262.2

85 WA

ISP-NEGOMBO Sue $L_{\text {and }}$

1

 I

IN: OFOH \quad ism $=2645$
LD: 262.285 wa
ISP-Negombo, Department of Architecture - Berlageweg $T=2628 \mathrm{CR}$ Delft kabinet 13.05 - Phone (0) 15-781363

Negombo, june 1985.

Introduction.

In cooberation with the Negombo United Peoples Organization (NUPO), a team of dutch students came to Negombo to accomplish during four months a study on Munnakkare.
The aim of this team, ISP- Negombc, is to assist as much as possible the low-income groups on Munnakkare in order to improve the situation of these people within the limitations of a study-project. It is important to keep in mind that another leading aim of an ISP is the study purpose.

During the rich experience of working together with the St. Feter and St. Anthony societies in a community develonment project, the ISP-Negombo focussed the principal issces which have to be tackled for further improvement of the living standards and the development of the area.
Bearing in mind the strong tradition in Sri Lanka for building ones own house and the custom of Shramadana or the capacity inside the community to help each other for searching solutions, plus taking into account the high level of organization owned by the NUPO groups, it was decided to give an answer to existing problems, in the form of a booklet with technical solutions and practical advices.
This manual, written in a simple way, accessible to any kind of reader and conceptually easy to handle over, surveys various technical aspects and considerations that must be present when improving the revalue of local, indigenous materials and traditional construction crafts.

It was found that nearly every technical solution applied to solve a problem or to avoid a future nuisance, was
lacking the knowledge of the cause which originated the problem. Also the technological insight in the solutions and the economy and efficiency of a sound final result were missinu.
Analysing the causes and checking the effects, it was discovered that attempts to solve problems were confronted with:

- a lack o: knowledge concerning the use of materials and the application of constructing techniques and buildi=g methods.
- ignorance of the capacities, quali iies and possiblities of the materials and their uses, which results in spoiline, wasting and losing these, with the consequence of negative, economic effects.
- a wrong application of techniques which can imply dangerous consecrences.
- a misuse of tools and building methods which originates waste of time and energy.
A survey on cause-effect was held on every issue and resulted on proposals based upon the criteria of low-cost, available materials, traditional techniques and, to a certain extent, autoconstruc $\underset{\text { ion }}{ }$
Discussions, interchange of concepts, ideas and disciplinary knowledge among the nembers of the team took an important place in the process.
Taking into account the target group whon these manuals are pointed to, it was considered the best to use simple, attractive and illustrative drawings, accompanied by complementary texts and explanations.

These manuals do not pretend to matoh self-help manuals, but can be considered as a preliminary stage to initiate the process to reach an aided self-help programme. This contents advices, a more effective use of techniques and materials and simple systems to be carried out, even by non-skilled laboures. It lacks however the intensive explanations, the exhaustive detailing and elaborated

1 1 1 1

demonstraion of systems and methods indispensable to build or construct any element; all these inherent properties to a self-help manual.

The scope of these manuals was prefixed by the ISP-Negombo in view of the limitation and constrains derived from time and capacities.

For the NUPO as main involved organization the manuals might be an instrument to support and strengthen the organization, initiating a new activity in their programme to activate the social consiousness and unity among the participants. Even these mew....s where meant to reach all the NUPO menbers and the $S t$. Peters and St. Anthony communities in particular, then it was conceived with an eye on the NUPO leaders and the skilled laboures and craftsmen belonging to the organization. They would train and monitor the laymen, spreading their abilities.

There are two versions of the manual, one in En=lish and one in Sinhala. The first one will be distributed to NUPO leaders and to the governmental instancies and other organizations which have had an incidence in the work and process of the ISP-Negombo in Sri Lanka. The Sinhala edition is meant for the target group, as already described above, as well as for the Sri Lankan people who could be interested in reading or using it as a guideline.

ISP-Negombo

Jitske Calsbeek
Mirta Dobson-Demare
Erik Hoeflaak
Jet de Jonge
Allert Schokker
Dirk v.d. Woerdt
Willem den Boer
Bart de Bruin

Urban Planning
Architecture
Physical and Technical Planning
Environmental Planning
General Civil Engineering
Civil Engineering, Hydrology
Sanitairy Engineering
Sociology of Non-Western Societies

1. Introduction
2. Improvement of public taps
3. Communal taps and bathing/laundry places
4. Wolls
5. Rajnwater catchment

1

WATCRSUPPLY FOR LOW INCQME ADEA'S.

1. Introduction.

In low income and squatter areas, people will not be able to obtain a houseconnection for watersupply in the near future. Reasons for this are low income, the non permanent character of tho houses, difficult accessibility or the absence of a rlistribution system at all. In low income area's with a distribution syotem, public standripe vatersupnly is an intermeriate step in development tcrards a houseconnected watersupply system. At the moment most public trps are situated fext to the road. Lack of responsibility to these taps, has the consequence of bad maintenance and spill of water. Often the surroundings of this kind of taps become dirty mudpools, and no bath and laundry facilities are available. Even more wastage will occur with the possibility of 24 hour watersupply in the near future. Because of this, the municipality seems not to be very willing to place new public taps. In this manu 1 low cost options for improvement of the existing situation are given.
The existing tapsupply is sufficient to obtain water for drinking purposes on most of the places. Still it is important to improve the dirty surroundinps of some taps. These surroundinos are very nice bathing Dlaces for the piss, but a serious health danger for the users. An example is given for a small improvement. For bathing and launcry purposes, the existing situation is iot sufficient. People in Sri Lanka use large amounts of water for bathing, and the existing public tap supfly cloes not meet the necds of the people Eor bathing according to their habits. The existing taps are crowded and the discharge is insufficient due to low pressure and limited supply. According to recent municipal by-lars, it is even forbidden to bathe or
wash next to a municipal tap, so the water has to be carried home, before it can be used.

To improve this situation different low cost options are cliscussed.

An altcrnative for the public taps along the road could le cummunal taps within a community. One standpost could be built by, and serve about 10 to 20 families. A few possible designs and a cost estimation are given for taps with small bathing/laundry facilities. For payment some arrangements with the municipality could probably be made.

For the supalement of insufficient public tap watersupply, small handdug wells can be used for bathing and laundry purposes. In low lying areas groundwater will be too braclisch, but at a bit higher level the waterquality can be appropriate, although this will require some more soap. The construction of two kinds of wells is given, as well as a cost estimation. Rainwater also can be used as a supplement to tapwatersupply. Although Negombo is situated ia the wet zone, some dry periods occur every year. Solutions given here are only meant for supplement of tapwatersupply in rainy periods. Storage for a longer time requires rather large tanks and provisions to keep the water clean, which solutions are beyond the aim of giring low cost alternatives.
2. Improvement of public tap sites.

The existing taps can be improved by constructing a small $9^{\prime \prime}$ rubble platform, filling up the surroundings of the tap, and connection of the tap to sufficient drainage. Normally the municipality should introduce such improvements. However in absence of these measures the users may try to raise some money and implement the work by themselves. On the next page a possible design for the improvement of a public tap-site is given.

3. Communcl iaps and bathing/laundry places.

In rlensely popilated. arcas, it might be difficult to find a suitable place for taps. Preferable they must be situated within a community, in order to insure sufficient reachability for everyone, and a proper maintenance. Important is the possibility for drainage. the The tap-site must be connected to a main drain, or situated near open vater.
There are different possibilities for communal taps, depending on the number of users, the available space and the available money.
A standpost with one single tap should be preferable uscel by not more than 60 people, that is 10 households of 6 persons each, especially in areas with low water pressures and limited supply.

SINGLE TAP standopost

When there is not enough space or money to build more communal taps, a standpost coc:ld be provided with more taps.

Twin tap standpost

FOUR TAP STANDPOST
To avoid crowding of the taps, it is advisible to install not more than four taps per standpost. An economical solution, without the risk of too crowded taps, is a twin-tap standpost. This can be used by 20 households (120 persons).

1

When the tap is only used for collecting water to talce home, two small platforms on both sicice of the standpost will do.

TWIN TAP STANDPOST WITH TWO SMALL PLATFORMS

If people are used to bath and wash near the tap, the standpost could be provided with one small platform for collecting the water, and one bigger platform for bathing and laundry purnoscs. On the big platform brick blocks could be placed, which can be used for doints the laundry.

I

Construction of the taps.
T’:2 scil uncler the cn:astnirtion has to be well cor-olidated sandy soil, to prevent sagging of the structure. A base of $1^{\prime \prime}$ layer mortar 1:10 cem.-sand should be implemented before building starts.

For conitruction of the platforms $9^{\prime \prime}$ rubble maconry in nortar 1.5 cem. -sancl can be used. Under the taps a $9^{\prime \prime} \times 9^{\prime \prime}, 2^{\prime \prime}$ thick potrest is provided. The standpost is constructed of briclework mortar 1;4.cementesand. All the surface must be covered with $3 / 4$ " renderinf $1 \cdot 2$ cem.-sand with smooth finishing of cement float. The sloping of the platforms has to be min. 1:40 to suit drainace of the site.
The diameter of the supply pipes depends on the pressure in the distribution pipes. When there is low pressure, the following diameters are recommended to ensure headlosses less than one metre in the pipes (with a maximum discharge of $16001 / \mathrm{h}$).

Distance
1 to 10 m
10 to 25 m
25 to 100 m

100 m and more
min. diameter
3/4"
$1^{\prime \prime}$
1.1/4"
1.1/2"

3/4" taps are recommended for sufficient discharge.
In the sericepipe a valve stopcock has to be installec', to givo the possibility to shut 0^{-f} the waterflow for repairs. To protect the stopcocli a stopcookchamher is needed, which also insures an ensy accesibility. When a watermeter is used, it may be installed in the same pit.

SURTACE BOX

$-4^{4^{4}+2^{\prime}-4^{4} 4^{4}+}$
STOPCOCK CHAMBER

TWIN TAP STANDPOST WITH ONE SMALL AND ONE BIG PLATFORM

$3^{\prime}-4^{\prime \prime}$

1

Dill of quantities and cost estimation. Based on labour costs for works of $1 \mathrm{~m}^{3}$ and more-.

Small improvement of a public tap.

Item	Tuantity	Anount $(R s .)$		
excavation	0.09 cbs	3		
1" lny-r mortiar $1 \cdot 10 \mathrm{cem}$. sind	0.01 cbs	11		
Q" ru`ble masonny in mortar 15 cem. sand	0.04 cbs	83		
```4-1/2"x2" th. brick la,-er along the sicles```	0.02 sgrs	12		
```3/4" rendering 1:2 cem. sand with smooth finishins of cement float```	0.12 sqrs	42		
	total :	s 151.00		
Trin tap standpost	With two platforms		With one s one big pla	nal1 anc tform
:---:	:---:	:---:	:---:	:---:
Item	へuantity	Amount (Rs.)	?uantity	Amount (Rs.)
excavation	0.07 cbs	7	0.34 cbs	34
1" layer mortar 110 cem. sand	0.02 cbs	22	0.07 cbs	77
9" rubble masonry in mortar 1:5 cem. sand	0.12 cbs	250	$0.61 \mathrm{cbs}$	1269
4-1/2x2" th. brick layer along the sides	0.03 sqrs	18	0.08 sqrs	47
standpost in brickwork mortar 1:4	0.02 cbs	29	0.02 cbs	29
blocks in brickwork mortar 1:4			0.08 cbs	116
```3/4" rendering 1.2 cem. sand with smooth finishing of cement float```	0.34 sqrs	119	1.17 sqrs	410

## $1$

Comment on the cost estimation
The costs of materials and labour for a small improvement are not much, but in practice it will be more, because it is not possible to buy such small quantities of materials. Also $25 \%$ has to be added for labour when using materials below one cube.
Possible solutions are the use of surplus materials from house building, or the improvenent of more taps in one time.

Cost estimation for a twintap standpost for the use of 20 households (without pipes and costs for the connection):

Platforms and standpost.

- with two small platforms: Rs. 445.00
- with one small/one big platform: Rs. 1982.00

2 taps:
stopcockchamber:
valve stopcock:
watermeter:
municipal fees:

Rs. 130.00
Rs. 100.00
Rs. 55.00
Rs. 500.00
Rs. 150.00
Rs. 935.00

That makes in total Rs. 1380 (two small platforms) or Rs. 2917 (ivith one small/one biE platform) for 20 households. One household has to pay Rs. 69 or Rs. 146 .

Prices for the PVC pipes per metre:

$3 / 4 \prime$	Rs. 14.75
$1^{\prime \prime}$	Rs. 20.90
$1-1 / 4^{\prime \prime}$	Rs. 24.90
$1-1 / 2^{\prime \prime}$	Rs. 36.95



Iaintenance and financing.
Normally the municipality does not charge for the use of public taps. However when a community chooses for a cummunal tap it will be a private connection. Therefore a watermetter will be installer. -
The payment of the water will depend on the used quantity.
The aim of the municinality is to let people pay extra for wastage of water. Conform this aim the monthly bill for a house connection with a watermeter is composed as follows: First 10.000 litres per month: 20 cts per 1000 litres Second 12.000 litres per month: 75 cts per 1000 litres In exess of 20.000 litres per month: Rs. 1.75 per 1000 litres

For a household of 6 persons with a daily use of 100 litres per person, this amountsto30x6x100 $=18.000$ litres per month. The payment for this quantity will be $10 \times 0.20+8 \times 0.75$ which makes Rs. 8.00 per month per household. The use of more water will entail relatively higher costs. For instance for a daily use of 170 litres the bill will be Rs. 28.00 per month per household. In case of 20 households using one communal tap, 20 times more water will be used. Therefore an arrangement must be made with the municipality. A solution could be, payment as for 20 seperate connections:

First 200.000 litres per month 20 cts per 1000 litres Second 200,000 litres per month: 75 cts per 1000 litres In exess of 20.000 litres per month: Rs. 1.75 per 1000 litres The financing of the use of water, and also the maintenance of the tap, has to be armanged within the comrunity. The best way to organize this is to choose a few responsible members who will take care of the maintenance and the collection of payments.
$\vdots$

$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
4. Wells.

Small handdug wells can be used by a few households together. Although little brackisch water can be used for. bathing and laundry purposes, wells on Munnakkare can only be situated on the $h$ jher parts of St. Nicolative, where enough rather fresh water is available. The depth has to be limited, to avoid penetration of salt water in the well. To find out i.f a place is suitable, information can be fathered from neighbours with - -rell, or by diggiñ a test hole. A well has to be situated on a safe distance of 30 metres, and uphill of posiible sources of pollution i̇re latrines.

To keep the water clean, fresh water fish and frogs can be used, which eat larves. and mosquito's. Besides this, waterplants can be used to purify the water.

Design and construction of a handdugwell.
For the construction of the lining of a well different materials can be used: masonry, baked clay rinfs or precast concrete rings. Small wells with an ino ner diameter of 3 feet car be constructed with balced clay rings. Those wells are called in sinhalese "urulcator". The bottom of the lining, the wellring, should be made of a "milla" wood ring, which is very durable beneath waterlevel.

'URUKATER'

When washoing anc bathin,
talies place next to the wall, a platform wit'r riadnage is important, to prevent dirty water polluting the well.

Herefore a platform of rubble masonry with $3 / 4$ " ren-
 dering is provided.
An example is given for a three feet dianeter well with a brick lining and a two feet platform (7 feet diameter) and a 6" draincutlet.


BRICK WELL

## 【

For this well a cost estimation is made.
To compare different possibilities, a rough cost estimation for a 3 feet urulcater, a 3 feet and a feet brick well and a $3 \frac{1}{2}$ feet well with concrete rings are also given later on.

To construct the well an excavation has to be made down to the groundwater table. After placing the wellring, the lining can be build upon the ring.

The further construction con be done ky excavation from the inside, removing the ground at the bottom. Drining becomes neccesary to work below the groundwater table. The well lining can be constructed above the ground, as the well sinking processes. The head of the well-lining should extend about $1 \frac{1}{2}$ feet above groundlevel, to protect the water against pollution. On the bottom seasand or eraded gravel can be used as *a a filter for incoming water.

excavation till oroundwaterlevel

sinking of the well by EXCAVATION FROM THE inside



```
Rourh cost estimation of different altcrnatives for
6'-8" deep wells.
```

Urukater: diameter $3^{\prime-0 "}$
excavation
milla-wood wellring
8 clay rings of 10 inch high, connected with mortar 1:3 cem.-sancl
Together about Rs. 1000 (with a plationm, about ?s. 1800).

Well with brick lining diameter $3^{\prime \prime}-0^{\prime \prime}$
excavation and lining: mat. Rs. 500, lab. Rs. 200
reinforced wellring: mat. Rs. 275, 1ab. Rs. 125
platform, 2'-0": mat. Rs. 600, lab. Rs. 200
Total about Rs. 1900

Well with brick Iining: diameter 4'-0"
excavation and lining: mat. Rs. 675, lab. Rs. 275 reinforced wellring: mat. Rs. 425, lab. Rs. 100 platform, $3^{\prime}-0^{\prime \prime}$ mat. Rs.1175, lab. Rs. 450

Total about Rs. 3100

Yell with prefab concrete rings and brickwork head: diameter $3^{\prime}-6^{\prime \prime}$
excavation: Rs. 100
two concrete rings, $2^{\prime}-0^{\prime \prime}$ high, $2^{\prime \prime}$ thick, mortar 1:3 cem.-sand, tinree times circular wrapped reinforced: Rs. 1000
brickworlk head, $2^{\prime \prime}-8^{\prime \prime}$ high: mat. Rs. 250, 1ab. Rs. 100 Total about Rs. 1450 (with a platform, about Rs. 2500).
5. Rainwatercatchment.

The only way to ccllect rainwater in densely populated areas is roofcetohment. Tiled roofs, and roofs made of asbestos cemert sheeting are suitable for this. Therefore normally only brick houses have the possibility of collecting rainwater in this way. The runoff from the roors, can be collected in a gutter, which should slope evenly towarc's a downpipe. A connection of the two gutters on both sides of the house to one downipe should be provided to collect the water in one storagetank.


Dust, dead leaves and bird droppings will accumulate on the roof during dry periods. These will be washed of by the first new rains. Therefore the first w-ter from each shower should be diverted from the clearwatertark. This can be done by a removable downpipe.


## 1

An other arancement can be made by a seperate tank which recieves the first dirty water.


When the water reaches the height of the horizantal connection in the clownpipe, the remainder of the water will flow into the cleamatertank. The clearwater tank should be protected against pollution from outside with a removable cover.
The roof and guttering should be cleaned regularly, to safeguard the quality of the collected rainwater. The quantity of rainwater that can be collected is dependent on the size of the roof surface and the local anual rainfall. The size of an average house is about $30 \mathrm{~m}^{2}$. Aboui $20 \%$ of the water gets lost due to evapora..
tion and ather losscs. Assuming an anual rainfall of 1500 mm (the average in Negonbo from '81-'84), the amount of rainwatcr which can be collected in a year can be estimated as
$30 \times 0.8 \times 1500=36.000$ litre per year, or $100 \mathrm{l} / \mathrm{d}$ on average.

When rainwater is used as a supplament to piped watersupply, storage volume can be limited and a wooden vessel, oil drum or other suitable container can be used.
People often use a brick masonry storagetank of about 0.5 to $1 \mathrm{~m}^{3}$, which can also be used for rainwaterstorage. For longer storage of rainwater it is very important to keep the water clean and cool. This can be provided by a covered tank under the ground. 1 mportant is that the bottom of the tank should be above highest groundwater level, to prevent floatin- up of the tank. This last solution is ra'her e::pensive, and is ’eyond the aim to give low cost alternatives for a supplemeat of piped watersupply.

Bill of quantities and cost estimation.

Gutters and dowapipes.

6" half round PVC gutters, fixed with
Rs. 30.00
aluminium brackets at approx. $2^{\prime \prime}$ centres, fixed
per l.ft. with brass screw nails, including end caps and specials.

Downpipes 3-1/2" diameter (PVC), fixed with bends and specials $1^{\prime \prime}$ away from face of walls

Rs. 30.00
per 1.ft'. to wooden plugs embedded in wall

St'oragetank (4'x3'x3'). with dirty water tank (1'x1'x3').

Item	Quantity	Amount (Rs.)
1" layer mortar   1:10 cem.-sand	0.02 cbs	22
bottom in two layers brickwork mortar 1:4 cem.-sand	0.11 cbs	160
walls in $4 \frac{1}{2} "$ brickwork mortar 1 -4 cem.-sand	0.50 sqrs	293
1/2" renclering 1:2   cem.- sand with smooth   finishing of cement   float for all the sur-   face	1.31 sqrs	306



\section*{| 1 |
| :--- |}













 かする

 420．








## $1$






 Хิల




 Шఇికx



 Шలిえे $x$ cxx










## $1$

## 3. U.

ऊ





ఠโి जع





## single tap standpost

Кఅనక



TWIN TAP STANDPOST


FOUR TAP STANDPOST



 TWIN TAP STANDPOST WITH TWO SMALL PLATFORMS






## 










g
308 1- K
, 10-25
,, 25-100
, $100-\omega \infty 000_{2} \mathrm{C}$

## goo

3/4"
$1 "$
1.1/4"
$1.1 / 2{ }^{"}$


 ट



## SURTACE BOX



STOPCOCK CHAMBER

## $=0$




## $1$




$\mathrm{O}_{2}$ ¢	（90）		Gec（ $\sigma_{2 .}$ ）	
cuco oximo	0.038		3	
1＇毋 ఠcిgō	0.018		11	
	0.048		83	
Occci ござつ				
	0.02 రิరึఱ		12	
3／4＇noos fo 1：2     	0.12 อठ¢		42	
	90 00\％		． 151.00	
	yondx	（10\％）	903000	（10）
Guxe 0280	0.078	7	0.348	34
$40{ }^{2} 1$ శा విష్రి	0.028	22	0.078	77
9＂	0.128	250	0.61 万 1269	
41／2＂×2＂				
	0.030800	18	0.08 อర¢	
 	0.028	29	0.028	29
				116
$3 / 4^{\prime \prime} \text { هరరગర్zర } 1: 2$  				
	水 $\sigma_{2}$ ．	445.00	すごめnை	1982．00

## I

## 







ఆరిदిm


бъ. 1982.00

Пరుల 2 :

oc unamoro
రల פึరంద :

62.130 .00
or. 100.00
$\sigma_{\imath}$. 55.00
$\sigma_{t i} 500.00$
62. 150.00
6. 935.00





$3 / 4^{\prime \prime}$	$\sigma_{2} .14 .75$
$1^{\prime \prime}$	$\sigma_{2} .20 .90$
$1-1 / 4^{\prime \prime}$	$\sigma_{2} .24 .90$
$1-1 / 2^{\prime \prime}$	$\sigma_{2} .36 .95$

## $1$

2000ino wo ger




 ¢ Тנల









 $\delta \partial \infty_{2} \delta \omega$.







4. E .




















'URUKATER'

## $1$

 ひCN दू
उิscri Q










 カળ Cૃ
 Ẽ

excavation till oroundwaterlevel


SINKING OF THE WELL BY EXCAVATION FROM THE inside


## む̌acg 14




O20 ETOMCS	goxau	$\sin \left(\sigma_{1}\right.$.
$60 x 08080$	0.47 尔	284.
41／2＂		
	0.63080	284
\＃̧c $\hat{\mathrm{Q}}_{l}$ 己ेD	0.79 080	225
	cent $\sigma_{2}$ ．	509.00

Co．
$D_{2}$ D．
3／8＂argit 4

60025
goxx
38 โิต ¢
35 दิه ¢
$0.05 \%$
O्रO merso
$\sigma_{2}$.
271.00

O2，OUODN



0.15 \％

ニबजण
0.278392

41／2＂x2＂ $\operatorname{ws}$

0.04 อठळ 18
 $\partial_{2} \mathrm{e}$ ฉदว t్రદ $\hat{\partial}_{2}$ दे0

0.560 రై	$\frac{160}{600.00}$


$=0 \mathrm{O}$
Guser nixio



ต










Cิ- هُ
Эo coso $\quad \sigma_{l} .3100$







## I

5．D̨














## 1












$30 \times 0.8 \times 1500=36,000(00600$ (0. $)$

 OJêon x $x$








D®C \&の

	02.30 .00
ज	ถి 18



¢



## I


$\mathrm{O}_{2} \mathrm{Q}$ どぁかに yODOXO 3ec $\left(\sigma_{2}\right)$

 0.028 ..... 22

 0.118 ..... 160


 0.50080 ..... 293

1.31 อठも306
0080 ..... $\sigma_{2} .781 .00$


