67316 
0.V6821 
-0.62032 
1,00000 
-0.18785 
-0.»3599 
0.63729 

-0.69910 
0.13970 
0.98617 

< • M * « « . 

COST 

•0.A6269 
0.»2535 
0.47868 

.0.18785 
1.00000 
0.97179 

•0.93610 
0.91627 
0.16261 
-0.53007 

VTMP.1 

LCOST 

•0.69618 
0.50101 
0.93682 
-0.l»3599 
0.97179 
1.00000 

-0.93067 
0.91736 
0.51967 
-O.^Oll 

I ' . 

LSERVRAD 

0.91606 
•0.23009 
•0.95330 
0.63729 
•0.93810 
•0.93067 
1.00000 

-0,96597 
•0.27260 
0.67930 

~**-

LNLENGTH 

-0.91793 
0.22316 
0.96663 
-0.69910 
0.91827 
0.91736 

-0,96397 
1.00000 
0.26171 
•0.73336 

p « / i ii/pi 

LFLOW 

-0,23080 
0,97232 
0.28303 
0,15970 
0.16261 
0.31967 

•0,27260 
0,26171 
1.00000 
0,11611 

p 

LOBAR 

0.70006 
0,43311 
•0.66913 
0.96617 
-0.33007 
•0.17011 
0.67930 

•0.73336 
0.11611 
1.00000 

»rr * 



LFLOW 
LOBAR 

•u.9*7*3 0.223*6 0,96665 
-0.2S0B0 0.97232 0.26503 
0.70006 0.«3*1 -0.66913 

-0.69910 
0.*3970 
0.96617 

0.9*82? 
0.4626* 
-0.53007 

0.9*736 
0.5*967 

-0.H76U 

•0.96597 
-0,27260 
0.67930 

T 0 P - 0 F F O R M 

BRANCH NETWORK STATISTICS FOR ZONE 1 1 2 , SANA'A, YEMEN" 

TILE NONAHC (CREATION OATE « 08/U/81) 

1.00000 
0.26*7* 
-0.73338 

0,26*7* 
1.00000 
0.«*6» 

0. 67930 
-0.73338 
0.1*611 
1,00000 

06/U/81 PAGE 

OEPENOENT VARIABLE.. COST 

"*«IABLE«SI ENTEREO ON STEP NUMBER l. 

MULTIPLE R 0.990*2 
R SQUARE 0.98093 
AOJUSTEO R SQUARE 0.97800 
STANOARO ERROR 7.7*52* 

" E 6 R C S S I 0 N 

NLCN6TH 
OBAR 

ANALTStS OF VARIANCE 
REGRESSION 
RESIDUAL 

Of SUM OF SQUARES 
2 . *011*.3958* 

" • 779,85371 

VARIABLE .LIST 
DEGRESSION LIST 

MEAN SQUARE 
20057,29792 

59.98875 
S3*.39101 

VARIABLE 

VARlABLtS IN THE EQUATION 

B ..BETA STD ERHOR B 

NLEN6TH 
OBAP S*J2I«^°"01 »'°'6»» • 0.00061 506.962 
• CONSTANT, lil'MUl °-" 3" °'11*" 15.759 

VARIABLE 

VARIABLES HOT tN THE EQUATION 

BETA IN PARTIAL TOLERANCE P 

*LL VARIABLES ARE IN THE EQUATION 

STATISTICS WHICH CANNOT BE COMPUTED ARE PRINTED AS ALL NINES. 

- - - - - - - - T O P . O F . F O R M . . . . . . . . 

BRANCH NETWORK STATISTICS FOR ZONE 1 1 2 , SANA1A. TENEN 

f l L E NoNAME JCREATIo" DATE • 0 6 / 1 9 / 8 1 ) 

* " ' • • • • • • M U L T I P L E R E G R E S S I O N 

08/19/81 

OEPENOENT VARIABLE.. COST 

VARIABLE 

NLENGTH 
OBAR 
ICONSTANT» 

SUMMARY TABLE 

MULTIPLE R R SQUARE RS« CHANGE SIMPLE R 

0.97868 0.95781 0.95781 0.97868 
0.990*2 0.98093 0.02312 -0.98783 

T O P - O F - F O R M 

BRANCH NETWORK STATISTICS FOR ZONE 1 3 2 , SANA'A, YEMEN 

TILE NONAME (CREATION OATE * 08/l*/81) 
08/l*/81 

PAGE 

VARIABLE LIST 1 
REGRESSION LIST 1 

B 

0.137*6*60-01 
0,*329357 
•1S.**930 

PAGE 

BETA 

1.0*893 
0.1938* 

U L T I P L E 
DEPENDENT VARIABLE.. LCOST 

V»RIABLE<SI ENTEREO ON STEP NUMBER i,, L0BAR 
LNLENGTH 

R E G R E S S I O N * • • * * • « • • * • • . VARIABLC LIST 1 
REGRESSION LIST 2 

Ui 



JTANOARO ERROR cone* 
rtOlUWMU V . U U 3 K 

VARIABLE 

LOBAR 
LNLENGTH 
(CONSTANT) 

V«RIABLES"IN THE E0UATl 0 N 

B BETA STD ERROR B VARIABLE 
0.7889383 
1.012085 

-7.279131 

0.06662 0.02066 1431.075 
I.M119 0.00971 10830.678 

V*RIA8LES N 0 T lM THE C O U « T I 0 N . . 

BETA IN PARTIAL TOLERANCE 

08/14/61 

»tL VARIABLES ARC IN THE EQUATION 

STATISTICS WHICH CANNOT BE COdPUTEO ARE PRINTEO AS ALL NINES. 

- - - - - - - - T O P - O F - F O R M - - . _ . _ _ ; _ 

BRANCH NETWORK STATISTICS FOR ZONE 1 ^ 2 , SANA*A. YEMEN 

riLE NONAHE (CREATION DATE « 08/14/61) 

• • • • • • • • • • • • • • « » , , 0 » . . . M U L T I P L E 

OEPENOENT VARIABLE.. LCOST 

SUMMARY TABLE 

* 8 L C HULTIPLE R R SQUARE RSO CHANGE SIRPLC R 

" I . 
PA6C 

R E 6 R C S S I 0 N • • • • • • • • • • • • VARIABLE 
REGRESSION 

LIST i 
LIST a "], 

LOBAR 
LNLENGTH 
(CONSTANT) 

0.47811 
0.99990 

0.22699 
0.9990S 

0.22699 
0.77009 

I O F - O F ' - F O I I n - — - -

BRANCH NETWORK STATISTICS FOR 20NE 1 6 2 , SANA'A, YEMEN 

TILE NONANE (CREATION OATE » 06/14/61) 

• • • • • • • , , , , . , , • • • » , » , « , M U L T I P L E 

OEPENOENT VARIABLE.. Lc0ST 

VARIABLE(S) CNTCRCD ON STEP NUMBCR 1.. 

•0.07611 
0.90796 

06/10/81 

0.7669368 
1.012069 

•7.279131 

PAGE 

•ETA 

0.06662 
1.29119 

i 

._J 
R E G R E S S I O N • • • • • • • • • • • • • VARIABLE 

REGRESSION 
LIST i 
LIST 1 

NLENGTH 
OBAR 

MULTIPLE R 0.93492 
R SOUARE 0.91186 
ADJUSTED R SOUARE 0.69831 
STANDARD ERROR 0.19392 

ANALYSIS OF VARIANCE 
REGRESSION 
RESIDUAL 

OF SUM OF SQUARES 
2« 9.09773 

IS. 0,48865 

MEAN SQUARE 
2.52686 
0,03760 

F 
67,29010 

VARIABLE . 

NLENGTH 
OBAP 
(CONSTANT | 

VARIABLES IN THE EQUATI0N 

B. BETA ..._ STo ERROR B 

0.19779620-03 1.08316 0.00002 
0.64202150-02 0.23592 0.00266 
3.027702 

VARIABLE 

VARIABLES N0T IN THE EOUATI0N -. 

BETA IN PARTIAL TOLERANCE 

106.462 
3.051 

ALL VARIABLES ARE IN THE EQUATION 

STATISTICS WHICH CANNOT BE COHPUT.CD ARE PRINTED AS ALL NINES, 

- - - - - - - - T O P - O F - F O R H 
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„ _„.wn i.nnrm, at. «.o*ruis,0 ARE PRINTEO AS ALL NINES,. 

. . . . . . - - T O P - O F - F O R N - - - . - . . . 

BRANCH NETWORK STATISTICS FOR ZONE 1 * 2 , SANA'A, YEMEN 

FILE NoNAHE (CREATIQN DATE » 08/14/81) 

08/10/81 PA6E 

DEPENDENT VARIABLE.." LCOST 
E " E G R E S S I O N 

REGRESSION LIST a 

VARIABLE 

NLENGTH 
DBAR 
(CONSTANT) 

SUMKART TABLE 

MULTIPLE R R SOUARE RS« CHANGE SINPLE R 

0.93682 0.67T62 0.87762 0.93682 
0.93492 0.91106 0.03*24 •0.43999 

'$ 

. . . . . . . . T 0 p . 0 F „ F 0 R M . . . . . . . . 

BRANCH NETWORK STATISTICS FOR ZONE 1 * 2 , SANA*A, YEMEN 

riLE NoNANC (CREATION DATE * 08/14/81) 

0EPEN0ENT VARIABLE.. LCOST 

VARIABLE(SI ENTERED ON STEP NUMBER 1.. LSERVRAO 

08/14/81 

B 

0.19779620-03 
0,64202190-02 
3.0277(12 

PAGE 

•ETA 

1.06316 
0.23992 

• M U L T I P L E R E G R E S S I O N VARIABLE LIST 1 
REGRESSION LIST « 

""LUPLE « 0.93067 
"SOUARE 0.86619 
•OjUSTEO R SOUARE 0.89699 
STANDARD ERROR 0.23028 

ANALYSIS OF VARIANCE OF SUM OF SQUARES 
REGRESSION 1. 4.60418 
RESIDUAL 14, 0.74240 

MEAN SQUARE 
4.80416 
0,09303 

90.99643 

. ""; VARIABLES iN THE EOUATION — 

VARIABLE B BETA STO ERROR B 

LSERVRAO -0.6096494 0.93067 0.06409 
(CONSTANT) 6.474811 

F 

90.996 

VARIABLES 

VARIABLE BETA IN 

LFLOW 0.31973 

NOT IN THE EQUATloH — 

PARTIAL TOLERANCE 

0,64064 0.92969 

F 

31.371 

VARlABLECS) ENTCREO ON STEP NUMBER 2 , i LFLOH 

MULTIPLE R 0.98020 
R SOUARE 0)96079 
AOJUSTEO R SOUARE 0.99479 
STANDARD ERROR 0.12939 

ANALYSIS OF VARIANCE 
REGRESSION 
RESIOUAL 

OF SUM OF SQUARES 
2. 9,3290* 
**• 0.21791 

MEAN SQUARE 
2.66493 
0.01673 

199,29303 

VARIABLE 

VARIABLES IN THE EOUATION — — -

B BETA STo ERROR B 

LSERVRflD -0.9525516 
LFLOW 0.3017877 
ICOMSTANTt 5.069398 

• ft v »..!•., CTro or . 

•0.84351 
0.31973 

0.03739 
0.09388 

218.345 
31.371 

VARIABLE 

VARIABLES NOT IN THE EQUATION — 

BETA IN PARTIAL TOLERANCE 



ICO'.SUM t S.0693*8 

I 

I 

08/14/81 

N*XIMU M STEP REACHED 

STATISTICS WHICH CANNOT BE COMPUTED ARE PRINTEO AS ALL NINES. 

. . . . . . - . T O P . O F . F O R M . . . . . . . . 

BRANCH NETWORK STATISTICS FOR ZONE 1 * 2 , SANA'A, YEMEN 

TILE NflNANE <CREATION DATE • 06/14/81) 

• • • • • • • • • • • • • * • • . « , , , • , M U L T I P L E R E 6 R E S S I 0 N • • • • * 

DEPENDENT VARIABLE.. LCOST 

SUNNART TABLE 

VARIABLE ». MULTIPLE R R SQUARE RSJ CHANGE SIMPLER 

LSCRVRAO 
LFLON 
cCONSTANTi 

0.93067 0.86613 0.66613 -0.93067 
0.98020 0.96079 0.09163 0.3*1967 

• T O P . O f . F O R M - - - . - - - -

BRANCH NETWORK STATISTICS FOR ZONE 1 * 2 , SANA'A. YEMEN 

TILE NONAME (CREATION DATE • 06/14/81) 

DEPENDENT VARIABLE.. LCOST 

VARIABLC(S) tNTEREO ON STEP NUMBER 1.. ~ SE«VRAD 
LPCD 

08/10/81 

L E R E G R E S S I O 

PAGE 10 

REGRESSION LIST 

•0.3323916 
0.3017877 
9.069390 

PAGE 11 

•ETA 

•0.6*331 
0.31973 

VARIABLE LIST 
REGRESSION LIST 

MULTIPLE R 0.93773 
R SOUARE 0.91721 
ADJUSTEO R SOUARE 0.90431 
STANOARO ERROR 0.18791 

ANALYSIS OF VARIANCE OF 
REGRESSION 2. 
RESIOUAL 13, 

SUM OF SQUARES 
3.08737 
0,49901 

MEAN SQUARE 
2.34378 
0.03331 

72,04427 

VARIABLE 

VARIABLES IN THE EQUATION — 

B BETA " STD ERROR B 

SERVRAO -0.13636060-01 -0.83216 0.00139 
L^CO 0.61999320-02 0.33692 0.00149 
(CONSTANT) 4.609737 

104.633 
17.360 

VARIABLE 

ALL VARIABLES ARE IN THE EQUATION 

STATISTICS WHICH CANNOT BE COMPUTED ARC PRINTEO AS ALL NINES. 

. . . . . . . . T O P . O F . F O R M . - - . - . - . 

BRANCH NETWORK STATISTICS FOR ZONE 1 1 2 , SANA'A, YEMEN 

TILE NONAME (CREATION DATE * 06/14/81) 

_• • » • • •».•••_•_••„•_•_•_•_•_•_•-•..• ' . M U L T I P L E 

DEPENDENT VARIABLE.. LCOST '<-•'• 
x _ , v. \ • ' : : ' • ' • . ;«•.. 

SUMMARY TABLE 

VARIA8LES NOT IN THE EQUATION — 

BETA IN PARTIAL TOLERANCE 

08/14/61 PAGE 12 

R E G R E S S I O N • • • • • • • • • • • • • VARIABLE LIST 1 
REGRESSION LIST 9 



,J 
VARIABLE 

SERVRAO 
LPCO 
{CONSTANT) 

SUMMARY TABLE 

MULTIPLE R R SQUARE RS8 CHANGE 

0.89816 
0.15773 

- r . - - . - - - - - T O P . O F - . F O R M - - - . - - - . 

BRANCH NETWORK STATISTICS FOR ZONE 1 * 2 , SANA'A, TEMEN 

TILE NONAME (CREATION DATE * 0 6 / 1 4 / 8 1 ) 

. • • • • • • • • • • • • • • a , . , • • • • • M U L T I P L E 

DEPENDENT VARIABLE.. LOBAR 

VARIABLE(S) ENTEREO ON STEP NUMBER 1., LFLO* 

0.60673 
0.91724 

0.60673 
0.11051 

SIMPLE R 

.0.89810 
0,50104 

-0,13856060.01 
0,61999520.02 
4.609737 

06/14/81 PACE 1» 

R E 6 R E S S X 0 N • • • • • * » • • • • • 

•ET» 

•0.S3216 
... 0,33692 

VARIABLE LIST 1 
REGRESSION LIST' 6" 

•ULTIPLE R 0.44611 
| R SSUARE 0.19902 
| . ADJUSTEO R SQUARE 0.14160 

STANDARO ERROR 0.33475 

ANALTSIS OF VARIANCE OF 
REGRESSION 1. 
RESIDUAL 14, 

SUM OF SQUARES 
0.36980 
1.56664 

MEAN SQUARE 
0,36960 
0.11206 

r 
3,47694 

* 

VARIABLE 

LFLOH 
(CONSTANT I 

. . . — VARIABLES IN THE EQUATION — — -

B BETA v STD ERROR B 

0.2902215 0.**6ll 0.13416 
3.030967 

F 

3.479 

— VARIABLES NOT IN THE EQUATION — 

VARIABLE BETA IN PARTIAL TOLERANCE 

LNLCN6TH -0.91566 -0.96661 0.92991 

r 
»79.93l 

J 

«ARIABLE«S) ENTCREO ON STEP NUMBER 2.. LNLENGTH 

"ULTIPLE R 
R SOUARE 
ADJUSTED R SOUARC 
STANDARD ERROR 

0.98929 
0.97869 
0.97541 
0.05667 

ANALTSIS OF VARIANCE 
REGRESSION 
RESIOUAL 

OF SUM OF SQUARES 
2. 1.91669 

IS. 0,04175 

MEAN SQUARE 
0,93645 
0.00321 

296,49736 

VARIABLE 

VARIABLES IN THE EOltATIoN 

B BETA STD ERROR 8 

LFLOW 0.3661865 0.68853 
LNLENGTH -0.4265072 -0.91566 
(CONSTANT I 5.985553 

0.02355 
0.01956 

268.876 
475.531 

VARIABLE 

VARIABLES NOT IN THE EQUATION — 

BETA IN PARTIAL TOLERANCE 
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APPENDIX G 

LINEAR PROGRAMMING MODEL 

FOR LEAST COST DESIGN OF BRANCHED (NON-LOOPED) 

WATER DISTRIBUTION SYSTEMS AND USER INSTRUCTIONS 

FOR BASIC MICROCOMPUTER PROGRAMS 

"NODELINK" AND "BRANCH"* 

1982 

•Developed by Keith Little, Department of Environmental Sciences and 
Engineering, The University of North Carolina at Chapel Hill, Chapel 
Hill, North Carolina 27514. 
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BRANCHED NETWORK LEAST COST DESIGN EXAMPLE: 

r J2L 

•o 

D 

m 

NETWORK CHARACTERISTICS 

Node # 

1 
2 
3 
4 

5 
6 

Link #1 Is 

Elevation 

lm 

3 
1 
5 
2 
2 

an existing 

Input 

0.5 Ips 

0 
0 
0 

0 
0.25 

50 cm with 

• HGL of 
Demand Input 

0 lps 20.0 m 

0.4 
o 
0.15 

0.2 
0 12.0 

Link # 

1 
2 
3 
4 
5 

friction coefficient of 100. 

Length 

500 m 

1200 

1000 

1500 

1500 

DESIGN CRITERIA 

Available pipe dia's are 2 cm 0 $100/m and 50 cm § $150/m 
Friction coeff. in Hazen-Williams eq'n for new pipe 1s 140 
Minimum residual head at all terminal nodes is 1.0 m 
Peaking factor * 5.0 

OBJECTIVE: Minimize construction costs while meeting design criteria. 
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1. Linear Programming Formulation of Example Design Problem 

Let's express the design criteria as linear, mathematical equations/in

equalities. 

Let 
* 

x. = the length of 2 cm pipe 1n link 1 

x~ « the length of 50 cm pipe in link 1 

x. = the length of 2 cm pipe in link 2 

x. = the length of 50 cm pipe in link 2 

x,j - the length of 2 cm pipe in link 3 

Xg = the length of 50 cm pipe 1n link 3 

x_ = the length of 2 cm pipe 1n link 4 

x g = the length of 50 cm pipe in link 4 

x g = the length of 2 cm pipe in link 5 

x. Q « the length of 50 cm pipe in link 5 

(* Note that link 1 exists as 50 cm but we'll define x-, anyway) 

Let 

hij = the slope of the hydraulic gradient in pipe j of link i 

for the link flowrate 

From the Hazen-Williams relationship (for Q in Ips, L In m, Oia in cm, and 

h in m/m) 
1 85 

hij = 1.62 x 105-(?i) ( ° i a o f P1Pe 1 ) " 4 ' 8 7 

F. is the friction coefficient for pipe j. 

The design link flows are found to be (using the peaking factor)... 
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z-s—KD 

2.0 

The hij's can then be determined 

Ml 6.02 '32 
2.56 x 10 -8 

h ] 2 = 9.37 x 10" 

'21 
2.14 

h„2 = 3.33 x 10" 

h31 - 0.17 

h-, = 0.35 

h 4 2 = 5.42 x 10' 

h51 = 0.90 

h g 2 = 1.40 x 10" 

\JiS 

Let's now write the headloss constraints. We need to define a reference 

input node so that headloss constraints can be written from this reference 

node to any other nodes that may be necessary. Let the reference input node 

be node #1. 

There are two types of headloss constraints. The first type specifies that 

the headloss between the reference input node and each of the non-input 

nodes in the system is 1. that headloss which will just satisfy the minimum 

residual head requirement at the node. (It is generally sufficient to write 

these constraints only for "terminal" nodes, i.e. those nodes at the extremi

ties of the system. If an interior node has a high elevation relative to the 

rest of the system, a constraint of this type should also be written for it.) 
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The headloss constraint for non-Input, terminal node 2 is 

hllxl + h12x2 + h21x3 + h22x4 - 2 0*° " ^3'° + 1,D^ 
t » i » i 1 

link 1 link 2 Maximum headloss 

I.e., the headloss in link 1 + the headloss in link 2 must be <_ the maximum 

allowable head loss. 

Similarly, for non-input terminal node 4, the headloss constraint is 

hllxl + h12x2 + h31x5 + h32x6 + h41x7 + h42x8 - 2 0'° " ^ " ° + 50^ 

The second type of headloss constraint 1s for input nodes. It can be shown 

that, for every input node (a) the HGL of the reference input minus the 

headloss between the reference and some point on the path between the reference 

and the other input, must be equal to (b) the HGL of the (non-reference) input 

minus the headlosses to the same Intermediate point along the same path. 

This is simply an awkward way to say that the pressure at any point in the 

system is the same regardless of how the water got there! 

For the example network, such a headloss constraint must be written between 

the reference node 1 and the other Input node 6. Letting node 3 be the point 

along the path from 1 to 6 at which the headlosses must be equal, we can write 

20.0 - (h11x1 + h12x2) = 12.0 - (h51xg • h 5 2x 1 Q) +(h31x5 + h32x6) 

or 

•hllxl " h12x2 " h31x5 " h32x6 + h 5 1 x 9 + h52x10 * 12'° " 20'D 

The remaining design constraints simply state that the sum of the length's of 

the pipes selected for any link will be equal to the length of that link. 

There is one such equality constraint for every link (existing also) in 

the network. For the example, we can write... 
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xl + x2 " 5 0 ° 
x3 + x4 = 1200 

x5 + x6 « 1000 

x? + xg = 1500 

xg + x1Q= 1500 

Linear programming requires (as does our design) that the decision variables 

(the x s) be non-negative, or 

X^ » Xp , . • • , Xi« ^ U 

These non-negativity constraints do not explicitly appear in the LP formula

tion but are understood to exist. 

We would now be ready to solve the LP except for two problems with our formu

lation. LP does not know how to solve Inequality constraints (which do 

result from the Type 1 headloss constraints) now does it know how to solve 

equalities with negative right-hand-sides (which may result from the Type 2 

headloss constraints). 

The inequalities are easily made equalities by defining new variables that 

represent the "slack" headloss available on any path between the reference and 

the non-input nodes for which headloss constraints have been written. If 

any slack variable has a non-zero value in the solution, it simply implies 

that the constraint was not binding (1t could have been left out without 

affecting the solutionjt Defining slack variables x,, and x-.? for the two 

Type 1 headloss constraints, we can rewrite them as equalities... 

nllXl + h12X2 + h21X3 + h22X4 + xll " 2 0"° " ^ ' ° + 1"0^ 
nllxl + h12x2 + h31x5 + x32x6 + h41x7 + h42x8 + x12 = 20#0 " '̂° + 50^ 

Every decision variable (x's) must have an associated cost coefficient so 

that they can appear in the objective function. Since we don't want to 
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prevent the slack variables x,, and x,« from appearing in the solution, we 

let c ^ , c 1 2 • 0. 

The negative right hand side resulting from the Type 2 headloss constraint 

is resolved by multiplying both sides by -1. The constraint for Input node 

6 becomes 

hllxl + h12x2 + h31x5 + h32x6 " h51x9 _ h52x10 = 2 0'° " 1 2'° 

For reasons that won't be explored here, we must add an "artificial" vari

able to the left-hand-side of every length and Type 2 headloss constraint. 

There variables are "artificial" because all constraint are already legiti

mate equalities, and adding anything to only one side of an equality is 

illegitimate, hence they are artidal. To prevent these artificial variables 

from appearing in the solution we will penalize them heavily in the objec

tive function. Let the cost coefficients of the artifical variables x i v 

x,...., X-.Q De mucn larger than the largest legitimate cost coefficient, say 

10 x $150 • $1500. If any of the artificial variables appear in the solution, 

1t will mean that the problem 1s Infeasible. 

While we're on the subject of manipulating cost coefficients, we must fix 

the cost coefficients of the candidate pipes in the link which already exists 

to ensure that no non-existing diameter appears in the solution. For the 

non-existing candidate diameters, we'll let their cost coefficients be the 

same as the artifical variables, or $1500. Since the cost of the existing 

diameter is $0, that's what 1t will be. We have then c1 = $1500 and c2 = $0. 

Finally, the objective function that LP will seek to minimize subject to the 

constraints is the mathematical expression of the construction costs. The 

cost of any pipe j is Its length (x.) times Its unit cost, c^. The objective 
J J 

function, including slack and ar t i f ic ia l variables, is then 
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m1n 2 = Clx, • ,,, • c10x1() • c n x n • c12x12 + c13x13 + lf, • c18x18 

original variables slack variables artificial variables 

LP codes are written to either maximize or minimize. The code used in 

"BRANCH" is a maximization. Since maximizing z is equivalent to minimizing 

-z, we write 

min -z = -c]x1 - c2x2 - ... - c 1 8x 1 8 

Writing all the constraints and the objective function in a matrix of coef

ficients of the decision variables where each row is a constraint (the last 

row is the objective function) and each column is a decision variable, the 

LP formulation is complete and expressed in a form suitable to LP's simplex 

algorithm. 
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2. User Instructions for "Node!ink" and "Branch" 

The least cost design of branched water distribution systems is accom

plished by means of the computer programs, "NODELINK" and "BRANCH." Both 

NODELINK and BRANCH are written In the Basic programming language, a language 

for which some dialect is supported by virtually all microcomputers. The 

major difference in the language among various types of microcomputers is 

input/output commands,i.e. READ, INPUT, PRINT, LPRINT commands. This is 

especially true when writing to disk files. Source listings for NODELINK and 

BRANCH are in the Appendix. The listings are for the CP/M based Osborne 1 

microcomputer. 

NODELINK and BRANCH function sequentially. First, NODELINK reads the 

original data that describe network characteristics and design criteria. 

NODELINK transforms this data into a format suitable for the linear program

ming algorithm and writes this transformed data to a sequential data file 

on a diskette. BRANCH reads the transformed data and activates the linear 

programming algorithm which iterates until a least cost design is found or 

the problem 1s determined to be 1nfeas1ble. NODELINK and BRANCH were 

designed as separate programs in order to conserve computer memory making 

more memory available for data manipulation. With minor modifications, 

NODELINK and BRANCH could be merged into a single program. This would be 

necessary If a disk drive were not available. 

Before Illustrating the data Input format for the example design problem 

a few comments on the node and link numbering system and multiple sources 

are appropriate. 

. The nodes and links may be numbered arbitrarily, but the sequence of 

node numbers and link numbers must be an Integer sequence beginning 

with 1. In other words, for a 2-1 ink, 3-node (there are always n + 1 

nodes In an n-link branched network) network, the links must be num-
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bered 1, 2 and the nodes 1, 2, 3 (not 1.2, 3, 5 for example). Within 

this framework, the actual numbering scheme can be arbitrary. 

If the network has more than one input node, the first node on the path(s) 

from the reference node to the other Input node(s) must be a non-input 

node. This 1s so that Type 2 headloss constraints can be written to 

these Interior nodes. For example, the following network 1s not 

acceptable... 

1 ' *-AC?OE: 

The pseudo-nodes (6) and (7) must be Introduced... 

X 
V^f V-V 

The pseudo-nodes and the resulting new links are then treated just as 

if they were original nodes and links. 

Let's input the data for the example design problem. The data are 

entered in DATA statements beginning with data statement number 2000 and 

continuing in sequential order (using any desired increment). 

We'll use an Increment of 10. Each Item of data 1s separated from 

others by a comma. 

DATA Statement 2000: 

This statement 1s for project Identification. Any sequence of 
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alphanumeric characters Is acceptable 1f the sequence begins with a letter. 

We enter ... 

2000 DATA Project Example Network 

DATA Statement 2010: 

The first entry on 2010 1s the number of links, NL. The second entry, 

NT, is the number of headloss constraints. For single source networks with 

no Type 1 headloss constraints written for interior (non-terminal) nodes, 

NT equals the number of terminal nodes -1 (if the input is at a terminal 

node) or the number of terminal nodes (if the input is at an interior node). 

For multiple source networks with no Interior node Type 1 constraints and the 

reference node at a terminal node, NT equals the number of terminal nodes -1 

plus the number of non-reference node inputs at Interior nodes. If the ref

erence node is an Interior node and no Type 1 interior node constraints are 

to be written, NT equals the number of terminal nodes plus the number of non-

reference Interior node Inputs. If Type 1 headloss constraints are to be 

written for Interior nodes, these nodes are treated as terminal nodes sub

ject to Type 1 constraints In determining NT. (The total number of con

straints will be NT + NL). For our example, there are 2 Type 1 terminal 

nodes and 1 Type 2 terminal node; therefore NT = 3. The last entry on 2010 

is the number of candidate pipe diameters, ND. 

2010 DATA 5, 3, 2 

DATA Statement 2020: 

The first entry is the flow peaking factor, PF. Next is the minimum 

residual head at the nodes, MR. Finally the hydraulic grade line eleva

tion at the reference node is entered, RH. 

2020 DATA 5.0, 1.0, 20.0 
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OATA Statement 2030: 

The first entry 1s the total number of links already existing, NE. 

The next entry, NU, specifies the set of units that the data are In and that 

the solution will use. 

For NU = 1: Flows are in million gallons per day and lengths and pipe 

diameters are in feet. 

For NU = 2: ' Flows are in liters per second. Lengths are in meters, 

and diameters are in centimeters. 

For NU = 3: Flows are 1n liters per second, lengths are in meters, and 

diameters are in Inches. 

The last entry, NO, is a print option that displays intermediate results 

if NO = 1 or no intermediate results 1f NO * 0. NO = 1 is much more enter

taining. 

2030 DATA 1, 2, 1 

DATA Statement 2040: 

The ND candidate pipe diameters are entered here. They should be entered 

in a logical order, for Instance first entry smallest diameter and last en

try largest diameter, because the solution does not give the diameters but 

rather a number that corresponds to the entry number in this DATA statement. 

2040 DATA 2,50 

DATA Statement 

The ND unit pipe costs are entered here in the same sequence as the 

corresponding pipe diameters 1n 2040. 

2050 DATA 100.00, 150.00 

DATA Statements 2060 - 3100: 

There 1s one DATA statement for each of the NL links 1n the network. 
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These statements contain the network geometry and hydraulic characteristics. 

It Is essential that these statements be entered in consecutive order of the 

link numbers, I.e. 2060 DATA (Link 1), 1500 DATA (Link 2), .... DATA (Link 

NL). The first entry 1s the link number. The second entry 1s "1" if the 

link exists, "0" otherwise. If the link exists, the third entry is the 

diameter number (not the diameter Itself) of the existing pipe corresponding to 

the candidate diameters 1n statement 2040 (Note the existing diameter must be in

cluded as one of the candidate diameters). If the link does not exist, the third 

entry is "0". 

The fourth link entry 1s the link's roughness coefficient. 

The fifth link entry is Its length. 

The next three entries correspond to the link's "near node" with respect 

to the reference node. "Near" means if a path were traced from the reference 

node to the link, the link's "near node" would be reached first. The link's 

"far node" would be reached last. The first "near node" entry is the node 

number, the next entry is the node's Input or demand. If the node has an 

Input, enter the input flow. If the node has a demand, enter the flow 

demanded preceded by a "-". If the node is merely a junction or pseudo-node, 

enter "0." The last "near node" entry 1s the ground elevation if the node 

1s a non-input node, or the elevation of the hydraulic grade line if it is 

an input node. 

The next three entries are for the link's "far node." They are identi

cal in format to those described for the "near node." (It is crucial that 

the "near node" and "far node" entries are 1n the proper sequence - this 

1s part of the system by which the computer can understand the network geometry.) 

The last link entry is "1" 1f the link's far node is a terminal node. 

It is "0" 1f the links far node Is not a terminal node (but is an interior 

node). Finally, 1t 1s "2" If the link's near node is the reference node, 
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regardless of whether the far node 1s terminal or Interior. (If the reference 

node is interior, more than one link will have a "2" entry here.). 

The link DATA statements for the example are... 

2060 DATA 1, 1, 2, 100, 50, 1, 0.5, 20.0, 3, 0, 1.0, 2 

2070 DATA 2, 0, 0, 140, 120, 3, 0, 1.0, 2, -0.4, 3.0, 1 

2080 DATA 3, 0, 0, 140, 100, 3, 0, 1.0, 5, -0.2, 2.0, 0 

2090 DATA 4, 0, 0, 140, 150, 5, -0.2, 2.0, 4, -0.15, 5.0, 1 

3100 DATA 5, 0, 0, 140, 150, 5, -0.2, 2.0, 6, 0.25, 12.0, 1 

After the last DATA statement, there 1s an END statement... 

3120 END 

The problem is now ready to run. 

The example problem was run on an CP/M based Osborne 1 microcomputer 

which uses a Z80A microprocessor. The problem took approximately three 

minutes to solve. The solution is: 

Link # Length of 2 cm Length of 50 cm 

1 0 m 500 m 

2 7.48 1192.52 

3 85.09 914.92 

4 0 1500 

5 6.69 1493.31 

The construction costs are $775,038. 
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frSOURCE LISTING FDR NODELINK*** 

READ T«, NL, NT, ND,PF,MR,RH, NE, NU,NO 
LL=3*NL+2 
DIM DA(NL,14),LP(NT,LL>,P(ND>,DI(ND) 
FOR 1=1 TO NDrREAD DI(I):NEXT I 
FOR 1=1 TO NDrREAD P(I):NEXT I 
FOR 1 = 1 TO NL:FOR J«l TO 10:READ DA(I,J):NEXT J 
FOR J = 12 TO 13:READ DA(I,J):NEXT J:NEXT I 
PRINT "THE ORIGINAL DATA FOLLOWS":PRINT 
FOR 1 = 1 TO NL:FOR J=l TO 14 
) PRINT DA(I,J); 
) NEXT J:PRINT:NEXT I 
) S=0 
> FOR 1=1 TO NL:S=S+DA<I,IO>:NEXT I 
) FOR 1=1 TO NL 
) IF DA(I,13) <> 2 GOTO 180 
) S=S+DA(I,7) 
> GOTO 190 
) NEXT I 
) IF ABS(S) > .01 THEN PRINT "WARNING—THE NETWORK INPUTS AND DEMANDS ARE OUT OF 
i IF ABS(S)>.01 THEN PRINT "BALANCE BY";ABS(S) 
i REM THE ITERATIONS TO DETERMINE LINK FLOWS BY CUMULATING FLOWS AT DOWNSTREAM 
) REM NODES FOLLOW 
) FOR 1=1 TO NL 
i IF DA(I,13) <> 1 GOTO 340 
i IF DA(I,10) > O GOTO 280 
i REM DA (I, 10X0 IMPLIES A DEMAND NODE 
i DA(I,11)=DA(I,10) 
i DA(I,14)=-DA(I,10> 
i GOTO 340 
i IF DA(I,13)=2 GOTO 320 
' DA(I,11)=DA(I,10) 
i DA(I,14)=-DA(I,10) 
"GOTO 340 
' DA(I,11)=DA(I, 10) 
DA(I,14)=DA(I, 10) 
NEXT I 
REM WE NOW HAVE LINK FLOWS IN ALL TERMINAL LINKS 
REM FLOW IS + IF DIRECTED AWAY FROM THE REFERENCE INPUT 
FOR 1=1 TO NL 
IF DA(I,14) <> 0 GOTO 510 
K=0 
FOR J=l TO NL 
IF DA(I,9) <> DA(J,6) GOTO 460 
K=K+1 
IF DA(J,14)=0 GOTO 500 
DA(I,11)=DA(I, ID-DA (J, 14) 
REM THE NEGATIVE IN ABOVE STATEMENT IS BECAUSE FLOWS ENTERING NODES ARE NEG. 
NEXT J 
DA(I,11)=DA(1,11)+DA(1,10) 
DA(I,14)=-DA(I, 11) 
GOTO 510 
IF K>0 THEN DA(I,11>=0 
NEXT I 
FOR 1 = 1 TO NL:IF DA(I,H)-0 GOTO 370 
NEXT I 
PRINT:PRINT "THE LINK FLOWS HAVE BEEN DETERMINED":PRINT 
PRINT "THE LINK FLOWS ARE (+ FLOWS ARE AWAY FROM REF NODE)...":PRINT 
FOR 1 = 1 TO NL:PRINT "LINK "|I,MFLOW « "I DA(1,14):PRINT 
NEXT I 

-69-



5S0 FOR i = ̂  .u Ni:FOR J=l TO LL:LP<I,J)«0:NEXT J: NEXT I 
590 R=0 
600 RC-0 
610 RORC+1 
620 REM RC=1 IMPLIES TERMINAL NODE CONSTRAINTS(BOTH SOURCE AND DEMAND TYPE) 
630 REM RC=2 IMPLIES CONSTRAINTS FOR SOURCES AT INTERIOR NODES 
640 FOR 1=1 TO NL 
650 IF RC=1 SOTO 720 
660 IF DA(I,13) >0 GOTO 970 
670 IF DA(I,10) < = O SOTO 970 
680 R=R+1 
690 IF R>NT SOTO 1010 
700 L P ( R ; 1 ) « 1 
710 GOTO 760 
720 IF DA(I,13) <> 1 GOTO 970 
730 R=R+1 
740 IF DA(I,10) <0 THEN LP(R,1>=0 
750 IF DA(I,10) >0 THEN LP(R,1)=1 
760 LP(R,LL)=DA(I,12) 
770 C=3*(I-l)+2 
780 LP(R,C)=DA<I,1) 
790 C=C+1 
800 LPCR,C)=DA(I,4) 
810 C=C+1 
820 LP(R,C)=DA(I, 14) 
830 K=I 
840 GOTO 860 
850 K=J 
860 FOR J=l TO NL 
B70 IF DA(K,13)=2 GOTO 970 
880 IF DA(J,9) <> DA(K,6) GOTO 960 
890 C=3*(J-l)+2 
900 LP(R,C)=DA(J,1) 
910 C=C+1 
920 LP(R,C)=DA(J,4) 
930 C=C+1 
940 LP(R,C)=DA(J,14) 
950 SOTO 850 
960 NEXT J 
970 NEXT I 
980 IF RC=2 GOTO 1010 
990 REM NOW WRITE LP ROWS FOR SOURCES AT INTERIOR NODES 
1000 GOTO 610 
1010 PRINT 
1020 PRINT "MATRIX LP COMING UP...":PRINT 
1030 FOR 1=1 TO NT:FOR J=l TO LL:PRINT LP(I,J);:NEXT J:PRINT:NEXT I 
1040 PRINT "THE DATA WILL NOW BE WRITTEN TO A SEQUENTIAL DATA FILE NAMED LPDATA 
1050 OPEN M0",#1,"B:LPDATA.DAT" 
1060 CLOSE *1 
1070 KILL "B:LPDATA.DAT" 
1080 OPEN "0",#1,"B:LPDATA.DAT" 
1090 PRINT #1,T* 
1100 PRINT #1,NT,NL,ND,PF,MR,RH,NE,NU,N0 
1110 FOR 1=1 TO ND 
1120 PRINT #1,P(I) 
1130 NEXT I 
1140 REM TRANSFER THE EXISTING LINK NUMBERS AND THEIR DIA NUMBERS 
1150 FOR 1=1 TO NL 
1160 IF DA(I,2)«0 GOTO 1180 
1170 PRINT #1,DA(I,1),DACI,3) 
1180 NEXT I 
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1190 FDR 1=1 TO ND 
1200 PRINT «1,DX(X> 
1210 NEXT I 
1220 FOR 1 = 1 TO NT 
1230 PRINT «1,LP(I,1) 
1240 FOR J=l TO NL 
1250 C=0 
1260 FOR K=l TO 3 
1270 R=3*(J-1>+K+1 

i 1280 N=LP(I,R> 
• 1290 IF N <> 0 GOTO 1330 
< 1300 C=C+1 
1310 IF C=l THEN PRINT #1,0 
1320 GOTO 1340 
1330 PRINT #1,N 
1340 NEXT K 
1350 NEXT J 
1360 PRINT #1,LP(I,LL) 
1370 NEXT I 
1380 FOR 1=1 TO NL 
1390 PRINT #1,DA(I,5> 
1400 NEXT I 
1410 CLOSE #1 
1420 PRINT "TYPE 'RUN BRANCH'" 

DATA PROJECT EXAMPLE NETWORK 
DATA 5,3,2 
DATA 5.0,1.0,20.0 
DATA 1,2,1 
DATA 2,50 
DATA 100.00,150.00 
DATA 1,1,2,100,500,1,0.5,20.0,3,0,1.0,2 
DATA 2,0,0,140,1200,3,0,1.0,2,-0.4,3.0,1 
DATA 3,0,0,140,1000,3,0,1.0,5,-0.2,2.0,0 
DATA 4,0,0,140,1500,5,-0.2,2.0,4,-0.15,5.0,1 
DATA 5,0,0,140,1500,5,-0.2,2.0,6,0.25,12.0,1 
END 
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•••BRANCH b l w . u t u I S T Z N b * * * 

10 OPEN "I",#lf"B:LPDATA.DAT" 
20 INPUT #1,T»,NT,NL,ND,PF,MR,RH,NE,NU,N0 
30 IY=NL^ND+1 
40 IP=IY-1 
50 IZ=IY+NL+NT 
60 IW=NT+NL 
70 IX=IZ-1 
80 DIM DI(ND),D<IW,IZ),P<IX>,IB<IW),SC<IX> 
90 MP=0 
100 FOR 1=1 TO ND 
110 INPUT #1,P(I) 
120 IF P(I) > MP THEN MP=P(I> 
130 P(I>=-PCI> 
140 NEXT I 
150 MP=10^MP 
160 FOR 1=1 TO NL-1 
170 L=ND*I 
180 FOR J=l TO ND 
190 L=L+1 
200 P(L)=P(J) 
210 NEXT J 
220 NEXT I 
230 FOR I=IY+NT TO IX 
240 P(I)=-MP 
250 NEXT I 
260 IF NE=0 GOTO 390 
270 FOR 11=1 TO NE 
280 INPUT #1,JJ 
290 INPUT #1,KK 
300 FOR 1=1 TO NL 
310 IF IOJJ GOTO 370 
320 FOR J=l TO ND 
330 L=(I-1)^ND+J 
340 P<L)=-MP 
350 IF J«KK THEN P(L)=0 
360 NEXT J 
370 NEXT I 
380 NEXT II 
390 FOR 1=1 TO ND 
400 INPUT «1,DI(I) 
410 NEXT I 
420 IF N0=1 60T0 450 
430 PRINT "THE DATA ARE BEINS READ...":PRINT 
440 SOTO 490 
450 PRINT "THE DIAMETERS ARE..." 
460 FOR 1=1 TO ND 
470 PRINT DI(I); 
480 NEXT I:PRINT 
490 FOR I«l TO IW:FOR J«l TO IZ:D(I,J)"OlNEXT JrNEXT I 
500 REM THE ORDER OF CONSTRAINTS IS ...TYPE 1 HL CONSTRAINTS ARE FIRST IN NODE 
510 REM ORDER. THEN ARE TYPE 2 HL CONSTRAINTS IN NODE ORDER. LAST ARE LINK 
520 REM LENGTH CONSTRAINTS IN LINK ORDER. 
530 REM LOAD THE HEADLOSS CONSTRAINTS' COEFFICIENTS 
540 FOR 1=1 TO NT 
550 INPUT #1,IS 
560 REM IS=0 IMPLIES THAT THE CONSTRAINT IS A DEMAND TYPE 
570 REM IS=1 IMPLIES THAT THE CONSTRAINT IS A SOURCE TYPE 
580 REM INTERIOR SOURCES AND TERMINAL SOURCES <IS=1> ARE TREATED IDENTICALLY 
590 IF IS=1 THEN P < IP+I > «=-MP 
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! 600 IF IS=0 THEN P(IP-»-I)«0 
• 610 L=0 
620 FOR J»l TO NL 
630 INPUT #1,JY 
640 REM JY=0 IMPLIES THAT LINK J IS NOT ON THE CONSTRAINT'S PATH 
650 IF JY=0 THEN L=L+ND 
660 IF JY«0 GOTO 840 

> 670 INPUT *1,C 
680 INPUT #1,Q 
690 IF NU=1 THEN C0=10.55 
700 IF NU=2 THEN C0=162000! 
710 IF NU=3 THEN C0=1730 
720 FOR K*l TO ND 

• 730 L«L+1 
740 D<I,L)=C0»(C~(-1.B5))*< (ABS(Q)*PF)~1.85)#<DI (K)~(-4.87) ) 
750 IF IS=0 THEN GOTO BOO 
760 REM THIS IS FOR TYPE 2 (SOURCE) HEADLOSS CONSTRAINTS 
770 IF GOO THEN D<I,L)=-D<I,L) 
780 REM WHEN 0>0 THEN HEAD IS GAINED IN THAT LINK ON PATH FROM SOURCE NODE 

I 790 GOTO 830 
800 REM THIS IS FOR TYPE 1 (DEMAND) HEADLOSS CONSTRAINTS 
810 IF CKO THEN D (I, L) =-D (I, L) 
820 REM WHEN Q<0 HEAD IS GAINED IN THAT LINK ON PATH FROM REF NODE 
830 NEXT K 

; 840 NEXT J 
• 850 INPUT #1,EL 
>860 IF IS=0 GOTO 940 
870 D (I, IZ ) =EL-RH 
880 IF D<I,IZ)>0 GOTO 950 
890 FOR J=l TO IP 
900 D(X,J)—D(X,J> 
910 NEXT J 

1920 DCI, IZ>—D<I,IZ) 
930 GOTO 950 
940 D(I, IZ)=RH-(EL+MR) 
950 NEXT I 
960 IF N0=0 GOTO 1000 
970 PRINT "THE COST COEFFICIENTS FOLLOW..." 

>980 FOR 1*1 TO IX:PRINT P(I);:NEXT I 
990 REM LOAD THE LENGTH CONSTRAINTS' COEFFICIENTS 
1000 FOR I=NT+1 TO IW 
1010 L=ND«(I-(NT+1>) 
1020 FOR K=l TO ND 
1030 J»L+K 

.1040 D(I,J)«1 
1050 NEXT K 
1060 INPUT #1,LE 
1070 D(I,IZ)=LE 
1080 NEXT I 
1090 FOR 1=1 TO IW 
1100 J=IP+I 

M H O D(I,J)=1 
1120 NEXT I 
1130 CLOSE #1 
1140 IF N0=1 GOTO 1170 
1150 PRINT "RELAX WHILE I WORK ON THIS PROBLEM..." 
1160 GOTO 1210 

U170 PRINT:PRINT:PRINT "MATRIX D FOLLOWS...":PRINT 
1180 FOR 1=1 TO IW 
1190 FDR J=l TO IZ 
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1200 PRINT U(I,J)i:NEXT J:PRINT:PRINT:NEXT I 
1210 FOR N=IY TO IX 
1220 FOR L=l TO IW 
1230 IF D(L,N)=1 60TO 1260 
1240 NEXT L 
1250 GOTO 1270 
1260 IB(L)=N 
1270 NEXT N 
1280 Z=0 
1290 FOR N*=l TO IW 
1300 IB=IB(N) 
1310 Z=Z+D(N,IZ>«PCIB) 
1320 NEXT N 
1330 NP=0 
1340 SM=0 
1350 FOR N=l TO IX 
1360 FOR 1=1 TO IW 
1370 IF N=IB(I> GOTO 1480 
1380 NEXT I 
1390 SU=0 
1400 FOR 1=1 TO IW 
1410 J=IB(I) 
1420 SU=SU+P(J)«D(I,N) 
1430 NEXT I 
1440 SC(N)=P(N)-SU 
1450 IF SC(N> <• SM GOTO 1480 
1460 SM=SC(N) 
1470 PC=N 
1480 NEXT N 
1490 FOR M=l TO IW 
1500 IB=IB(M) 
1510 SC(IB)=0 
1520 NEXT M 
1530 IF SM <=0 GOTO 1990:REM WE HAVE OPTIMALITY 
1540 NP=NP+1 
1550 SL=lE+30 
1560 FOR M=l TO IW 
1570 IF D(M,PC) > O GOTO 1590 
1580 GOTO 1640 
1590 0=D(M,IZ)/D(M,PC) 
1600 IF (O-SL) < O GOTO 1620 
1610 GOTO 1640 
1620 PR=M 
1630 SL=0 
1640 NEXT M 
1650 IB(PR)=PC 
1660 DV=D(PR,PC) 
1670 FOR N=l TO IZ 
1680 CR=D(PR,N) 
1690 D(PR,N)»CR/DV 
1700 NEXT N 
1710 IF N0=1 GOTO 1740 
1720 PRINT:PRINT "IF YOU THINK THIS IS SLOW, TRY IT BY HAND! 
1730 GOTO 1780 
1740 PRINT "SIMPLEX CRITERIA" 
1750 FOR N=l TO IX 
1760 PRINT SCCN); 
1770 NEXT N 
1780 N=NP+1 
1790 IF N0=0 GOTO 1820 
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FUNCTION VALUE IS .1800 PRINT:PRINT "THE OBJECTIVE 
1810 PRINT "TABLEAU # ";N 
1820 FOR M-l TO IW 
1830 IF (M-PR)=0 SOTO 1900 
1840 CM=-D(M,PC> 
1850 FOR N=l TO 12 
1860 IM=D<FR,N)*CM 
>1870 SK=D(M,N) 
1880 D(M,N)=SK+IM 
1890 NEXT N 
1900 IF N0=0 GOTO 1960 
1910 PRINT "X(";IBCM>;">";:PRINT 
1920 FOR N=l TO IZ 
11930 PRINT D(M,N>; 
1940 NEXT N 
1950 PRINTIPRINT 
1960 NEXT M 
1970 Z=Z+SL»SM 
1980 GOTO 1340 

PRINT:PRINT "ENOUGH OF THIS ITERATING. 
"THE LEAST COST DESIGN FOLLOWS.. 
"THE COST OF THE DESIGN IS ";-Z 

":PRINT: 
1:PRINT 

PRINT 

";J;"IN LINK I;" IS ";D(K,IZ) 

PRINT 
PRINT 
PRINT 
L=0 
FOR 1=1 TO NL 
FOR J=l TO ND 
L=L+1 
FOR K=l TO IW 
IF IB(K) <> L GOTO 2100 
PRINT "THE LENGTH OF DIAMETER 
NEXT K 
NEXT J 
NEXT I 
PRINT 
L=0 
FOR I = IY TO IY-HMT-1 
L=L+1 
FOR K=l TO IW 
IF IB(K) <> I GOTO 2200 
PRINT "THE SLACK IN TERMINAL NODE CONSTRAINT MjL;"IS ";D(K,IZ> 
NEXT K 
NEXT I 
FOR I=IY+NT TO IX 
FOR K=l TO IW 
IF IB(K) <> I GOTO 2260 
PRINT "THIS PROBLEM IS INFEASIBLE—THERE IS EXCESSIVE HEADLOSS 
NEXT K 
NEXT I 
FOR I=IY TO IP+NT 
FOR K=l TO IW 
IF IB(K) <> I GOTO 2340 
IF P(I)«0 GOTO 2340 
PRINT "THIS PROBLEM IS INFEASIBLE" 
PRINT "THERE IS AN UNSATISFIED MULTIPLE SOURCE CONSTRAINT" 
NEXT K 
NEXT I 
END 

-75-



APPENDIX H 

USER INSTRUCTIONS FOR THE CLOSED-CIRCUIT 

WATER DISTRIBUTION SYSTEM SIMULATOR PROGRAM 

"LOOP" IN THE BASIC LANGUAGE FOR MICROCOMPUTERS* 

1982 

Developed by Keith Little, Department of Environmental Sciences 
and Engineering, University of North Carolina, Chapel Hill, NC 27514 
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General 

"LOOP" is a program written 1n the BASIC language that simulates 

flows and pressures in a looped (closed circuit) water distribution 

system. Some dialect of the BASIC language is supported by virtually 

all microcomputers. LOOP accomplishes three algorithmic tasks. The 

first is, from user-specified nodal Inputs and demands and system 

geometry, to determine an initial flow-balanced network. From this 

flow-balanced network, the second algorithm uses the hardy-Cross 

technique to systematically change the link flows 1n such a way that the 

headlosses around each loop cancel to within a user-specified tolerance. 

The third algorithm calculates final link headlosses and nodal pressures 

based on the flow distribution determined from Hardy-Cross, LOOP'S source 

listing Is in the Appendix. 

The Hardy-Cross method is well suited for microcomputers. The 

network Is described mathematically by a system of simultaneous, nonlinear 

equations. The network simulation is the solution to this system. 

Network simulation algorithms designed.for mainframe computers operate 

on all equations in this system at the same time using numerical techniques 

such as Newton's method. This strategy requires a considerable internal 

memory even for moderately-sized networks. Hardy-Cross is essentially 

Newton's method applied to a single equation (of the system) at a time, 

thereby greatly reducing Internal memory requirements. The cost is that 

convergence to the solution is slower and, 1n some cases, may not occur 

at all. 
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Limitations 

LOOP is designed to simulate networks consisting of a single 

input, multiple demands, and a geometry 1n which the number of links 

(pipes between Input/demand points or nodes) in each loop is either 

2, 3, or 4. LOOP is, in fact, written for links per loop (the standard 

urban layout); however, "pseudo-nodes" can be introduced in loops 

consisting of 2 or 3 links to effect a four-link loop configuration. 

A pseudo-node is an artificial node with no input or demand. 

The network is assumed to have a single input and a single known 

hydraulic grade line (HGL) elevation either at the input node (the 

common situation) or some other node. LOOP will find a "solution" for 

multiple inputs and a single specified HGL elevation, but there is no 

guarantee that such a system 1s physically realistic, i.e., rarely can 

one specify an input at a node without also knowing the pressure at 

that node. 

LOOP does not accomodate in-line hydraulic elements such as booster 

pumps, pressure reducing valves, etc. 

The units for the network data and solutions are english. Lengths, 

headlosses, HGL and ground elevations are 1n feet. Pipe diameters are 

in inches. Input(s) and demands are 1n cubic feet per second. Pressures 

are in pounds per square inch. 
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The data for the modified network are entered as follows: 

Data statement 4000 contains any descriptive name (alpha-numeric) 

that begins with a letter. 

4000 DATA EXAMPLE NETWORK 

Data statement 4010 contains the stopping criterion for the 

Hardy-Cross headloss-balancing algorithm. A large value of the 

criterion results in rapid convergence at the cost of lesser 

accuracy and vice versa. 

4010 DATA 1E-04 

Data statement 4020 contains, respectively, the numbers of loops, 

links, and nodes (including pseudo-nodes). 

4020 DATA 2, 7, 6 

Data statement 4030 contains the link lengths in sequential order 

of link numbers, i.e., 1, 2, ... 

4030 DATA 1200, 1000, 1200, 1000, 1000, 500, 500 

Data statement 4040 contains the link diameters also in sequential 

order of link numbers. 

4040 DATA 12, 12, 15. 8, 12. 20, 20 

Data statement 4050 contains the link's C value (Hazen-Williams 

coefficient) in sequential order of link numbers. 

4050 DATA 100, 100, 100. 100, 100, 100, 100 
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Data statement 4060 contains the ground elevations of the nodes in 

sequential order of node numbers. Note that ground elevations for any 

pseudo-nodes must be known. 

4060 DATA 2, 1, 3. 2, 5. 3 

Data statement 4070 contains, respectively, the node number at which the 

hydraulic grade line elevation is known and the elevation. This will 

typically be at the Input node. 

4070 DATA 3, 50 

Data statement 4080 contains the input and demands of the nodes in 

sequential order of node numbers. The demands are input as negative 

quantities. Pseudo-nodes have 0 demand. 

4080 DATA -1.5, -2.5, 10, -2, -4, 0 

The remaining data statements specify the network geometry. There are 

four statements (one for each link) for every loop and three entries 

per statement. The (sets of) loop statements are entered in sequential 

order of loop numbers. The loops are not explicitly numbered in the 

statements but it is necessary (for the user to understand the solution) 

that this ordering scheme be followed. In other words, the first four 

statement will be designated by the program as for loop #1, the second 

four for loop #2, and so on. Each of the four link data statements for 

a given loop contains, respectively/the link number, the "counter 

clockwise" node's number, and the clockwise" node's number. The counter 

clockwise node for a given link 1n a given loop is the node (attached 

to that link) that is first encountered when traveling in a clockwise 
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direction around that loop. The clockwise node is the last encountered. 

For example, the data statement describing link 4 relative to loop 1 

1s: Data 4, 4, 3. The statement for link 4 relative to loop 2 is: 

Data 4, 3, 4. Within a loop, the link statements can be arbitrarily 

ordered. For loop 1, we have: 

4090 DATA 1, 3, 1 
4100 DATA 2, 1, 2 
4110 DATA 3, 2, 4 
4120 DATA 4, 4, 3 

Similarly, for Loop 2: 

4130 DATA 6, 6, 5 
4140 DATA 4, 3, 4 
4150 DATA 7, 4, 6 
4160 DATA 5, 5, 3 

After the last data statement, there 1s an end statement, 

4170 END 

The example network was run on an Osborne 1 Microcomputer using the 

Z-80A microprocessor. The solution 1s given below. 
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THE 
FOR 
FDR 
FOR 
FOR 
FOR 
FOR 
FOR 
THE 

LINK 
LINK 
LINK 
LINK 
LINK 
LINK 
LINK 
LINK 
FLOW 

FLOWS 
# 
# 
tf 
# 
# 
# 
# 

1 
2 
3 
4 
5 
6 
7 

AND 
THE 
THE 
THE 
THE 
THE 
THE 
THE 

HEADLOSSES FOLLOW... 
FLOW IS 
FLOW IS 
FLOW IS 
FLOW IS 
FLOW IS 
FLOW IS 
FLOW IS 

3.68067 AND THE HEADLOSS 
2.1B067 AND THE HEADLOSS 
.31933 AND THE HEADLOSS ] 
1.61993 AND THE HEADLOSS 
4.69939 AND THE HEADLOSS 
.699396 AND THE HEADLOSS 
.699396 AND THE HEADLOSS 

DIRECTIONS RELATIVE TO THE LOOPS ARE... 

IS 
IS 
[S 
IS 
IS 
IS 
IS 

12.5434 
3.96B83 
.0459563 
16.497 
16.4266 
.0201175 
.0201175 

THE FLOW DIRECTIONS RELATIVE TO LOOP 1 ARE... 
THE FLOW IN LINK # 1 IS CLOCKWISE 
THE FLOW IN LINK # 2 IS CLOCKWISE 
THE FLOW IN LINK # 3 IS COUNTER-CLOCKWISE 
THE FLOW IN LINK # 4 IS COUNTER-CLOCKWISE 

THE FLOW DIRECTIONS RELATIVE TO LOOP 2 ARE... 
THE FLOW IN LINK # 6 IS COUNTER-CLOCKWISE 
THE FLOW IN LINK « 4 IS CLOCKWISE 
THE FLOW IN LINK # 7 IS COUNTER-CLOCKWISE 
THE FLOW IN LINK * 5 IS COUNTER-CLOCKWISE 
THE NODE EL'S,HGL'S, AND PRESSURES ARE... 
FOR NODE # 1 THE GROUND EL IS 2 ,THE HGL IS 37.4566 AND THE PRESSURE IS 15.3448 
FOR NODE # 2 THE GROUND EL IS 1 ,THE HGL IS 33.4877 AND THE PRESSURE IS 14.06 
FOR NODE # 3 THE GROUND EL IS 3 ,THE HGL IS 50 AND THE PRESSURE IS 20.3406 
FOR NODE # 4 THE GROUND EL IS 2 ,THE HGL IS 33.5337 AND THE PRESSURE IS 13.6471 
FOR NODE # 5 THE GROUND EL IS 5 ,THE HGL IS 33.5739 AND THE PRESSURE IS 12.3662 
FOR NODE # 6 THE GROUND EL IS 3 ,THE HGL IS 33.5538 AND THE PRESSURE IS 13.223 
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#*SOURCE LIS.'iiJG FOR LOOP*** 

0 READ T* 
0 READ SC 
0 REM T* IS THE PROJECT TITLE 
,0 READ N,L,NN 
fc REM N IS THE # OF LOOPS AND L IS THE # OF LINKS 
:0 REM NN IS THE # OF NODES 
!0 M=4*N 
P DIM LI (L),S(L) ,Q(L) ,QC(L),K(L),C(L) ,HL(L> ,LC(N) ,SQ(2> 
iO DIM P(NN,4),D(M.,4>, 12(4) ,F(4),B(4> ,S1 <4> 
^0 FOR 1=1 TO L 
^0 READ LI(I) 
20 NEXT I 
30 FOR 1=1 TO L 
40 READ S(I) 
50 NEXT I 
k>0 FOR 1 = 1 TO L 
jk> READ C(I) 
SO NEXT I 
90 REM P(I,1) ARE THE NODAL GROUND ELEVATIONS 
pO FOR 1=1 TO NN 
|0 READ P(I,1) 
60 NEXT I 
§0 REM P(I,2> WILL BE THE NODAL HGL'S—ONLY ONE WILL BE KNOWN INITIALLY 
ftO FOR 1=1 TO NN:P(I,2)=0:NEXT I 
50 READ I 
SO READ P(I,2) 
70 REM P(I,2) IS THE KNOWN NODAL HGL FROM WHICH ALL OTHER HGL'S ARE DETERMINED 
30 REM P(I,4) IS THE VECTOR OF NODAL INPUT/DEMANDS 
lo c=o 
DO FOR 1=1 TO NN 
10 READ P(I,4) 
20 C=C+P(I,4) 
30 NEXT I 
40 FOR 1=1 TO NN 
10 NEXT I 
bO IF ABS(CX.01 GOTO 390 
70 PRINT "THE NODAL INPUTS AND DEMANDS ARE NOT IN AGREEMENT" 
30 PRINT "CHECK YOUR DATA AND TRY AGAIN!"TEND 
?0 FOR 1 = 1 TO M 
;>0 READ D(I,1)!READ D( I, 3): READ D(I,4) 
lo NEXT I 
20 PRINT "THE FLOW-BALANCING ALGORITHM WILL BEGIN..." 
50 FOR 1=1 TO L 
\Q 0(I)=0 
50 OC(I)=0 
-,0 NEXT I 
l:> REM FIND ALL "CORNER" NODES (THOSE WITH 2 ATTACHED, UNASSIGNED LINKS) 
30 REM ASSIGN 0 TO THOSE 2 LINKS TO MEET DEMAND AT NODE I 
90 PRINT "WE'LL NOW CONSIDER NODES WITH EXACTLY 2 Q-UNSPECIFIED LINKS" 
:>0 FOR 1 = 1 TO NN 
LO PRINT "THE NODE # IS";I 
20 FOR K.= l TO 4".S1 (K)=OZNEXT K 
lb REM VECTOR SI WILL CONTAIN THE #'S OF THE LINKS ATTACHED TO NODE I 
10 S=0 
50 FOR J = l TO M 
»0 IF D(J,3)=I GOTO 590 
*Q IF D(J,4)=I GOTO 590 
30 GOTO 650 
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90 PRINT "LINK #";D(J,1) ;"BEING CONSIDERED" 
00 FOR K=l TO 4 
10 IF D(J,1)=SMK) GOTO 650 
20 NEXT K 
30 S=S+1 
40 SI(S)=D(J,1) 
50 NEXT 0 
60 PRINT "THE LINKS ATTACHED TO NODE";X|"ARE..." 
70 FOR K*l TO 4IPRINT S1(K):NEXT K 
80 REM NOW COUNT THE UNASSIGNED LINKS IN VECTOR SI 
90 C=0 
00 FDR K=l TO 4 
10 IF S1(K)=0 GOTO 730 
20 IF QC(S1(K))=0 THEN C=C+1 
30 NEXT K 
40 IF C<>2 GOTO 1220 
50 PRINT "NODE";I;"HAS EXACTLY 2 Q-UNASSIGNED LINKS" 
60 REM NOW ASSIGN DIRECTION INDICES TO THE 2 LINKS AND 
70 REM UPDATE THE NODAL INPUT/OUTPUT VECTOR,P(*,4) 
80 FOR K=l TO 4 
90 IF S1(K)=0 GOTO 1090 
00 IF Q C C S M K M O O GOTO 1090 
10 FOR J=l TO M 
20 IF D(J,1K>S1(K) GOTO 1080 
30 IF D(J,4)'OI GOTO 960 
40 CL=D(J,1):REM CL IS A CLOCKWISE LINK FROM NODE I 
50 IF P(I,4)<0 THEN D(J,2)=1 
60 IF P(I,4)>0 THEN D(J,2)=-1 
70 REM CHECK IF LINK CL EXISTS IN ANOTHER LOOP AS A CC LINK 
80 REM IF SO, UPDATE ITS DIRECTION INDEX ALSO 
90 FOR JJ=1 TO M 
00 IF D(JJ,l)OCL GOTO 930 
10 IF JJ=J GOTO 930 
20 D(JJ,2)=-D(J,2> 
30 NEXT JJ 
40 P(D(J,3),4)=P(D(J,3),4)+P(I,4)/2 
50 GOTO 1090 
60 CC=D(J,1):REM CC IS A COUNTER-CLOCKWISE LINK FROM NODE I 
70 IF P(I,4)<0 THEN D(J,2>=*-1 
30 IF P(I,4)>0 THEN D(J,2)=1 
90 REM CHECK IF LINK CC EXISTS IN ANOTHER LOOP AS A CL LINK 
000 REM IF SO, UPDATE ITS DIRECTION INDEX ALSO 
010 FOR JJ=1 TO M 
020 IF D(JJ,l)OCC GOTO 1050 
030 IF JJ=J GOTO 1050 
040 D(JJ,2)=-D(J,2) 
050 NEXT JJ 
060 P(D(J,4),4)=P(D(J,4),4)+P(I,4)/2 
070 GOTO 1090 
080 NEXT J 
090 NEXT K 
100 REM NOW ASSIGN Q'S TO THE 2 LINKS 
110 FOR K«=l TO 4 
120 IF QC(S1(K))=0 THEN Q (Si <K> > <=ABS (P (1, 4) /2) 
130 IF QC(S1(K))=0 THEN 0C(S1(K))=1 
140 NEXT K 
150 REM NOW UPDATE THE INPUT/OUTPUT VECTOR FOR NODE I 
160 P(I,4)=0 
170 PRINT "THE FLOW VECTOR IS..." 
180 FOR J=l TO L:PRINT J,Q(J):NEXT J 
190 PRINT "THE NODAL I/O VECTOR IS..." oc 
200 FOR J=l TO NN:PRINT J,P(J,4):NEXT J 



1210 GOTO I2_c> 
*220 NEXT I 
1230 FOR 1=1 TO L 
1240 IF QC(I)=0 GOTO 1270 
1250 NEXT I 
1260 GOTO 2100 
1270 PRINT "WE'LL NOW LOOK AT NODES WITH 1 Q-UNSPECIFIED LINK" 
j)280 REM NOW FIND THE NODES WITH A SINGLE UNSPECIFIED LINK. 
1290 REM THEN SATISFY THEIR DEMAND 
[1300 FOR 1 = 1 TO NN 
[1310 PRINT "THE NODE # IS "; I 
&1320 FOR K=l TC 4: SI <K> =0: NEXT K 
|330 REM VECTOR SI WILL CONTAIN THE #'S OF LINKS ATTACHED TO NODE I 
^340 S=0 
1350 FOR J=l TO M 
1360 IF D(J,3)=I GOTO 1390 
1370 IF D(J,4)=I GOTO 1390 
1380 GOTO 1450 
i390 PRINT "LINK #";D(J,1);"BEING CONSIDERED* 
1400 FOR K=l TO 4 
!?410 IF D(J,1)=S1(K) GOTO 1450 
1420 NEXT K 
1430 S=S+1 
['440 SI (S)=D(J, 1) 
[450 NEXT J 
|460 PRINT "THE LINKS ATTACHED TO NODE I ARE..." 
J470 FOR K=l TO 4:PRINT S1(K):NEXT K 
1480 REM NOW COUNT THE Q-UNASSIGNED LINKS IN VECTOR SI 
1490 C=0 
1500 FOR K=l TO 4 
1510 IF S1(K)=0 GOTO 1530 
^520 IF QC(SI(K))=0 THEN C=C+1 
L530 NEXT K 
1540 IF COl GOTO 1900 
1550 PRINT "NODE":I;"HAS EXACTLY 1 Q-UNSPECIFIED LINK" 
1560 REM NOW ASSIGN THE DIRECTION INDEX TO THE LINK AND 
.570 REM UPDATE THE NODAL I/O VECTOR 
^80 FOR K=l TO 4 
.590 IF S1(K)=0 GOTO 1620 
1600 IF QC(51(K))O0 GOTO 1620 
610 GOTO 1630:REM SI(K) WILL BE THE UNSPECIFIED LINK # 
.620 NEXT K 
630 CC=0:REM CC WILL COUNT THE # OF TIMES THAT THE I/O FOR 
>̂40 REM FOR THE NODE ATTACHED TO LINK SICK) IS UPDATED 
650 FOR J=l TO M 
660 IF D(J,l)OSl(K) GOTO 1790 
670 IF D(J,4)OI GOTO 1740 
680 IF P(I,4)<0 THEN D(J,2)=1 
690 IF P(I,4)>0 THEN D(J,2)=-1 
ĵ OO IF CC>=1 GOTO 1790 
710 P(D(J,3),4)=P(D(J,3),4)+P(I,4) 
720 CC=CC+1 
730 GOTO 1790 
740 IF P(I,4)<0 THEN D(J,2)=-1 
750 IF P(I,4)>0 THEN D(J,2)=1 
^60 IF CC>=1 GOTO 1790 
770 P(D<J,4>,4)->P(D(J,4),4)+P(X,4> 
780 CC=CC+1 
790 NEXT J 
800 REM NOW ASSIGN Q TO LINK SI(K) 
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1810 Q(SMK) >=A3S<P(I,4> > 
1820 0C(S1(K))-l 
1830 REM NOW UPDATE I/O VECTOR FOR NODE I 
1840 P(I,4>=0 
1850 PRINT "THE FLOW VECTOR IS..." 
1860 FOR J=l TO L:PRINT J,G(J):NEXT J 
1870 PRINT "THE NODAL I/O VECTOR IS..." 
1880 FOR J=l TO NN:PRINT J,P(J,4):NEXT J 
1890 60T0 1910 
1900 NEXT I 
1910 REM NOW CHECK IF ALL LINKS HAVE ASSIGNED D*S—IF NOT BO BACK THRU NETWORK 
1920 FOR 1=1 TO L 
1930 IF QC(I)=0 GOTO 490 
1940 NEXT I 
1950 REM CHECK IF ALL ASSIGNED O'S ARE NON-ZERO—THE HARDY CROSS 
1960 REM ALGORITHM CAN ONLY HANDLE NON-ZERO LINK O'S 
1970 FOR 1=1 TO L 
1980 IF Q(I)<>0 THEN GOTO 2040 
1990 PRINT "LINK #";l;"HAS BEEN ASSIGNED A ZERO FLOW. THE HARDY-" 
2000 PRINT "CROSS ALGORITHM CANNOT HANDLE THIS LINK FLOW. I SUGGEST" 
2010 PRINT "THAT YOU MAKE A VERY SMALL CHANGE TO THE NETWORK INPUT AND" 
2020 PRINT "A COMPENSATING CHANGE TO ONE OF THE NODES CONNECTED TO LINK #";l; 
2030 PRINT "AND TRY AGAIN":END 
2040 NEXT I 
2050 PRINT "THE D MATRIX AFTER THE FLOW BALANCING ALGORITHM IS..." 
2060 FOR 1=1 TO M 
2070 FOR J=l TO 4 
2080 PRINT D(I,J); 
2090 NEXT J:PRINT:NEXT I 
2100 PRINT:PRINT 
2110 PRINT "THE NETWORK NOW HAS A STARTING,BALANCED FLOW DISTRIBUTION" 
2120 PRINT:PRINT "THE HARDY-CROSS ALGORITHM WILL NOW BEGIN..." 
2130 REM COMPUTE K VALUES FOR HAZEN-WILLIAMS FORMULA 
2140 FOR 1 = 1 TO. L. 
2150 K(I> = (4720/(C(I)*(S(I)/12) "2.63) )"-l.B5 
2160 NEXT I 
2170 IT=0 
2180 IT=IT+1 
2190 T=0 
2200 W=l 
2210 FOR 1=1 TO 4 
2220 I2(I)=D(W,1) 
2230 SI(I)=D(W,2) 
2240 W=W+1 
2250 NEXT I 
2260 T9=0 
2270 B1=0 
2280 REM USING THE Q-BALANCED NETWORK APPLY NEWTON'S INTERACTION EQUATION 
2290 FOR 1=1 TO 4 
2300 J=I2(I) 
2310 F(I)=K(J)*Q(J)*S1(I)*ABS(0(J))~.B5#L1(J) 
2320 B(I)=1.B5*K(J)»ABS(0(J))'.85»L1(J) 
2330 T9=T9+F(I) 
2340 B1=B1+B(I) 
2350 NEXT I 
2360 C1=T9/B1 
2370 T=T+ABS(C1) 
2380 FOR 1=1 TO 4 
2390 J=I2(I) 
2400 REM CORRECTION TO Q APPLIED 
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2410 Q(J) = (GHJ)*S1 (I)-C1)*S1 (I) 
2420 NEXT I 
2430 REM CHECK IF ALL LOOPS HAVE BEEN CORRECTED 
2440 IF W<M GOTO 2210 
2450 REM CHECK IF CONVERGENCE IS WITHIN LIMIT SPECIFICATIONS 
2460 IF T<SC GOTO 24B0 
2470 PRINT "HARDY-CROSS ITERATION # ";IT;" COMPLETED":GOTO 21B0 
1480 FOR 1 = 1 TO L 
2490 HL(I>=847000!*<(ABS(Q(I))/C(I))"1.B5>#(S(I)~(-4.87)>«L1(I) 
2500 NEXT I 
2510 REM NOW UPDATE D(I,2) FOR REVERSED FLOWS 
2520 W=0 
1530 FOR 1=1 TO 4 
|S40 W=W+1 
2550 J=D(W, 1) 
j>560 IF D U X O THEN D (W, 2) =-D <W, 2) 
?570 NEXT I 
J580 IF W<M GOTO 2530 
|590 PRINT:PRINT "THE FLOWS AND HEADLOSSES IN LINKS HAVE BEEN DETERMINED. 
|595 PRINT "TYPE 'RETURN' FOR THE SIMULATION RESULTS" 
£600 PRINT "FOR "; T* 
S610 INPUT F* 
*620 PRINT "THE LINK FLOWS AND HEADLOSSES FOLLOW. ..": PRINT 
|630 FOR 1 = 1 TO L 
>640 PRINT "FOR LINK # " ; I; " THE FLOW IS "JABS(0<I))J"AND THE HEADLOSS IS ";HL(I) 
*650 NEXT I 
!660 INPUT "TYPE 'RETURN' FOR THE FLOW DIRECTIONS RELATIVE TO THE LOOPS"?F$ 
'670 PRINT "THE FLOW DIRECTIONS RELATIVE TO THE LOOPS ARE..." 
!680 W=0 
?690 FDR J = l TO N 
1700 PRINT:PRINT "THE FLOW DIRECTIONS RELATIVE TO LOOP";J;"ARE..." 
>710 FOR 1 = 1 TO 4 
!720 W=W+1 
1730 IF D(W,2)=1 THEN PRINT "THE FLOW IN LINK «";D<W,1);"IS CLOCKWISE" 
!740 IF D(W,2>=-1 THEN PRINT "THE FLOW IN LINK #";D(W,1);"IS COUNTER-CLOCKWISE" 
!750 NEXT I 
!760 NEXT J 
>770 REM NOW COMPUTE HGL'S AT ALL NODES 
:780 FOR 1 = 1 TO N 
790 FOR J=l TO 4 
!B00 C=4*(I-1)+J:REM C IS THE ROW # OF MATRIX D 
1810 K=D(C,3):REM K IS THE NODE # BEING CONSIDERED 
820 IF P(K,2)=0 GOTO 2850 
fe30 IF P(D(C,4),2)>0 GOTO 2850 
B40 P(D<C,4),2>=P(K,2)-HL<D<C,1)>#D(C,2> 
!850 NEXT 3 
:860 NEXT I 
B70 REM NOW CHECK IF ALL NODES HAVE BEEN ASSIGNED HGL 
'880 FOR 1 = 1 TO NN 
IB90 IF P(I,2)=0 THEN GOTO 2780 
!900 NEXT I 
910 REM NOW COMPUTE THE PRESSURE AT EACH NODE 
920 F2*62.32/144 
930 FOR 1=1 TO NN 
940 P(I,3)=F2«(P(I,2)-P(I,1)) 
&50 NEXT I 
960 PRINT.'PRINT: INPUT "TYPE 'RETURN' FOR NODE ELEVATIONS, HGL' S, AND PRESSURES" ; Ft 
970 PRINT "THE NODE EL'S,HGL'S, AND PRESSURES ARE...":PRINT 
980 FOR 1=1 TO NN 
990 PRINT "FOR NODE #";HMTHE GROUND EL IS" ; P (1, 1) 5 " , THE HGL IS";P(I,2); 
995 PRINT "AND THE PRESSURE IS ";P(I,3> 
bOO NEXT I -88-



4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
END 

fcX*-... -t. NETWORK 
1E-04 
2,7,6 
1200,1000,1200,1000,1000,500,500 
12,12,15,8,12,20,20 
100,100,100,100,100,100,100 
2,1,3,2,5,3 
3,50 
-1.5,-2.5,10,-2,-4,0 
1,3,1 
2,1,2 
3,2,4 
4,4,3 
6,6,5 
4,3,4 
7,4,6 
5,5,3 
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APPENDIX I 
I acute a> 

WET-WELL VOLUME FOR FIXED-SPEED 
PUMPS 

Albert B. Pincince 

A criterion sometimes used for de
termining wet-well capacity is pre
vention of too frequent starting and 
stopping of pumps. A considerable 
amount of heat is generated (hiring the 
starting of a pump motor. This heat 
should be dissipated and the motor 
allowed to cool before it is restarted. 
For small motors that generate little 
heat, there seems to be almost no limit 
as to how many cycles are permissible, 
but operating cycles of perhaps 30 min 
or more are desirable for large pumps. 

The objective of this paper is to pre
sent equations to determine the wet-
well volume required to maintain the 
cycle greater than a given time. This 
volume can be obtained by differentiat
ing the equation for cycle time with 
respect to inflow and setting the de
rivative equal to zero. 

The cycle time, T, equals the off-time 
plus on-time: 

Setting the derivative dT/dQin of Equa
tion 4 to zero yields: 

Qin = 
Q.ut 

as the flow at which the minimum 
pump cycle occurs. The minimum 
cycle time is obtained by substituting 
Equation 5 into Equation 4: 

_ 2V _ 4 7 
""'• ~ n ~ o ^ 

Vin Wout 
where Tm\n = minimum cycle time. 
Equation 6 can be rearranged (1) (2) 
to obtain the volume required for a 
single constant-speed pump to main
tain a given minimum cycle time: 

r 
i i n i n Q o u t 

Multiple Pumps 

T = tull + U. .1 

where 

Equation 7 also applies for the first 
pump of a station with several pumps. 

I = Y/Q 2 -^ similar analysis can be used to deter
mine the drawdown volume for sub
sequent pump combinations. In the 
latter case, let the first pump have a 
capacity of A. Let the second pump 
have a capacity of B. Whenever flow 
is less than A, only the first pump is 
used. When flow js greater than A, 
say A + b, pump capacity equal to 
A + B is provided. 

Two schemes for the operating sched
ules of these pumps can be used. In 
the first scheme (Figure la) with flow-
greater than A, the first pump goes 
on when the liquid level reaches " 1 . " 
Additional capacity B is provided after 
the liquid level reaches "2 , " and capac
ity A -f- B is provided until the liquid 
level is down to " 1 . " At this point 

V = volume of suction well between 
pump start and stop, and 

Q,„ = rate of inflow to station. 
The on-time is: 

U = 17(Qout - <?i«) 3 

in which Q„ut = rate of pump discharge. 
Equations 2 and 3 can be substituted 
into_Equation 1 to yield : 

T = V\Q7n + Qu^ ~Qin J' A 

Captain Albert B. Pincince, MSC, is an in
structor in the Department of Preventive Medicini, 
U. S. Army Medical Field Service School, Hrooke 
Army Medical Center, Fort Sam Iloustvn, Texas. 
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o) SCHEME I b) SCHEME H 

FIGURE 1.—This schematic shows two operating schemes for pumping from the wet well. 

(with flow greater than .-1), the liquid 
level begins to rise again and discharge 
capacity is A. 

In the second scheme (Figure lb), 
the first pump goes on when the liquid 
level reaches " 1 . " After the liquid 
level reaches "2 , " capacity A + B is 
provided until the entire wet well is 
emptied. The wet well again begins to 
fill, but there is no discharge until liquid 
level reaches " 1 , " when the first pump 
goes on. 

The same results would be obtained 
for both coses, of course, if additional 
capacity were supplied by stopping the 
first pump and starting a pump with ca
pacity A + B instead of keeping the 
first pump in operation and adding a 
second pump. 

Wet-Well Volume for Scheme I 

In Scheme I, when inflow is greater 
than A, the second pump is off while 
the water level rises from " 1 " to "2." 
The water level does not go below " 1 " 
because only capacity A is provided 
when the liquid reaches " 1 . " The off-

time, then, is 

(A + b) - A 
Yl 
b ' 

> i V " 
and on-time is the time required to 
drain the volume between levels " 1 " 
and " 2 " : 

*un ~~~ 
v V 

(A + B) - (A +b) 

The cycle is: 

•» 2nd pump 

B - b 

- Yi v-
b + B - 6' 

.9 

.10 

r u 

dT'jnd pump/ 'db to zero one Setting 
obtains: 

b = B/2 

at the minimum pump cycle and: 
•/.I 

12 

as the drawdown volume necessary to 
keep the cycle time of the second 
pump greater than 7',„in;. 

Wet-Well Volume for Sclieme II 

In the Scheme II when flow is greater 
than A, the pumps providing additional 

- 9 1 -
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1% 

capacity B are on to empty both 
volumes " 1 " and "2," and the on time 
is: 

same dimcnsionlcss terms as: 

"Iri^d ' . / r, + r, 

1 + V 

y + 0 1 + 0 + /J 

7". 2nd pump*' 

v, 
•. .18 

Old ft*C# B 13 in which r is a dimensionle^s time. 
From Equation 6: 

The first pump starts when the wet-well 
level reaches level "I," but the addi
tional pumps are off wliile the wet-well 
level reaches level "2." The off-time is: 

7.-;// <> 

, f °" A +b^(A + b)- A */#,.*• 

"<'•' ^ f Vl I Vi 14 

4̂_ 
71 

* m m l»t ; 

19 

After substitution, the dimensionlcss 
time can be expressed as: 

ftflS.} 

The cycle time is Equations 13 plus 14 
and is: 

+ T + 6 + T--15 

To find the minimum cycle time, the 
derivative of Equation 15 is obtained 
and set to zero: 

dT,n d pump r, + v, 
db / ' (B - by 

v, 

' It is convenient 

(A + br 

- p f - 0 . . 1 6 

t to relate influent 
flow and pump discliarge to the capac
ity of the first pump and to express the 
drawdown volume, \\, as a multiple of 
V'i by writing these terms as dimension-
less ratios. Let 0 = b/A be a dimen-
siouless flow and y = B/A be a dimcn
sionlcss pump discharge. Further, let 
V" = Vi/Vi be a dimcnsionlcss draw
down volume. Then Equation 10 
becomes: 

1 + V 1 
0-

0 .17 
(y-Hr (1+0)' 

Equation 15 also can be expressed in the 

T = 4 f Jlnd P"'"P ) 20 
\ * min l»t pump / 

I t is reasonable to let 7\„,„ ;„„ pump equal 
7\nin lit pump, although they need not be 
equal. With this condition, T equals 4 
at the minimum cycle, and Equation IS 
becomes: 

L+Z' + _l_. + E = 4...21 
7 - / 9 1 + 0 0 

A solution for V as a function of 7 is 
sought. Equations 17 and 21 can be 
solved for V and then equated, and the 
resulting equation solved for 7 — /3: 

7 -0 
4,fla + S0 + 50 + 1 

4;i- + 80 + 3 " 

The dimcnsionlcss volume V then can 
be obtained-after rearranging Equa
tion 21 : 

= 3X0 + 4X,(T - 0 - 0'-
0+0* + X + X0 

in which X = y — 0. 
Equation 22 can be solved for values 

of 0 and the result substituted into 
Equation 23. The resulting values of 
V' can, in turn, be related to 7 because 
Y = 0 + X. 

The results of these calculations arc 
shown in Figure 2, in which V, the 
ratio of additional drawdown volume 
to volume for one pump, is plotted vs. 
y, the ratio of additional pump dis
charge to discharge for one pump. To 
calculate additional drawdown volume 
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Vt, volume Vt is Ciilcuhitcd from Equa
tion 7. Next, y is calculated and V 
picked off from Figure 2. \\ is the 
product ViV. 

The wet-well reduction that can be 
achieved by usinj: Scheme II instead 
of Scheme I for multiple pumps is 
illustrated in Figure 3. In this figure, 
the ratio of the additional volume for 
Scheme II (from Figure 2) to that for 
Scheme I is plotted vs. y. (The dimen-
sionless volume, taken from Equation 
12, for Scheme I equals 7.) Figure 3 
shows, for example, that if additional 
pump capacity is equal to the base ca
pacity, the additional wet-well volume 
required for Scheme II is about four-
tenths that for Scheme I. Thus, sub
stantial saving* in wet-well volume 
sometimes can be attained. 

Figures 2 and 3 indicate that the 
equation developed for Scheme II can
not be used for y (the ratio of additional 
pump capacity to base pump capacity) 
of less than one-third because it yields 
negative volumes in this range. This 
limitation should not detract greatly 
from the usefulness of this approach 
because increa^s in pump capacity are 
generally greater than one-third. 

Example 

Let the capacity of the first pump be 
1,000 gpm (3.S cu m/min) and the dis-

4 1 _ t 

s —^-

2 yfif 

1 —£. 

0 -s^' I I I 1 
/ -^D lMCNSlOKLCSS PUUP 0 I9CHAR0C, / 

FIGURE 2.—The dimensionless volume re
quired depends on pump discbarge (Scheme II). 

l: 

I -
. t 

0 I 2 5 4 . 5 

DIMCNSIOMLC39 PUU» DISCHARGE, / 

FIGURE 3.—The ratio of volume increment 
for Scheme II to volume increment for Scheme 
I varies with values for pump discharge. 

charge with the second pump operating 
be 3,000 gpm (11.4 cu m/min). Cal
culate the required drawdown volumes 
for a minimum cycle time of ]() min. 

From Equation 7, the drawdown 
volume for the first pump is: 

Vi = 
(10 min) (1,000 gpm) 

= 2,.300 gal (9.5 cu m) 

For Scheme I, the additional draw
down volume for the second pump 
(from Equation 12) is: 

V, = 
(10 min) (2,000 gpm) 

= 5,000 gal (19 cu m) 

For Scheme II, y, the ratio of the 
discharge increment to the discharge of 
the first pump, is 2,000/1,000, or 2. 
From Figure 2, V is 1.2S and V, is, 
therefore, 1.2S times 2,500, or 3,200 gal 
(12.1 cu m), a reduction of 1.S00 gal 
(6.S cu m) from Scheme I. 

Subsequent Pumps 

A similar analysis can be made for 
the third or subsequent combinations. 
The equations become longer, however, 
and unwieldy. I t is better, in these 
cases, to use a trial-and-error method. 

O / -, • 
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For example, the equation for tin; cycle 
time for the third pump is: 

3rd pump C - c 

V, V, 

well volume reductions can be obtained 
if adequate consideration is given to the 
operating scheme. 

* A+B + c B + c^ c ' 

where C is increase in pump discharge 
by addition of the third pump and c is 
the inflow greater than the capacity of 
the first two pumps combined. The 
terms Vt, Vt, .4, B, and C have been 
determined, and /the others are re
quired. One trial-and-error solution is 
to try a value of V'j and to find the 
corresponding minimum cycle by cal
culating TltA pump ,for various values of 
c. ^Another value^of Vt is selected and 
theprocess continued until the desired 
minimum cycle time is obtained. 

Application 

Economies resulting from use of 
variable-speed drive for pumping units 
have allowed these units to replace 
constant-speed pumps in many in
stances. Among the advantages in the 
former units is that wet-well size can 
be reduced greatly. In addition, flow 
surges, which occur when pumps start 
and stop, are eliminated because the 
discharge matches incoming flow. Con
stant-speed drives still appear to be 
more economical in some cases, how
ever, and should continue to find use. 
Williams and Kubik (3) indicate that 
the constant-speed pumps may be more 
efficient than variable-speed pumps in 
cases where static lift predominates 
over pipeline friction. 

Summary 

Equations for determining wet-well 
capacities to prevent too frequent start
ing of fixed-speed wastewater pumps 
have been derived and presented. The 
equations show that substantial wet-

Appendix 
Notation 

A = pump discharge for first pump 
or pump combination, 

B = additional pump discharge for 
second pump or pump com
bination, 

6 = difference between influent flow 
rate and A, 

C = additional pump discharge for 
third pump or pump com
bination, 

c = difference between influent flow 
rate and .4 -f B, 

QiD = influent flow rate, 
Quut = pump discharge, 
T = cycle time, 
Tm;n = minimum cycle time, 
fcn = on time, 
Uit = oft time, 
V = volume of wet-well between 

pump start and stop, 
Vi = volume of wet-well drained by 

first pump, 
Vi = volume of wet-well between 

start of first pump and start 
of second pump, 

V = dimensionless volume = V./J ' j , 
0 = dimensionless inflow = b/A, 
y = dimensionless pump discharge 

r = dimensionless time, and 
X = dimensionless flow = y — /S. 
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Abstract. With the aid of a linear decision rule, reservoir management and design prob
lems often can be formulated as easily solved linear programing prebk-ms. The linear decision 
rule specifies the release daring any period of reservoir operation as the difference between 
the storage at the beginning of the period and a decision parameter for the period. The 
decision parameters for the entire study horizon are determined by solving the linear pro
graming problem. Problems may be formulated in either the deterministic or the stochastic 
environment. 

INTRODUCTION 

The problem of reservoir management is 
drawing increased attention in this decade 
primarily as a result of the introduction of sys
tems analysis and operations research method
ology to the field of water resource planning. 
The tools of these disciplines are being applied 
to integrate the many functions of a reservoir, 
including flow augmentation, flood protection, 
recreation, irrigation, and hydropower. In ad
dition the techniques are aimed at making risk 
explicit, so that the possible consequences of 
certain patterns of reservoir management are 
clear. Finally the methods are seeking rational 
decision rules or policy functions to simplify 
the decision-making in reservoir regulation. 
The goal then is a set of decision rules which 
are easy to apply and which when applied meet 
the multiple objectives of the reservoir system 
with explicit statements of risk. 

The recent literature on reservoir regulation 
has concentrated on optimization methods in 
seeking policy functions. Thomas and Water-
meyer [19G2] applied linear programing to 
determine the set of releases maximizing the 

expected value of benefits. Loucks [19GS] pro
posed a stochastic linear programing model to 
determine a strategy for releases, given the 
current state of the system and previous in
flow. The objective was to minimize the sum 
of the squared deviations from target flows. 
Input data consisted of an inflow transition 
probability matrix. Reservoir volumes, releases, 
and inflows were restricted to a small set of 
integers to prevent expansion of the problem 
to an unmanageable size. 

Young [1967] applied dynamic programing to 
determine the set of releases minimizing a loss 
function over a long record in which the inflow 
in each year is given. Using the releases sup
plied by the program, he then performed 
several regressions to relate the optimal releases 
to storage and inflows. He concluded that linear 
rules provide as good or better fit to the data 
than more complicated rules, e.g., quadratic or 
cubic. 

Hall ct al. [IOCS] maximized the total return 
from the operation of a single reservoir, where 
returns accrue from the sale of water and 
energy. Inflows during the planning period 
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followed a given sequence, and optimal decisions 
on releases and energy supply were derived by 
dynamic programing. 

Schweig and Cole [196S] considered the con
trol rules for two linked reservoirs allocating 
water to meet a common demand. Dynamic 
programing was utilized to select a set of 
release rules which are functions of reservoir 
contents. Their objective was to minimize the 
total of long-term costs of transmission and 
shortage. Inflows were treated as random vari
ables. 

A recent and thorough review of many of the 
approaches in the last decade is presented by 
Rocfs [196S]. 

THE LINEAR RULE 

A fundamental approach for optimizing re
servoir regulation that has promise for develop
ment and application is the linear decision rule. 
The linear decision rule appears first to have 
been incorporated into an optimization method 
by Charnes et al. [195S1. They treated a prob
lem of refining heating oil to meet stochastic 
weather-dependent demands in which the quan
tity refined in each period was chc.-en to be 
linear in the demand of the previous period. 
U resolvable programing problems were converted 
to linear programing problems by use of this 
device. Young [1967] introduced the rule to 
water resources planning, utilizing the rule in 
a postoptimization analysis of a set of reservoir 
releases. 

As applied to a reservoir, the simplest form 
of the linear decision rule is 

x = « — b 

where x i? the release during a period of reser
voir operation; s is the storage at the end of 
the previous period; and b is a decision param
eter chosen to optimize some criterion function. 
This rule is to be interpreted as an aid to the 
reservoir operator's judgment in selecting a 
release commitment to be honored under normal 
conditions. In exceptional cases, however, the 
actual release during the time period might have 
to differ from the commitment x. For example 
the optimal value of the decision parameter b 
might be negative, so that commitments might 
be made to release more than was in storage 
at the beginning of the time period. Under 
normal circumstances this commitment might 
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be perfectly feasible, but one then would have 
to be prepared to take the consequences of 
insufficient inflow during the period. 

Such a rule would be easily applied in prac
tice and is in addition- intuitively appealing in 
its structure. Additional advantages are de
tailed after the problem formulations. It is 
necessary, however, to point out that a linear 
decision rule might not be the best rule for 
any given system. A power rule, a fractional 
rule, or some combination thereof with dif
ferent rules for each period might yield a 
better value of the criterion function. But such 
rules frequently lead to unwieldy problems that 
are exceedingly difficult to solve. Formulations 
utilizing the linear decision rule on the other 
hand have been examined for mathematical 
tractability and have been found in many cases 
to lead to linear programing problems. 

These linear decision rules can be applied in 
two frameworks: (1) the stochastic framework 
where the magnitudes of reservoir inputs are 
treated as random variables unknown in ad
vance and (2) the deterministic framework 
where the magnitude of each input in a sequence 
is specified in advance, either from historic 
records or from a simulation or synthesis based 
on the statistical properties of the stream flow-
process. 

A RESERVOIR DESIGN PROBLEM 

A dam is to be built to provide a regulated 
outflow for waste dilution, water supply, and 
other uses and to provide pools for recreation 
and flood control. The intent of the dam builder 
is to provide a dependable supply for the down
stream users. To this end he will issue at the 
beginning of each time period a commitment to 
release a total volume of exactly J , during the 
ith time period insofar as reasonably possible. 
The downstream users will consider this release 
commitment in planning their activities for the 
time period; should the actual release either 
exceed or fall short of this commitment, their 
plans might go awry. 

The projected requirements of the down
stream users arc expressed by minimum ac
ceptable releases qt to be supplied in period i. 
To prevent excessive channel erosion, water
logging of fields near the stream, and other 
damage that would occur if the release were too 
large, the release during period i should not 
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exceed the volume / t. Another set of require
ments is imposed by the other uses of the 
reservoir. For recreational and esthetic (insect 
and odor control) purposes it is desirable to 
maintain the storage in the reservoir above a 
lower limit s,nln during all time periods; this 
limit is not critical, and it will be satisfactory 
if the storage at the end of each period lies 
above this level. An additional requirement 
imposed by flood control considerations is that 
a freeboard of at least v4 be available at the 
end of each period for storing floods that might 
occur in the next period. 

The engineering problem is to find an operat
ing policy (a formula for the release commit
ments x,) that causes the requirements to be 
satisfied while minimizing the size, and hence 
the cost, of the dam required. 

DETERMINISTIC FORMULATION 

The example is structured first in the deter
ministic environment. A 20-ycar sequence of 
monthly inputs is postulated. It is required to 
find twelve linear decision rule parameters, one 
for each month of the year, that minimize the 
reservoir capacity required to meet the specified 
performance characteristics with the postulated 
input sequence. The following symbols are de
fined: 

q,, minimum release to be provided in the tth 
month of the year; 

/,, maximum allowable release in the ith 
month of the year; 

t>„ flood storage capacity required at the end 
of the ith month of the year; 

&i, linear decision rule parameter for the 1'th 
month of the year, to be determined; 

c, reservoir capacity, to be determined; 
smin, minimum storage to be maintained, ex

pressed as a fraction a„ of the reservoir 
capacity; 

*o, initial storage in the reservoir, expressed 
as a fraction a» of the capacity; 

r„ postulated reservoir input in the tth 
month of operation; 

x„ release during the tth month of operation, 
to be determined by the linear decision 
rule; 

s„ storage at the end of the tth month of 
operation, to be determined by the linear 
decision rule. 

. • ^ f v ^ . ' / . ' i / - • ; • " ' • • " • ' 

All variables are measured in volumetric units. 
The variables q, j , v, and b are indexed by a 
parameter i = 1, •••, 12 because their values 
in the ith month are the same from year to 
year. The variables r, x, and s, however, do 
not follow a regular cyclic pattern and there
fore are indexed by the parameter t = 1, ••-, 
240. The correspondence between £ and t there
fore is -TL - I —y <J'fi+jd>**-*'•/ 

x = i(mod 12) = remainder of t*/12 

The linear decision rule then is ĵ • , 

' • " t r i v 

-ivZ-i 

The equation of continuity for the reservoir is 

Sj = 4|_i I | T ' i 

Substitution of the linear decision rule into the 
continuity equation yields 

«. ** bi+r, (1)' 

Substituting a similar equation for s,.j into the 
decision rule yields the following expression for 
the release during period t: 

x. = r,_, + £,_, - b, (2)'•'--"-

The engineering specifications on release com
mitments and storage utilization can be ex
pressed mathematically by treating them as 
limitations on the range of decisions acceptable 
at each point in time at which decisions are to 
be made. The constraints tike the following 
form: 

1.1a The freeboard c — s, at the end of 
period t must be greater than vt. 

c — », >"»•. (t = 1, ••• , 240) 

In the deterministic sense this is equi
valent to saying that the decision at the 
beginning of time period t should not 
lead to insufficient freeboard at the end 
of t, given the extremes of the hydrologic 
record. The longer the record in general 
the more severe the observed extremes 
and the lower the probability of violating 
the constraints in practice. 

1.2a The storage at the end of period t must / 
be greater' than the minimum storage / 
required. 

- *2-

«• > «a ( < = 1 . 

?ktx?t ocf_ o.:iA 
'fifrioj > , 2/t£y-

' • W 

,240) 
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In terms of the decision to be made at 
the beginning of period t, the constraint 
limits the control function to those 
linear rules which lead to storages ex
ceeding s„,., given the extremes of the 
hydrologic record. The longer the record 
the smaller the likelihood of observing 
a worse extreme and hence violating the 
constraint. 

1.3a The release in period t must exceed qt. 

x, > qt' (t = 1, •• 

1.4a The release in period 
than /,. 

,240) 

must be 

,240) 

less 

1.16 

1.26 

1.36 

1.46 

c - b, > 

bt> 

6.-. - b, > 

6.--i - bi < 

xt < U ( ' = ! , • 
These last two constraints further limit the 
range of decision rules which can be considered. 

Substitution of equations 1 and 2 into 1.1a 
to 1.4a yields 

+ 

9, — r , . , 

fi-r,., 

(t = 1, 2, ••• , 240) 
This small problem (small in the sense that 
only twenty years of records are considered) 
poses about 960 constraints at first glance. A 
remarkable property, however, is observed in 
the constraiuts, namely that each constraint 
appears in the same form twenty times, except 
for a different stipulation on the right-hand 
side. Of each constraint's twenty appearances 
then, one occurrence should be more restrictive 
than any other. Only this dominant constraint 
need be retained. 

In writing the constraint set in its final form, 
the term «„,,„, the minimum storage, is set equal 
to some fraction of the total capacity and the 
term s„, the initial storage, is some different and 
larger fraction of the capacity r* £. 

«»i . = OmC f\.,.- ''' 

s0 = ao-c (ao > am) 
The constraint set now becomes 

1.2c amc — bi < min (riti,,) 

1.3c 

1.4c 

h-x -

bu -

OoC — 

6.--i -

6,2 — 

a0c — 

6, 

6i 

6, 

6. 

6i 

bi 

> 

> 

> 

< 

< 

< 

1i 

9i 

9i 

/. 

u 
u 

(i = 1, • • • 

— min (r^.,,,,,, 
m 

(* = 2, • • • 

— min (ri2*\2n) 
n 

— max (r , . , , , ,„ 
n 

(» = 2 , • •• 

— max (r,2 ,12 ,) 

12) 

12) 

12) 

1.1c c — 6j > max (r,•„,,„) + v, 
m 

12) 

The total number of constraints is now 50 
rather than the 960 encountered earlier. The 
number of unknowns is 13. The objective is 
to minimize the size of the reservoir 

Minimize c 

The problem is finding the smallest reservoir 
that will deliver flows in the specified range 
over the entire record under the added con
straint of a linear decision rule. The results 
of solution will be the required reservoir capac
ity and the twelve decision parameters con
stituting the decision rule for management of 
the reservoir. 

Constraints l.lc-1.4c ensure absolutely that 
the release and storage requirements would be 
met if this optimal linear decision rule were 
applied to the postulated input sequence. In 
practice, however, future reservoir inflows are 
not known with certainty, so there is no ab
solute assurance that this policy will yield the 
desired releases and storages in the future. On 
the contrary one may estimate that in each 
month i there is a probability of 2/21 that the 
input will lie outside the 20-ycar recorded range 
of inputs. Consequently in the absence of any 
information to the contrary one might expect 
that in each future month the probability of 
violating some of the constraints also would be 
2/21. 

These observations indicate two shortcomings 
of the deterministic formulation. First the de
terministic formulation yields no explicit state-
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merit of the reliability with which the reservoir 
will meet the specified performance objectives 
in the future. Second the reservoir's reliability 
is fixed fortuitously by the specific postulated 
input sequence and is not under the direct 
control of the designer. Chance-constrained pro
graming introduced by Charncs and others in 
the same series of papers that brought forth 
the notion of the linear decision rule can be 
used to eliminate these deficiencies in the de
terministic formulation of the reservoir man
agement problem. 

CHAXCE-CONSTRAIXED FORMULATION 

The example is now restructured in the 
stochastic environment. Flows in particular 
periods are not specified and are known only 
with some probability. That is, the total dis
charge in the ith month of the year is treated 
as a random variable Rt having the cumulative 
probability distribution function 

FMi{r) = P[Ri < r) 
In addition the constraints are now expressed 
as limitations on the allowable risk of violating 
the performance requirements. 

To illustrate the construction and interpre
tation of the chance constraints, the flood free
board requirement is treated in detail. The 
other constraints are formulated in the same 
general way and represent a similar point of 
view. 

The freeboard requirement is that a volume 
of at least v, be available at the end of month 
i for temporary storage of flood peaks. Thus 
honoring the release commitment for month » 
should lead to a storage volume no greater 
than c — v, at the end of the month. The de
cision parameter for month i therefore should 
be chosen so that the inequality 

b< + R< < c - «/, 

is true. 
Now bi, c, and v, are constants by hypothesis 

and Rt is a random variable assuming different 
values in the ith months of different 3-ears. In 
general then unless c — vt — 6, exceeds the 
maximum possible value of R,, the inequality 
occasionally will be false. This inequality more
over does not express the flood freeboard con
straint in a form acceptable to mathematical 
programing algorithms. 

The problem was sidestepped in the deter
ministic formulation by replacing the random 
variable Rt by the postulated input sequence. 
The price paid for this evasion was described 
above. It is perfectly possible, however, to come 
to grips with the problem by recognizing that 
the probability of the inequality's being true 
can be determined. 

The inequality represents the event that 
honoring the release commitment given by the 
linear decision rule would lead to sufficient 
flood storage capacity at the end of the month. 
The probability of this event is given by the 
cumulative probability distribution function of 
the input Rt as follows: 

P[b< + R<<c- v<) 

= P[Rf <c~Vi- b<] 

= FK,(c - f, - 6.) 

If in addition to v, arbitrary values of c and 
b4 are proposed, the designer can get an estimate 
of this probability from the empiric frequency 
function of observed discharges in month i. If 
this probability is close to unity, sufficient flood 
freeboard will be available at the end of the ith 
month in most years, and this choice of c and 
b, will be acceptable from the flood freeboard 
standpoint. If this probability is less than some 
value a,, however, this choice c and 6, does 
not provide sufficiently dependable flood storage 
capacity. The choice of a, of course is the de
signer's. 

It is not necessary to use trial and error to 
delineate the collection of (c, 6.) pairs yielding 
sufficiently reliable flood storage capacity. This 
collection contains"all (c, 6,) pairs for which 
the inequality 

FKl(c — f. - bt) > a, 

is true. This inequality may be called a chance 
constraint on 6, and c. For mathematical pro
graming it is preferable to rewrite the chance 
constraint as its certainty equivalent 

c — P. — 6, > r,^) 

where r,(at) is the 100 o, percentile of the 
input Ri. (That is, r,(a,) is the solution for x 
of the equation F*t (x) = a,.) Thus the admis
sible values of c and 6( must satisfy the con
straint 
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c — hi > r,(a,) -f », 

Although formally identical to the determin
istic formulation, this probabilistic representation 
of the flood freeboard requirement has several 
advantages. Most important the ehanee-con-
strained formulation comes squarely to grips 
with the impossibility of absolutely ensuring 
the specific performance of a reservoir fed by 
random inputs. As one result this formulation 
attaches a statement of reliability to the mathe
matical representation of each performance re
quirement. The level of reliability at which 
each requirement is satisfied moreover is under 
the direct control of the designer. 

A related advantage of the probabilistic 
formulation is that it clarifies the operational 
significance of the decision rule. In the deter
ministic formulation, one might interpret the 
linear decision rule as a specification of the 
actual reservoir outflow during the next month. 
In practice, however, this interpretation may 
lead to confusion when it is recognized that 
excessively large or small inflows during a 
month may make it physically impossible to 
release a specified volume. The probabilistic 
formulation on the other hand emphasizes that 
the linear decision rule is merely an aid to the 
operator's judgment in deciding how much to 
release during a month. If the rule is followed, 
the release commitment will be compatible with 
the reservoir performance requirements with 
a specified degree of reliability. When a conflict 
doe3 arise, however, the operator has the 
ability to adjust the actual release in the light 
of the specific conditions of the case. 

Finally the chance-constrained formulation of 
the performance requirements seems to permit 
more direct economic interpretation of the con
straints than the deterministic formulation. I t 
might be asked for example if there would be 
any advantage in changing the flood control 
performance requirement. The form of this 
requirement suggests that the specified free
board Vt is based on hydrologic analysis of a 
standard design flood and that more detailed 
physical and economic data on the relation be
tween flood damages and the flood freeboard 
are not readily available. Thus the designer can
not immediately interpret the marginal costs 
that the deterministic formulation would as
sociate with changes in the freeboard specifica

tion vi. In the probabilistic formulation on 
the other hand the marginal costs are associated 
with changes in the reliability with which the 
specified freeboard is made available and hence 
with changes in the reliability of protection 
against the design flood. The economic conse
quences of changes in this reliability appear 
clearer than those of changes in the freeboard 
specification. 

The remaining performance requirements are 
now formulated as chance constraints using the 
same technique as in the flood freeboard con
straint. For uniformity the major steps in the 
derivation of the flood freeboard constraint are 
repeated. 

The results 1.16 through 1.46 are used to 
recast the original performance requirements as 
chance constraints. 

2.1a The freeboard at the end of period i 
must exceed vt with probability or,/ 

P[c - 6. > Ri + v,) > a, 

(»' = 1, ••• . 12) 
2.2a The storage at the end of period i must 

exceed «„,„ with probability a>. 

P[bi > «,.,. - Rt] > a, 

( i = 1 . • • • , 1 2 ) 

This statement restricts the solution to 
decision rules which in at least a frac
tion a: of their applications lead to no 
conflict between the release commitment 
and the minimum storage requirement. 

2.3a The release in period t is at least qt 

with probability a,. 

Plo.-i - 6. > <7i - «<-•] > «3 

(t = 1,2, ••• , 12) 

2.4a The release in period » is less than /. 
with probability a.. 

PI°.-. - 6. <n- «,-,] > «4 

( i - 1,2, ••• , 12) 

Constraints 2.3a and 2.4a restrict the 
choice of release commitments in period 
t — 1 to ensure that it will be possible 
with the specified reliability to make 
commitments in the desired range at the 
beginning of month t. 
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Constraints 2.1a to 2.4a do not imply guarantees 
about the storages or flows, nor do they say 
how excessive or how insufficient storages or 
flows may be. The constraints do imply, how
ever, that most decisions made with the release 
rules will not lead to conflicts between release 
commitments and storage and release require
ments. 

These chance constraints open the way for a 
new kind of constraint, not possible in the de
terministic formulation. A single example is 
offered, but the idea should be easy to extend. 
We have already presented a chance constraint 
on low flow (2.3a), and g< must be achieved 
with probability <r, (say .90). We may now but
tress the formulation with a second level con
straint on low flow, indicating that q' (some 
lower value) must be achieved with prob
ability at' (some higher probability, say .95). 
For example the release in the ith period should 
exceed 500 million gallons with probability .90, 
but flows above 400 million gallons must be 
achieved at least 95% of the time. Mathe
matically this second level constraint has the 
same form as the first level constraint. 

The chance constraints 2.1a to 2.4a are con
verted to a more convenient form with the aid 
of the cumulative distribution functions of the 
random monthly inputs R,. 

2.16 FK,(c — 6. - vt) > o, 

2.26 1 - Ffi.(s»i. - K) > *, 

2.36 1 - FRi.,(q. - &<-« + 6.) > a, 

2.46 Fa._x(Ji ~ &.-» + b.) > a. 

Let us suppose that <*i — at = a, = or4 = .90. 
The cumulative distribution functions F*, can 
be estimated from monthly streamfiow records. 
The following symbob are defined: 

«VM, the flow which is exceeded in period i 
only 10% of the time (the value that 
the random variable has less than 90% 
of the time). F«,0v»°) = .90; 

r/10, the value which the flow in period t 
falls below only 10% of the time. 
F . , ( V , 0 ) ~ . 1 0 . 

The explicit statements of the chance constraints 
are 

2. It c — bi > r. 

(• - 1. . 12) 

2.2c amc- b( < r , " ( t - 1, ••• , 12) 

2.3c 6 i- l - 6, > q, - Ti.S" 

(i = 2, • • • , 12) 

bit — bi > q, — ria" 

<W — 6, > qt 

2.4c 6,., - b< < U- r ._ , M 

( t = 2, ••• , 12) 

&»» ~ bt < fi — r , j ' 

«oC — 6, < /i 

Of course the criterion is still 

Minimize c 

The results of solving such a problem are a 
reservoir size and twelve constants, each con
stant determining the release for a given period 
based on the storage at the end of the preceding 
period. 

EXTENSIONS 

There are numerous other problems which 
can be structured in the same general way. A 
brief list includes 

1. Maximize the expected value of the 
average summer flow where a reservoir 
size is specified as well as the minimum 
storage and minimum and maximum re
leases to be reliably maintained. Such a 
criterion might be used in a situation in 
which waste dilution is a principal con
cern. 

2. Maximize thV expected value of the 
average storage or maximize the storage 
that can be maintained with 90% re
liability where reservoir size is given in 
addition to certain operational require
ments. These criteria might be applied if 
recreation were an important use of the 
reservoir. 

3. Maximize the freeboard volume that can 
be maintained with 90% reliability or 
maximize the expected value of the free
board volume where reservoir size and 
operational requirements are specified. 
These criteria would be applicable if flood 
control were a primary use of the reser
voir. 
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4. Minimize the average of the absolute 
deviations of the expected values from 
the target flows in each month where 
reservoir size and operational require
ments are specified. 

Initial investigation shows that most of these 
problems can be treated in the same general 
way as the example problem. 

Another problem whose study can be facili
tated by use of the linear decision rule is an 
economic analysis of low flow augmentation. In 
the example we have shown how to determine 
the minimum size (and hence minimum cost) 
reservoir to deliver a given low flow. We can 
use another linear program to determine the 
least cost pattern of treatment efficiencies to 
meet dissolved oxygen standards downstream 
from the reservoir [ReVeUe et al., 196S]. For 
each low flow a minimum cost reservoir and 
minimum cost treatment pattern may be de
termined. If augmentation is economic, the curve 
of total cost (reservoir and treatment) as a 
function of low flow should show a minimum.. 
Whether this occurs will undoubtedly vary with 
the specific circumstances, but each case can be 
explicitly investigated for the trade off between 
augmentation and treatment. 

A second problem of interest is the considera
tion of systems of interconnected reservoirs, 
where the release from one or more reservoirs 
plus tributary flows constitutes the input to the 
next. A possible criterion is to minimize the 
total cost of building the reservoir system that 
meets certain maximum and minimum flow re
quirements with all releases following a linear 
rule. A prior drawback to such a problem was 
the fixed and concave cost functions which 
reservoirs display. A recent algorithm by 
Walker and Lynn [19G8] has been shown to be 
efficient in locating optimal solutions to mini
mizing problems with fixed and concave cost ob
jective functions and thus would be a promising 
method to apply here. In addition the criteria of 
maximizing or minimizing flow or minimizing 
the range of flows or deviations from targets 
could be utilized. 

CONCLUSIONS 

The use of the linear decision rule in either 
of the two frameworks presented yields a num
ber of distinct advantages and several limita
tions. 

First although the solutions obtained under 
the linear rule may not be optimal relative to 
the class of all possible decision procedures, this 
seems a small concession to obtain an optimiza
tion problem which can be solved with known 
techniques. Young's [1967] results moreover in
dicate that linear decision rules may be as good 
as more complicated rules. In addition the linear 
rule is intuitively appealing and simple to apply 
in practice. Furthermore the dominance rela
tions in the deterministic framework and the 
chance-constrained relations in the stochastic 
framework both lead to optimization problems 
of small size, so that a computer solution is not 
burdensome. 

Another significant advantage of the linear de
cision rule, especially when used in conjunction 
with chance constraints, is its clarification of the 
role of operating policies in optimal reservoir 
design. Computers and mathematical optimiza
tion procedures notwithstanding, we believe that 
reservoir design is a creative art and that the 
quality of the design depends in great part on 
the designer's ability to visualize the interaction 
of all components of the proposed system. Use 
of the linear decision rule in formulating the 
performance requirements either as determin
istic constraints or as certainty equivalents of 
chance constraints gives the designer a precise 
representation of the interaction of operating 
policies and reservoir capacity. It shows in 
particular that the optimal reservoir capacity is 
a function of the operating policy and therefore 
suggests that more attention be given to selec
tion of an operating policy before choosing the 
physical capacity of .the reservoir. 

It is necessary to point out that constraints 
on the range of flows, if there is no considera
tion of flows in the objective function, imply 
that the benefit function associated with flow is 
relatively flat. It is obvious however that a 
rough indication of the benefit function's shape 
is given by the placement of the release con
straints. The device of multiple constraints 
satisfied with different probabilities can be used 
to improve the definitions of any such benefit 
functions in the chance-constrained formulation. 

Finally the element seen as the most ad
vantageous feature of such formulations is that 
risk is made explicit in stochastic problems. 
Reservoirs operated under linear rules based on 
chance-constrained formulations should perform 
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at the levels of certainty that the designer or 
decision maker specifies. 

APPENDIX: AN EXAMPLE PROBLEM IN TH» 

STOCHASTIC ENVIRONMENT 

The reservoir design problem is structured 
here in the chance-constrained programing 
formulation. The problem is modified by the 
additional definition that 

bi = hi — Qi 

Tins definition is included so that the decision 
parameters 6t may take on positive or negative 
values. Most linear programing codes restrict 
solutions to positive variables, making this sub
stitution necessary. 

The problem is to minimize the size of the 
reservoir which meets requirements on free
board, minimum storage, low flow, and high 
flow with 90% reliability for each month. The 
mathematical formulation is 

Minimize c 

subject to 

1. c+ g, - h, > i v ^ + p, 

t - 1, 2, ••• , 13 

2. amc + gt — hi < r . l n 

t = 1, 2, • • • , 12 

3. g, — hi — gi-.x + A,_, > 7, — r ^ , ' 0 

i = 2, 3, • • • , 1 2 

g< — ht — flu + h^ > ?i — r,,"' 

OoC + gi — hx > g, 

4. g. - ht - g,.t + A,_, < /. - r , . ,*0 

» = 2, 3, ••• , 12 

0i _ ht — gn + h,a < ft — r,,' 

Ot* + 01 — *1 < /l 

Tabic 1 lists the data for the problem, in
cluding the tentli and ninetieth percentiles of 
the probability distribution functions of the 
monthly discharges of a stream in Maryland. 
The problem is solved twice: once under the 
assumption that the fractional storage to be 
maintained with 90% reliability is 0.40 and 
again with the fractional storage at 0.10. The 

decision rules and capacities derived from the 
solution of the two problems are listed in 
Table 2. 

The reader is reminded that not every reser
voir design problem has a feasible solution. It 
would not be possible for example to deliver 
outputs reliably and consistently in excess of 
inputs. In this connection it is instructive to 
examine the first twelve constraints of set 3. 
Since all these constraints are to be satisfied 
simultaneously, adding them yields the follow
ing necessary condition for the existence of a 
feasible solution : 

11 t i 

Z * < E '." 
. - 1 . - 1 

That is, there exists no reservoir meeting the ; 
specified performance objectives under a linear ! 
decision rule unless the sum of the desired re- ' 
leases is less than the sum of the monthly inputs , 
occurring at the corresponding desired reliability \ 
level. Although most linear programing codes i 
automatically check for the existence of feasible , 
solutions, this necessary condition is a natural j 
one for the designer himseif to keep in mind. I 

To appreciate better the significance of this 
necessary condition, suppose the monthly reser-

TABLE 1. Data for the Example Problem 

(a) The 10 and 90 Percentiles of the Probability 
Distributions of Monthly Flows 

Month 

» - 1 
2 
3 
4 
5 
6 
7 
8 
0 

10 
11 
12 

Sum 

of the time, r, •", 
billion gallons 

- M l 
4.54 
6.29 
5.54 
4.89 
3.82 
3.19 
2.54 
2.18 
2.54 
2.73 
3.57 

46 24 

of the time, r, ••», 
billion gallons 

14.46 
15.50 
18.40 
16.82 
14.92 
12.00 
12.01 
12.59 
9.62 
8.82 

10.19 
11 55 

156.88 

(b) Operational Requirements 

a, - 0 CO 
qt m, q . 3.8O Problem 1: a, - 40% of capacity. 
/* - / - 16.00 Problem 2: o« - 10% of capacity. 
9, - r - 4.00 
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TABLE 2. Linear Decision Rules 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Xx 
Xt 
X, 
X* 
X, 
X, 
X, 
X, 
X . 
Xio 
Xxx 
X„ 

Problem 1 
ft, -

- S „ 
- S , 
m S, 

= s, 
= s, 
- s , 
- s , at S7 

= s, = St 
— Sio 

-s„ 

.40 

- 9.68 
- 10.29 
- 10.39 
- 12.88 
- 14.62 
- 15.71 
- 15.73 
- 15.12 
- 13.86 
- 12.24 
- 10.98 
- 9.91 

X, 
X, 
X, 
X, 

x, 
xt X, 
A". 
X, 
An 
Xxx 
X„ 

Problem 2 
A, - . 1 0 

- S „ + 2 . 1 6 
- Sx 4-1-55 
- S, + 0 . 8 1 
- S, - 1.65 
- S, - 3.39 
- S, - 4 . 4 8 
- S, - 4 . 5 0 
= S, - 3 . 8 9 
- S i - 2 . 6 3 
- S, - 1 . 0 1 
- S i . + 0 . 2 5 
-Sxx + 1 . 3 2 

Required 
capacity 33.700 22.467 

All units are billion gallons 

voir inputs occur in a time-stationary Marko-
vian normal autoregressive process with corre
lation coefficient p. If 90% reliability is desired, 
the necessary condition for feasibility is that the 
sum of the desired releases be no greater than 
12/* — 15.60-. When p = .5, however, the total 
annual input is normal with mean fu = 12/i 
and standard deviation o\» = 5.65a. The maxi
mum feasible annual release therefore is pA — 
2.S5o\,; the probability that the annual input 
will exceed this volume is about 0.99S. Opera
tion at 90% reliability in each month thus yields 
a maximum feasible annual release far smaller 
than the reliable annual input. On the other 
hand the system can deliver the maximum 
feasible annual release even during a long se
quence of very low (tenth percentile, in this 
example) inputs. It is expected that use of 
longer time intervals would yield greater maxi
mum feasible releases at the same reliability. 
(In this case, however, the release rule gives the 
operator less guidance.) Because of these trade 
offs among reliability, time interval, and feasible 
release the designer must give careful considera
tion to his actual requirements for reliability and 
decision point spacing. 

A similar analysis of the fourth constraint set 
yields a further necessary condition for the 
existence of a feasible solution 

13 I t 

E/<> IrrM 
<-• <-> 

Finally for the high flow and low flow con

straints to bold simultaneously in period t it is 
necessary that 

An interesting feature of the result is that 
the differences between the capacity of the reser
voir and the minimum storage to be maintained 

-are the same for both problems 

Problem 1: a„ = 0.10 

C - 0.10c = 22.467 - 2.247 =20.220 

Problem £: o . = 0.40 

c - 0.40c « 33.700 - 13.480 = 20.220 

That these quantities are exactly the same is 
not surprising, since 20.220 billion gallons evi
dently represents the storage volume needed to 
maintain the desired control of releases. We 
tentatively call this volume the control volume 
K. For this problem, it seems to be the value 
the reservoir capacity would take on if the 
Storage required at the end of each interval 
exceeded zero with 90% reliability. If this result 
were general, an immediate benefit would be 
considerable simplification of analysis of the 
solution's sensitivity to minimum storage. 

Assume the control volume can be determined 
by a single run. Recalling that am is the frac
tional storage maintained with 90% reliability, 
we can write 

K + OmC = C 

or 

c = K/{\ - a.) 

Thus for any specification of am{am < a,) 
different from the original specification, the 
reservoir capacity could be quickly calculated, 
assuming that other particulars of the problem 
remain the same. 

Although constant control volumes have been 
observed in all of the several cases studied thus 
for, our experience is not sufficient to suggest 
that a constant control volume is a general 
result; we feel that further research is needed 
on tliis phenomenon. 

Acknowledgment. Publication of this paper is 
authorized by the Director, U. S. Geological Sur
vey. The authors wish to thank Mr. James Janis 
lor his assistance in the preparation of the ex-

" ample problems. 

-104-



Linear Dedt tide 777 
REFERENCES 

Charees, A., W. W. Cooper, and G. H. Symonds, 
Cost horizons and certainty equivalents: an 
approach to stochastic programming of heating 
oil. Management Sci, 4(3), 235-263, April 1958. 

Hall, W. A., W. S. Butcher, and A. Esogbue, Op
timization of the operation of a multiple pur
pose reservoir by dynamic programming, Water 
Htsour. Res., 4(3), 471-470. June 1968. 

Loucks, D. P., Computer Models for Reservoir 
Regulation, J. Sanil. Eng. Div., Amer. Soc. 
Civil Engrs., 94(SA4), 657-669, August 1968. 

ReVelle, C, D. P. Loucks, and W. R. Lynn, 
Linear programming applied to water quality 
management. Water Resour. Ret., 4(1), 1-10, 
February 1968. 

Hoefs, T., Reservoir management: the state of 
the art, IBM Washington Scientific Center 
Publ, 320-350S, July 1968. 

8- eig, Z„ and J. A. Cole, Optimal control of 
aked reservoirs, Water Resour. Ret., 4(2), 

479-498, June 1968. 
Thomas, H. A, mad P. Watenneyer, Mathemati

cal models: a stochastic sequential approach, 
in Design of Water Resource Syttems, Maass 
et al. Harvard University Press, Cambridge, 
Massachusetts, 540-569. 1902. 

Walker. W., and W. Lynn, Adjacent extreme 
point algorithms for the fixed charge problem, 
23 pp., mimeographed, Cornell University, 
Ithaca, New York, 1968. 

Young, G. K., Finding reservoir operating rules, 
/ . Hydraulic* Div., Amer. Soc. Civil Engrs., 
W(HY6), 297-321, November 1967. 

(Manuscript received February 3, 1969; 
revised May 5, 1969.) 

•105-

"^'W^i 
•... J V ' ? 

'i- •%-jir 

'^V'f^i? 

i t ': 

it* 
& * : • -
ihf m 


