MINISTRY OF 'LOCAL GOVERNMENT. HOUSING AND CONSTRUCTION

 matiomal: Water supply and drainage boardSRI LANKA

262.4

89 WA

MANUAL D-8

WATER SERVICE CONNECTIONS

March 1989

WATER SUPPLY AND SANITATION SECTOR PROJECT (USAID SRI LANKA PROJECT 383-0088)

MANUAL D-8

WATER SERVICE CONNECTIONS

March 1989

```
LIPRAPY, INTERNATIONAL REFERENCE
OW+G= GR OGDUUNTY WATER SUPPLY
```



```
F.%:....
Tel. (W/U a!4! !1 ext. 141/142
Rv: 15n=6371
L0: 262.4 89 WA
```


WATER SERVICE CONNECTIONS

1

1
2. Servioe hocation 2
2.1 Service Pipe Location2
2.2 One Commedtion per Consumer 3
(and One Consumer per Connection)

2.3 Cross Commetion Control 4
3. Meter Installation Rules 5
3.1 Small Meters (12-50 wit) 5
3.2 Large Meters (75-200 m) 5
3.3 Apartment Blocks and Terraced 5
Housing Units
3.4 Tall Building Systems6
4. Pipe and Meter Sizes
4.1 Pipe Sizing8
4.2 Meter Sizing 8
5. Materials and Workmanship 9
5.1 Pipe Materials 9
5.2 Workmarsthip 10
5.3 Disinfection 11
5.4 Testing arid Inspection 12
5.5 Back Filling 12
6. Mains in Private Streets 13
References 14List of Figures (at end of text)1. Standard Service Pipe Location
2. Service Pipe Location (No front Yard)
3. Normal Service Pipe Layout
4. Typical Cormection with Dual Supply Sources
5. Typical Indoors Meter Installation
6. Typical Meter Location Outside Prèmises
7. Typical Below Ground Meter Location
(Special Cases Only)
B. Typical Large Meter Chamber
9. Large Meter Iristallation Rules
0. Typical Apartment Block Connection(Master Meter, Low Rise)Typical Apartuent Block Con
(Master Meter, High Rise)22. Typical Apartwent Block Connection(Individual Metering, Low Rise)
13. Typical Apartment Block Comection(Individual Metering, High Rise)
14. Typical Detail of Aparteent Bldck
MeterInstallation
[ist of Tables (at end of fext,

1 Desien Flow Rates
2 Maximuin Hotex Velocities in Pipework
3 Guidelines for Sizing Consumer Meters

1. INTRODUCTION

This Mammal sets out procedures for design and installation of service cormections to all types of premises, Its objective is to assist NWSDB and Local Authority staff in maintainime a good standard of service connection installations, ard to assist builders. developers, engineers and architects in adopting approved service layouts. Asperts of service connection installations up to and includire the meter are included. For details after the meter, and inside consumers premises, reference should be made to Manal D9, Plumbing Code.

The new application procedure, (Annex A) should be followed and, with this Manual, should assist with the stardardisation of connection procedures.

Materials and fittings used should comply with the relevant Sri Larka Standards or British Standard where no Sri Lamka Starmard exists.

The Manual was put together by G.A. Bridger of the USAID Project staff, in August 1988 usirg Ref. 1 (CP 310) and Ref. 2 as a foundation. Subsequently the draft manual was reviewed by NWSDB staff and revised and modified (with additional reference to the new BS 6700 which replaces $C P 310$) to become complementary with the Plumbing Code being prepared by Consultants.

The manual should be revised and updated on an armal batsis by a Committee under the DGM (OFM).

2.1 Service_Pipe Location

Adopt the following guidelines:
o Where possible, lay undergrourd service pipes at right angles to the main and in approsimately straight lines to facilitate location for repairs.

- Locate service pipe within legal access to premises - avoid crossing land owned by others, ever if permission is granted (subsequent owners may not agree).
- Locate service pipe so that meter may be installed in front corner of property boundary (Fig. 1). NWSDB/LA should not be responsible for long lengths of service pipe inside consumers' prenises.
o Where building abuts a road, it may be necessary to locate service pipe so that meter may be installed at convenient place within building (Figs. 2 \& 5).

The normal layout of service pipe should be according to Fig. 3. Meters shall normally be above ground except in special circumstances (see Section 3).
o Underground piping shall have a minimue cover as follows:

```
1.0 m under roads;
0.6 m inside premises;
0.8 m elsewhere outside premises.
```

Service pipes wust not run beneath any building or wall foundations.

Stop valves shall be installed on each side of meter. The inlet stop valve shall not be a wheel or gate type valve and shall be provided by NWSDB. The outlet stop valve shall be provided by the consumer.

- In designing and planning the layout of pipework, attention should be given to the maximum rate or discharge required, econowy in labour and materials, accessibility, protection against damage and corrosion, and avoidarce of airlock, noise transmission and unsightly arrangements.

0 Changes in diameter and in direction should preferably be gradual rather than abrupt to avoid undue loss of head.

Where piping has to be laid in any grommd liable to subsidence then speoial consideration should be given to the type of pipes and joints to be used in order to rainimise risk of damage due to settlewent. Where pifing thas to be laid across recently disturbed ground, continuous longitudinal support should be provided and not merely supporting piers at intervals.
 Commectiom)

Adopt the following guidelines:
o There shall be one service pipe aifd meter for each consumer. If an existing service pipe becomes inadequate to provide the required flow, it stall be olosed and abandoned and replaced by a new service.

For large consumers such as colleges/hospitals, etc. where several connections already exist, negotiate with the consumer for; provision of one connection only to a storage tank. Distribution within the property shall be the responsibility of the consumer. All other connections wust be removed.
o Each consumer shall tave a separate service pipe. Where an existing building is subdivided into two or more urits, the owner(s) shall install all necessary piping to allow separate? metering of each urit according to NWSDB requirements.
a Allow only 1 connection fer apartaent block. For blocks where each apartment is now metered in ant unsatisfactory way, negotiate with block owner/manager and either:
(i) Remove individual meters and meter each apartment block. The block owner/manager wust be responsible for paying the bill and collecting water rates frow each tenant/owner, or
(ii) Install (at block owner's expense) new service pipes to each apartment so that meters can be fixed in an accessible, safe and stamdard location, adjacent to the supply tank (likely to be costly).

Adopt the following guidelines:
o There shall be no inter-comrection or oross commection between any pige or fitting containing NWSDB/LA supplied water and a pipe or fitting containiteg water frow any other somrce. The provision of reflux or nom-return valves or chosed and sealed stop-valves is ngt a permissible substitute for complete absence of connection.
o The design of piprework shall allow mos posibility of backflow towards the somece of supply from any cistern or appliance, whether by back-siphonage or otherwise. Valves cannot be relied on to prevent such backflow.
o Where a supply of NWSDB/LA water is required as an alternative or standby to a supply of water from arother source or is required to be mised with the latter, it shall be delivered inta a cistern by a pipe or fitting discharging into the air at a height above the top edge of the cistern equal to twice its nominal bore, and in mo case less than 150 mw (see Fig. 4).

All pipework shall be so desigred, laid, fixed and maintained to be completely watertight, thereby avoiding waste of water, damage to property and the risk of contamination of the water conveyed.
o No pipirg stall be laid in or througk any sewer or drain or any manhole connected therewith, nor in ground contaninated by sewage. Farmyards, animal pens and cesspools should be avoided.

Stall Meiexs_(12-50_ww)
0 In all cases the meter shall be accessible to the meter reader: i.e. not too low down or high up, not faring the wrong way, or otherwise inaccessible.

- The meter location shall not be an obstruction or hazard to public or consumer safety.
o Horizontal type meters shall only be fixed horizontally - follow the instructions of the meter manfacturer. Vertical type meters may be installed either vertically or horizontally.
- pipework shall be adequately supported but leaving sufficient room for changing the meter with the connections provided.
o Fix the meter a minimum of 300 mabove ground, in a lacation not liable to be flooded or buried, and safe frow damage or tampering. This should normally be in front corner of yard just inside the property boundary (Section 2.1 and Figs. 1 and 3).
o If there is no front yard and the meter has to be installed inside building, fix the meter in a convenient place with access so that it may be easily read (Figs, 2 and 5).

0 If location outside the building and yard cannat be avoided, install meter in a lockable box, which should preferably be recessed into the wall (Fig.6).

- In special circumstances, where above ground or inside meter lacation is not feasible, then meter should be installed below grourid in a meter box (Fig. 7).

Large_Meters_(75-200_mel
Adopt the following guidelines:

- Meters shall be installed in front corner of property boundary, as for swall weters. Location outside premises shall not be permitted.

0 If the location is safe from dawagt and vardalisw, atove ground instillation is preferred (as Fie. 3).
o If the location is not safe, above or belon ground level installation in a meter chamber is necessary. The chamber must be above normal nater table level and have a small accessible cover tor weter reading (Figure B).

0 For accuracy of metering sufficient leragth af straight pipe mast be alloned before and atter meter. Refar ta meter manutacturer's installation instructions or Fig. 9.
3.3 Agartment Blocks_and_Terraced_Housing_Units

Depending on the particular site situation, one of the following alternatives should be used:
(i) One large meter per block, is preferabie to individual apartment meters. (Figs. 10 and 11). Note that submeters may be installed and maintained by the building owner, if he wishes.
(ii) If installation of a waster meter is not feasible (this should not be the case on new buildings) locate individual apartment meters in a standard location with a label denoting apartment numbers (figs. 12, 13 and 14)
(iii) If desired, a master meter may be installed in addition to individual sub-meters, all billed separately by NWSDB. The building owner/manager would be responsible for all water recorded by the master meter after deduction of all sub-metered consumption within the building.

3.4 Tall_Building_Systems

In tall buildings the mains pressure may be insufficient to reach the higher storeys and NWSDB should be consulted on the provision of water supply to the building at a very early stage. In general, the following supply systems will be suitable the height range given will depend on system pressure at road level):

Height_of_Fittings
(i) Level of highest fitting less than
10 metres above
road level
(ii) Level of highest fitting above 10 metres but less than 15 metres above roid level
(iii) Level of highest fitting above 1.5 metres above road level

Metiod_of Supely

Direct

Indirect supply throught high level storage cistern

Indirect supply through low level cistern with pumping to high, level cistern.

The mode of smpply of water to tall buildings beyord the reach of direct mains pressure will be as given in (ii) above, The water from the main will flow through a master neter to a low-lavel cistem with ballvalve control. From the lew-level oistern, pumps (with duplicate in case of breatedown) will deliver the water to high-level stoxage risterrs of 24 hour storage capacity to cater tor breakdowns and emergencies. The high-level starage oisterrs are to be provided in duplicate and the pipework so arranged to enable maintenarice and cleaning tos be carried out without interruption of water supply. The building ownex/manager will be responsible for maintemance of the low level/high level cisterns, phmps ard all piping and fittings after the master meter.

In tall buildings, fittings should not be subject to pressures greater than 30 metres head. This cark be achieved by the provision of intereediate cisterns and pumps or by the use of pressure reducing valves. Water requirements for fire-fighting purposes should not be stored in potable water storage cisterns, unless arrangements are made in the design, to be approved by NWSDB/LA, that the combined storage will not cause stagnation and/or contamination of the water stored

Where a building is divided into apartments or other separately occupied parts which are supplied from a common service pife, there should be a stopyalve to control the supply to each apartment, fixed after the meter so as to be under the control of the occupiers. Another stopvalve should be fixed before the meter to facilitate installation and removal of the meter by NWSDB/LA. The service pife should be so arranged that it does not pass through any part of the building on its way to give a supply elsewhere.

4. PIPE AND METER SIZING

```
(Extracted trom BS 6700 : 1987)
```

Meter Sizing
A guideline for sizing consumer meters is given in Table 3.
5.1 Pies_Materighs

In choosing the naterial of pipes and fittings, account should be taken of the character of the water to be conveyed and of the nature of any ground in which the pipe is to be liaid. The material should be resistarit to possible corrosion, both inside and outside, or should be suitably proterted against corrosion, and should have no effect on the quality of the water conveyed.

Generally, uPVC pipe to SLS 147 Class 1000 shall be used for service concections. The NWSDB prohibits the use of unlined cast iror, bare mild steel and lead ripes to convey putable water. Wherever possible unlined galvanised iron pipes are not to be used.

UnElasticised PVC_Pige

Plastic pipe is particularly useful in circumstarces where soil or water conditions would calse wetal pipes to corrode. The most commonly used material is unplasticized polyvinyl chloride which is a rigid waterial with great tensile strength. PVC pipes are far lighter in weight than other pipe materials thus giving great advantages in handling and transportation. Their swooth bore induces better flow characteristics than those enconntered in metal or asbestos cement pipes, as there is no corrosive attack. PVC pipe is easily sawn to length and, in comparison with other materials, will often be more competitive in price. PVC pipe must comply with SLS 147: 1983.

PVC has a high rate of thermal expansion and allowance must be wade for this in PVC pipe installations. The pipe system must provide for freedom of movement and ample support must be provided to rewove the danger of increased stress being placed on junctions and joints. This material is not suitable for use with hot water.

Polyethylene_Pipe

Polyethylene pipe to BS 6572 is suitable for services laid below ground or for above ground use, froviding the pipe is not exposed to direct sumlight.

PVC_Eipe_joints - small diameter PVe pipws are jointed by using sperial jointing solvents provided by the pipe maker, Joints may be of the spigot and socket tyee, having the sooket formed integral with the pige or, alterratively, seprarate sleeves may be used. Joints for sizes of 75 mimbore upwards are of the spigot and sooket type made with jointing solvents; flanged joints are also available. Flexible joints may be used in conjunction with plain-ended pipes.

Small diameter plastic pipes may be jointed to metal pipirg by means of union adaptors. For PVC pipes of 75 mat bore and upwards, flexible joints or flarged joints may be used.

Service piges - adopt the following guidelines:
a Service pipes of less thar 50 bore are usually connected to mains by means of right-angled screw-down ferrules of non-ferrous metal; 25 m and 20 ferrules should not be used in mains of less than 100 bore. The main is drilled and tapped and the ferrule screwed in; this way be done by an under-pressure-tapping machine which prevents any interference with the use of the wain.
o Service pipes may be connected to mains of asbestos-cement, PVC, or thin-walled steel by means of a ferrule sorewed into a saddle of iron or steel, copper-alloy or plastic secured to the wain by bolts or wedges. Ferrous metals should be suitably protected. A special tool is required for tapping PVC to prevent the formation of swarf.

0 Service pipes of 50 bare and upwards should be connected to special branch pipes insexted into the line of the main. Special branch pipes should also be used for service pipes of less thitn 50 bore where the bore of the main is not minch greater than that of the service pipe.
o Precautions against contamination of the main should be taken when making a contection, and where any risk exists, the main should be subsequently sterilized.
A. surface box, mounted ori g guard, should be fixed over the underground stopvalve to give access for operating the latter. The liwited space provided by this arramgement will mot permit the repracking oi the stopvalve gland or other repairs to be carried out without excavation, which is mecessary to eive adequate space and to prevent the danger at contamination of the interior of the stopvalve by any local filth. The guard way be supported on bricks, and should not rest on the service pipe.

- Every underground pipe entering a building stiould do so at a level not less than 500 mw below the outside ground surface uriess, due to some obstruction, it is rot practicable to do so in which case the pipe shall be at the greatest depth that is reasonably practicable. At the point of entry the pipe should be accommodated in a sleeve which should thave previously been solidly built in, and the space between the pipe and sleeve should be filled with bituminous or other suitable material for a minimun length of 150 we at both ends tio prevent the passage of water, gas or verwin.
o Care should be taken to ensure that all piping and fittings are clean internally; and free frow particles of sand, soil, metal filings and chips, etc. which besides causing obstructions might lead to failure by corrosion or damage to fittings.

5.3 Disinfection

All mains and services to be used for water for domestic purposes should be thoroughly and efficiently disinfected before being taken into use, and after being opened up for repairs. The disinfection of mains should be carried out by specialists. Service pipés should if possible be disinfected together with the mains. Storage cisterns and distributing pipes can be disinfected as follows:

The cisterns and pipes should first be filled with water and throughly flushed out. The cistern should then be filled with water again and chlorine solution added gradually while the cistern is filling to ensure thorough eixirig. Sufficient chewical should be used to give the water a dose of 50 parts of chlorine to one millien parts of water (50 me/l). If ordinary "bleaching fowder" is used, the proprortions will be 150 got fowder to 1000 litres of water: the powder should be mixed with water to a creamy consistency before being added to the water in the cistern. If a proprictary brand
of chemical is used, the proportions should be-as instructed by the materes. When the eistern is full, the supury should be stopped, and all the taps on the distributing pipes opened successively, working progressively away frow cistern. Eack tap should be closed when the watex discharged begins to smell of chlorine. The eistext should then be "topped up" with water frow the supply pipe and with more chlorine in the recommended proportions. The cistern and pipes should then remain charged for at least three hours, whereupori a test should be made for residual chlorine; if none is found, the disinfection will have to be carried ont again.

Finally, the cistern and pipes should be thoroughly flusted out before any water is used for domestic purposes.

When the service is complete, it should be slowly and carefully charged with water, prior to backfillirtg, allowing all air to escape and avoiding all shock of water hammer. The service should then be inspected under working conditions of pressure and flow.
o All piping and fittirigs should be checked for satisfactory support, and protection from dawage and corrosion.
o Record drawings showing service pipe layout and valve position should be kept up-to-date and inspection undertaken to ensure that any subsequent work has not introduced corss-connections or any other undesirable feature.

Backfilling
o Where the pipes are unprotected by concrete haunching, the first operation in filling shall be carefully to hand-pack and tawp selected fine material around the lower half of the pipes so as to buttress thew to the sides of the trench.
o The filling shall ther be contirued to 150 me over the top of the pipe usirig selected fine harid-packed waterial, watered and ramed on both sidrs of the pife with a wooden ramer. On no account shall material be tipped into the trench until the first 150 of filling has beer completed. The process of filling and taping stall proceed everily so as to maintain an equal pressure on both sides of the pipeline.

Filling shall continue in laters rot exceeding 150 rath in thickness, each layer being watered and well ranalued.

0
When pipes are laid under roads and pavements subjected to heavy taffic loads, the trenches may be covered with reinforced concrete slabs of suitable dimensions.

6. MAINS IN PRIVATE STREETS

The NWSDB Law No, 2 of 1974 , Sertion 24 sets out the statutory requirements for laying or enlarging water mains along private streets (reproduced in Armex C).

This has been developed by the Greater Colombo management into a Board Paper which is described in a letter from DGM (F) to AGM (GC) dated September 15 , 1988 (reproduced in Artrex D).

Refer to these two documents for the polioy and procedure with regard to laying of water mains in private streets.

```
REFERENCES
```

1. British Stamdard Code of Practioe, CP 310: 1965: Wiater Supply
2. Pablic Utilities Board, Singapore, Code of Practice on Water Services, 1981
3. British Stardard Specification for Design, installation, testing ard mintenance of services supplying water for dovestic use with buildirgs and their curtilages, BS 6700: 1987.
4. Sri Lanka Standards Institution, Yearbook, 1988.
5. Water Research Centre, U.K. Water Supply Byelaws Guide, 1986.
6. Goverrment of Sri Lanka, NWSDB Law No. 2 of 1974 , of the National State Assembly.
7. Govertment of Ceylon Legislative Enactments, Colombo Municipal Council Waterworks Ordinance, 1956 Revision, 1960.

ELEVATION

NOTE:

1. LOCATE SERVICE \& METER AT SIDE OF PROPERTY IF POSgible.
2. SERVICE LIMES MUST NOT BE LAND BEHEATH BUILDING FOMDATIOHS.

NORMAL SERVICE PIPE LAYOUT

TYPICAL CONNECTION WITH
DUAL SUPPLY SOURCES

TYPICAL BELOW GROUND METER LOCAIION (SPECIAL CASES ONL.Y)

NOTE: METER CHAMBER MAY BE BELOW GL
IF WATER TABLE IS LOW, OTHERWISE.
ABOVE GL AS SHOWN.

TYPICAL LARGE METER CHAMBER

NOTE : BASED ON BOSCO METER MOUNTING INSTRUCTIONS large metir instalation rules

ERONT ELEVATION
SIDE ELEVATION

TYPICAL DETAL OF APARTMENT BLOCK METER INSTALLATION

Table 1. Design flow rates	
Outler fitting	Rate of flow
	L/s
WC flushing cistern float-	0.10
operated valve	
WC flushing trough float- operated valve	0.15 per WC served
Spray tap or spray mixer tap	0.04 per tap
Wash basin tap	0.15 hot or cold
Bidet	0.15 hot or cold
Bath tap of nominal size $3 / 4$	0.30 hot or cold
Bath tap of nominal size 1	0.60 hot or cold
Shower head	0.10 hot or cold
Sink tap of nominal size $1 / 2$	0.20 hot or cold
Sink tap of nominal size $3 / 4$	0.30 hot or cold
Sink tap of nominal size 1	0.60 hot or cold
Urinal flushing cisterns	0.004 per position
	served
NOTE 1. Clothes and dishwashing machines in individual dwellings can normally be satisfactorily supplied by a sink tap of nominal size $1 / 2$ checked. manufacturer's instructions should be	
NOTE 2. WC flushing troughs are advisable where anticipated	
use of WCs is more frequent than once per minute.	
NOTE 3. Mixer fittings or combination tap assembies	
deliver less flow than two.separate taps, but the difference	
can normally be disregarded for pipe sizing.	
NOTE 4. The rate of flow will vary according to the type of	
shower head fitted and the manufacturer should be consulted	
regardiag the tecommended discharge rate.	

Table 2. Maximum water velocities in pipework	
Water tamperature	Maximum water velocity
${ }^{\circ} \mathrm{C}$	m / s
10	3.0
50	3.0
70	2.5
90	2.0
NoTE. These maxima do not apply to small bore	
connections of limited length supplied as parts of taps, etc.	
The subject of maximum water velocities is currently under	
investigation and the velocities specified will be amended if	
the results of this investigation so require.	

Table 3 - Recommended Meter Sizes

$\begin{gathered} \text { Size of meter } \\ \text { (ma) } \end{gathered}$	$\begin{aligned} & \text { Maximum } \\ & \text { Instant. } \\ & \text { Flow } \\ & \left(\mathrm{m}^{3} / \mathrm{hr}\right) \end{aligned}$	$\left\{\begin{array}{c} \text { Normal } \\ \text { Steady Flow } \\ \left(\mathrm{rt}^{3} / \mathrm{hr}\right) \end{array}\right.$	Flow (mingr) for Loss of Head of		Recommerded Max. Mont.hy Consumption (m^{3})
			3 m	10 m	
$\begin{gathered} 15 \\ \text { (Piston) } \end{gathered}$	3	1.5	1.5	3	1.30
$\frac{25}{(P i s t o n} /$	7	3.5	3.5	7	700
Inferential)					
$\begin{gathered} 40 \\ \text { (Piston) } \end{gathered}$	20	10	10	20	3,000
Inferential)					
$\begin{gathered} 65 \\ \text { (Inferential) } \end{gathered}$	40	20	20	40	8,000
$\begin{gathered} 100 \\ (\text { Piston) } \end{gathered}$	70	30	30	70	10.000
$\begin{gathered} 100 \\ \text { (Inferential) } \end{gathered}$	150	60	60	150	20,000
$\begin{gathered} 100 \\ \text { (Compound) } \end{gathered}$	150	60	60	150	20,000
$\begin{gathered} 150 \\ \text { (Inferential) } \end{gathered}$	300	150	150	300	45,000
150 (Compound)	300	150	150	300	45,000

WATER SERVICE CONNECTION
APPLICATION PROCEDURE

ANNEXES

A	-	Covering Letter for Application
B	-	Application Form
C	-	Standard Letter - Connection Not Possible
D	-	Acknowledgement of Application
E	-	Standard Memorandum for Premises Inspection
F	-	Inspection Report
G	-	Standard letter - Approval of Water Service Connection
H	-	Invoice for Water Service Connection
I	-	Standard Letter - Refusal of Water Service Connection
J	-	Standard Letter - Application for Road Authority Approval
K	-	Consumer Agreement for Water Service Connection
L ${ }^{\text { }}$	-	Standard Memorandum - Instruction to OIC to Install Connection, plus Job Card
M	-	Standard letter to Consumer re Installation
N	-	Addendum to Agreement
0	-	New Connection Advice Form to Commercial Section
P.	-	Standard Service Connection Costs

\therefore. $\operatorname{iphlication~form~(Annex~B)~including~covering~letter~(Annex~A)~is~to~be~given~free~to~personal~callers~or~to~be~}$ ilalled in response to telephone or writen requests. The applicant should be asked to give the address of the mumises where service is required.
If it is obvious at this time that a supply cannot be given because:
a) The applicant's premises is not in the supply area. or
b) There is a policy decision by the M (OAM) not to issue any further new connections in the applicant's area.
then Application form should not be issued. Instead complete and issue standard letter (Annex C).
\therefore Applicant submits form including necessary documentation and inspection fee of Rs. 100/- either in person or by mail. NWSDB Officer immediately gives the application a number and checks the following:
a) That all questions have been answered.
b) That inspection fee is enclosed.
c) That satisfactory documentation is enclosed verifying that the building is an authorized structure (see Note 1 of Application form).
d) That satisfactory documentation is enclosed verifying ownership or tenancy.

If all is correct, issue an acknowledgement and receipt (Annex D).
If all is not correct, return the complete application, documents and fee with a note polnting out which item or items of the application are incomplete, requesting applicant to correct and re-submit form.
3. M (O\&M) then instructs the relevant OIC using standard memorandum (Annex E) to prepare an Inspection Report (Annex F), The Application form is sent to the OIC along with the inspection request.
4. The OIC is expected to complete the inspection and report back within 1 week. OIC completes the bottom half of the standard memorandum (Annex E) and returns this with the Inspection Report and Application Form to the M (OGM) for approval.
5. M (O\&M) reviews Application Form and Inspection Report and informs consumer of approval using standard letter (Annex G), including Invoice (Annex H), or refusal (Annex I) with copies to oIC. Further instructions are given to Applicant at this stage regarding payment and obtaining Road Authority approval, if required.
6. Applicant obtains Road Authority approval, if required (Annex J) and pays necessary road reinstatement fee.
7. Applicant pays connection charges (Annex H) and signs Agreement (Annex K).
8. M (OGM) instructs OIC to request materials from Stores and install connection (Annex L). The consumer file. which should contain:

- Application Form
- Inspection Report
- Agreement
- Correspondence
should be retained in the office of M (OSM).

9. OIC arranges with consumer a suitable date and time for installation (Annex M) draws materials from Stores and makes connection at the agreed time.
10. OlC completes Job Card and Agreement Addendum, and Consumer certifies on Addendum that work has been done.
11. OiC installs meter, records meter number and initial reading, and enters information on Agreement Addendum (Annex N).
12. OIC immediately returns Agreement Addendum and completed Job Card (Annex L) to M (OGM). M (OGM) arranges for completion of the New Connection Advice Form (Annex 0) and forwards this to Commercial Section for inclusion . in billing list.
13. M (OGM) sends letter to relevant Road Authority or LGA that work is complete and road reinstatement costs have been paid, in order to facilitate road reinstatement.

GAB/sh:
March 1989.

Telephone: \qquad
Date: \qquad
\qquad

Mr./Mrs. \qquad

Dear Sir/Madam.

Re: APPLICATION FOR WATER SERVICE CONNECTION
Thank you for your recent enquiry for a Water Service Connection.
Please complete fully the Application Form attached including the sketch on page 3 and read carefully the explanatory notes on Page 4. Then read through the items (a) to (i) on page 2 before signing the Application. A current water tariff and schedule of standard connection charges are attached for your information.

The completed Application form with the necessary documentation and fee should be submitted by mail or in person to the NWSDB office as shown on the form. A receipt will be issued in acknowledgement of the Application and fee (by mail in the case of mailed applications).

Normally within 1 week following receipt of your completed Application, we will make an inspection of your premises and shortly thereafter you will be notified whether a connection can be provided.

Assuming there are no problems, you will then be given instructions for obtaining Road Authority approval for the road crossing, if required, and for making payment and signing the Agreement. For this. it is usually necessary for you to attend this office, although other arrangements may be made in special circumstances.

As soon as possible after payment is made and the Agreement signed, we will contact you to arrange a suitable time to make the connection. You will be requested to certify on an Addendum to the Agreement that the work has been done satisfactorily, and you will subsequently be billed for all water consumption from the time of completion of the connection.

Please contact the above office if you have any queries regarding your connection application.

Yours faithfully

Manager (OGM)

encls. 1. Application Form
2. Current water tariff
3. Schedule of standard connection charges

NATIONAL WATER SUPPLY \& DRAINAGE BOARD

Address to Send Application:

Manager (OEM)
Natlonal Water Supply 8 Drainage Board
Telephone:
APPLICATION FOR WATER SERVICE CONNECTION
Water Supply Scheme
Local Authority

1. Name in full
2. Address of premises where Water Service

Connection is required (see Note 1)
3. Are you the owner or tenant (see Note 2)
4. Postal address
5. Purpose for which service required
6. If other than domestic, describe nature of business, institution or construction
(Facilities at premises (give numbers)

Other (describe) \qquad
8. Do you wish to purchase PVC pipes and fittings or have NWSDB supply then (see Note 5)

WC flushing cisterns

Total No. of water outlets including showers, taps 8 bidets : \qquad

| Ground Tank | $\square: \quad$ Capacity _ Capacity \quad IItres |
| :--- | :--- | :--- |
| Overhead Tank $\quad \square$ | |

:
\qquad
: \qquad
\qquad
\qquad

;

: . \qquad
\qquad
\qquad
\square -
\qquad :

NWSDB to Supply

a) I understand that my premises is not a Special case as defined by Note 3.
b) The plumbing at the premises is complete and ready for inspection, and I attach a sketch of the location of the premises and access (see page 3 and Note 1 (a)).
c) Copies of the necessary documentation required for proof of authorised structure and access (see Note 1) are attached and are authentic.
d) The access to my premises does not cross land owned by others (see Note 1 (d)).
e) Copies of the necessary documentation required for proof of ownership or tenancy (see Note 2) are attached and are authentic.
f) I understand that I will be liable for the total cost of the connection according to standard NWSDE connection charges, and for all subsequent water bills.
g) I understand that pipelaying outside the premises is prohibited without the prior approval of NWSDA, and that external pipelaying within the premises should not be carried out untll the application is approved.
g) (i)* I will be available to attend the NWSDB office in person to make the payment and sign the agreement.
(ii)* I will not be avallable to attend the NWSDB office in person and therefore. the payment will be remitted and my signature on the Agreement attested by a Justice of Peace.
i) I enclose a money order*/cheque*/cash* for Rs. 100/- as an Application and Inspection fee (see Note 4).

Date: \qquad Signature of Applicant

Explanatory Notes Regarding Application for Water Service Connection

Nute 1 - Proof of Authorized Structure and Access
a) Provide with the Application in the space provided a sketch of the location of premises and access to assist NWSDB in locating premises.
0) Provide with the Application a photocopy of the following docunents to show that the building is an authorized structure
(1) If building is not recently constructed : Annual assessment notice of Local Government Authority (LGA) or Certificate of Conformity or letter from relevant LGA or Grama Sevaka (GS) confirining that the building is an authorized structure.
(ii) If building is recently constructed : Certificate of Conformity issued by LGA.
(111)

If building is to be constructed
: Building plan approved by LGA.
c) If there is a difference between the premises address on the application and that on the document submitted, this shall be satisfactorily explained to the Manager (OGM).
j) Where the access or water service connection route to the applicant's premises crosses land owned by others, then a connection cannot be given. Where NWSDB considers that right of access may be in question, the it inay request with the Application a plan prepared by a Licensed Surveyor, indicating right of access.

Note - 2 Proof of Ownership or Tenancy

If you are the owner and occupier of the premises, make sure that the documents submitted are in your name: If the applicant's name differs from that on the assessment notice or supporting document, a letter giving a valid reason, certified by a JP, shall be submitted with the Application.
b) If you are a tenant, the following documents shall be submitted with the Application;
(i) The written permission of the owner, or
(ii) A recommendation of the Rent Control Board.

Note 3 - Special Cases

Connections regarded as Special Cases are:
(a) Where a major road has to be crossed, involving additional costs.
(b) Where a larger pipe is required for shared connections, etc.

If you consider your connection may be a Special Case, do not complete this Application, but contact the Manager (O\&M) to request a special survey, which will be undertaken at no cost to you.

Note 4 - Application Fee
The event of the Application not being approved due to reasons beyond the control of the Applicant, the Application/Inspection fee may or may not be refunded at the discretion of the Manager (O\&M).

Note 5 - Purchase of Pipes and Fittings by Applicant

[^0]National Water Supply \& Drainage Board, ____ Regional/Branch Office,

\qquad
Date: \qquad 19 .

Mr./Mrs. \qquad

\qquad

Dear Sir/Madam.
Re: Enquiry for Water Service Connection to Premises at

Thank you for your recent enquiry for a Water Service Connection. However, I regret to inform you that a connection to the above premises cannot be provided at this time because:
a) * The premises is not in the supply area
b) * Due to supply restrictions there is presently in effect a policy decision not to provide any further connections in your area.

Your enquiry will be held on file at this office and if there is any future change in the situation, I will inform you.

Yours faithfully,

Manager (OGM)
National Water Supply 6 Drainage Board
cc: OIC \qquad wss

ACKNOWLEDGEMENT OF APPLICATION
National Water Supply \& Drainage Board
\qquad Regional/Branch Office

Telephone: \qquad
Date:
Application No.: \qquad

To: \qquad
\qquad

Dear Sir/Madam,
Acknowledgement of Application for Water Service Connection
to Premises at

Thank you for your Application for a Water Service Connection. NWSDB is in receipt of your application fee of Rs. 100/- Following our inspection of the premises which should be during the next week, we will be writing to you again with further instructions. Please quote the above application number in all future communications regarding your connection.

Yours faithfully,

Manager (OGM) \qquad
\qquad
Application No.: \qquad
To: OIC

Scheme : \qquad Address of premises:
Address : \qquad \longrightarrow !
\qquad
\qquad
\qquad
\qquad

Instruction to Inspect Premises for Water Service Connection
at

You are hereby instructed to inspect the above premises. The relevant Application for Water Service Connection is attached for verification as necessary.

Manager (O\&M)
cc: Consumer's File

OIC to complete this section following inspection and return to M ($O Q M$)
Date: \qquad
Application No.: \qquad
To: Manager (O\&M)
\qquad
\qquad

Inspection Report of Premises at

The above premises was inspected by me on
(date).
The Inspection Report and Application are attached hereto.

NATIONAL WATER SUPPLY 8 DRAINAGE BOARD
 INSPECTION REPORI FOR WATER SERVICE CONNECTION

Application No.: \qquad

1. Access to premises (see Application
Itens 1 (a) and (d)
(verify location fand right of access
according to sketch)

Nate that subsequent to the connection being made the plumbing should be checked for water tightness.

Oistance from main to meter site (along service connection route)

Ground conditions along service connection route
___ metres
Unsurfaced (grass/earth) \quad ___ metres
Unsurfaced footpath
Paved sidewalk
Private gravel road
Private tarred road
Public gravel road
Public tarred road
7. Public road/sidewalk cut required Yes \square No $\quad \square$

If yes, name of Road Authority
Length of road cut (metres)
Area of road cut $\left(\right.$ metres $\left.^{2}\right)$
Length of sidewalk cut (metres)
Area of sldewalk cut metres $\left.^{2}\right)$

Complete sketch of damaged road/sidewalk on Sheet 5
8. Distribution main pressure

Normal \qquad m Maximum \qquad m Minfinum \qquad m (h_{m}) (il head of water) (working) (static) ,

Elevation of service relative to main
Meter location \qquad m - above/below main (h_{1})

Consumer's
storage tank or \qquad m - above/below main (h_{2}) main tap elevation

Avallable head (minimum) $\quad h_{m}-\left(h_{1}+h_{2}\right)=$ \qquad m
10. Determination of pipe diameter
(assume 15 mm to start).
(see Note 4), Note that for normal domestic
connections, ferrule and meter size should be
15 mm , though pipe may be greater if necessary.
Actual length of pipe run to consumer storage/outlet \qquad m

[^1]
11. Comection charge

Basic rate for 10 m minimum
Extra for ___ m R Rs. $/ \mathrm{m}$ Extra for tarred coad gut \quad R Rs.

Total charge

* Amount to be checked and entered in Invoice
1.. Material List: (See over)
Inspection completed by: Checked by:
Dete \quad Date

Signed : \qquad

Date : \qquad

TEAR HERE AND ATTACH TO APPROVAL LETTER (ANNEX G)

LIST OF FITTINGS TO BE SUPPLIED BY APPLICANT

Description	Dia.	Quantity
PVC pipes	-	
PVC tapered union	-	
PVC bend	-	
PVC valve socket	-	-
PVC faucet socket	-	-

Important:
Note requirements regarding pipes and fittings standard specifications

* Delete as necessary

Ref. Item 7 of Inspection Report

SKETCH OF REQUIRED DAMAGE TO ROAD/SIDEWALK FOR WATER SERVICE CONNECTION
(To be completed at time of Inspection)

Applicant's Name: \qquad

Premises Address : \qquad
\qquad
\qquad

Sketch should show:
road, sidewalk, premises boundary, and other features to locate position and extent of damage, with dimensions.

Sketch by : \qquad
Date : \qquad

Explanatory Notes Regarding Inspection Report

Note 1 Loading units: Refer to Water Service Connection Mannual M8 Annex - B, Pipe Sizing - Annex B

Note 2 Design flow rate: Refer to WSC - Annex B
Note 3 Elevation of service: Sketch profile of pipe route from distribution main to Consumer tank/faucet outlet, e.g.

Note 4 Determination of pipe diameter: Refer to WSC: Annex B
Note 5 Headloss through meter/stopvalve: Refer to wSC. Annex B

Note 6 Capacity of pipe: Refer to WSC • Annex - B
Note 7 Recommended meter size: Refer to WSC Table 3. using design flow rate as maximum instantaneous flow.
\qquad
Date: \qquad
Application No.: \qquad
Application Date: \qquad
$\mathrm{Mn} . \mathrm{Mr}$. \qquad

Dear Sir/Madam,
Re: Approval of Water Service Connection
to premises at
I have pleasure in informing you that your Application for a Water Service Connection to the above premises has been approved.

The connection charge *including all materials/*including all materials not provided by yourself, and labour (according (1) the standard schedule of charges, previously attached with Application Form, and the required initial deposit are shown in the lnvolce attached.

* As you state in your Application that you wish to purchase pipes and fittings, a list of items to be provided by yourself is attached. Note that all pipes and fittings shall conform to Sri Lanka Standards 147 and 659 , Type 1000 , and bear the SLS mark. Other pipes and fittings which do not conform will be rejected.
* Since the connection crosses a road/sidewalk of the
(Authority), prior approval is necessary from that Authority and any payments for road reinstatement should be made to that Authority directly, A letter to the Authority giving details of the extent of damage is attached for your convenience.
* Please attend this office to make payment and sign the Agreement within 4 weeks of the above date bringing: or
* As you state In your Application that you are unable to attend this office, please send by registered mail or messenger both coples of the signed agreement, attested by a JP and including:

1) This letter and Invoice
2) The required payment
3) The Road Authority receipt for payment noting the address of premises and Application number
4) Your National Identity Card
5) A Rs. 1/- stamp (uncancelled)
[tens 1 and 4 will be returned to you along with a copy of the signed Agreement. Payment may be made at this fice as follows (M ($O Q M$) to specify relevant method of payment):

* Monday through Friday between 9:00 am \& 12:00 noon and between 1:00 pm a 3:00 pm
* If you fall to pay the connection charge within a period of 4 weeks from the date of this letter, you may lose your order of priority.
If you have any queries regarding this letter, please contact the office noted above and quote the Application Number. Following payment and signing of the Agreement, you will be notified of the installation date as soon as possible. Yours faithfully,

Manager (O\&M)
National Water Supply \& Drainage Board
copy: OIC \qquad WSS
encls: 1. Invoice
2. List of Materials to be supplied by Applicant
3. Letter to Road Authority

INVOICE FOR WATER SERVICE CONNECTION

NATIONAL WATER SUPPLY \& DRAINAGE BOARD INVOICE FOR WATER SERVICE CONNECTION

Date: \qquad .

Application No.: \qquad

Item
Rs.

1. Connection Charge ${ }^{\text {II }}$
a) Base rate for 10 m minimum
b) Extra for \qquad m R Rs. \qquad /m
c) Extra for tarred road/sidewalk cut m R Rs. \qquad /m

Total Connection Charge
2. Security Deposit against Water Bills

Total amount due

Payment should be made by cash*, money order or cheque to the NWSDB office on the letterhead, within 4 weeks of the above date. If payment is not received, then the Application will be returned to you.

Please note that for cheque payments, the work -will not be put in hand until the cheque is realised.

T Ref. Item 11 of Inspection Report (includes cost of water meter).

* Delete if cash payment not receivable

ANNEX -

standard letter - refusal of water service connection

National Water Supply a Dralnage Board

\qquad Regional/Branch Office
\qquad
\qquad
Telephone No.: \qquad
Date : \qquad
Application No.: \qquad
Mr./Mr's \qquad

Dear Sir/Madain,

Re: Application for Water Service Connection to premises at

I regret to inform you that your Application for a Water Service Connection, which is returned herewith, cannot be approved at this time owing to the following reasons:

* (Where action is required by Consumer)

Please attend to the above points and re-submit your Application for reconsideration.

* (Where action is required by NWSDB)

It is expected that the supply*/distribution* restriction in your area will be resolved by
(date). Your Application has been registered and will be reconsidered at that time.

Yours faithfully,

```
Manager (OGM)
National Water Supply \& Drainage Board
```

ANNEX - J
STANDARD LETTER APPLICATION FOR ROAD AUTHORITY APPROVAL

National Water Supply \& Drainage Board Regional/Branch Office
\qquad
\qquad
Telephone No.: \qquad
Date: \qquad
Application No: \qquad
Application Date: \qquad Engineer,
\qquad Road Authority

Dear Sir,
Re. Damage to Public Highway for Water Service Connection
to premises at
I wish to inform you that it is necessary to damage the roadway/sidewalk at the following location in order to install a Water Service Connection for the Applicant named below:

Applicant:
Address: \qquad

Name of Highway
Location:
\qquad

\qquad
\qquad
The estimated damaged area as shown in the attached sketch is \qquad m^{2}.

Please give the applicant your written approval for damaging the road for the above purpose, and charge the Applicant for any reinstatement necessary.

Yours faithfully,

Manager (O\&M)
National Water Supply \& Drainage Board
cc: Applicant
Uncl: Sketch of road danage required (sheet ; of Inspection Renort)

```
REGION
```

WATER SUPPLY SCHEME :
\qquad
APPLICATION NUMBER : \qquad
$1 /$ We, the undersigned \qquad
of \qquad
agree that a Water Service Connection to premises No,: \qquad
be provided by the National Water Supply \& Drainage Board, subject to the terms and conditions set out below.
a) I/We agree to conform to the provisions of the National Water Supply 6 Drainage Board Law No. 2 of 1374 and regulations thereunder and subsequent amendments and also agree that in the event of my/our falling to conform to such regulations at any time, this water connection may be disconnected at the sole discretion of the National Water Supply if Drainage Board and that $I / W e$ may be liable for the prescribed penalties.
b) I/We*agree to prevent wastage and misuse of the water supplied,
c) I/We agree to permit access and provide facilities to any officer duly authorised by the National Water Supply \& Drainage Board to inspect all internal and external plumbing including fixtures and fittings, and the conformity thereof with plumbing bylaws in effect, and for the purpose of detection of waste or misuse of water, detection of unauthorized use, damaging of or tampering with water facilities of NWSDH, or de-m tection of fouling of water, etc.
d) I/We agree not to make any extensions in internal or external plumbing without the prior written approval of the NWSDB.
e) I/We*agree to pay on the due dates water charges at the approved tariff to the National Water Supply \& Drainage Board as recorded by the installed meter which will remain the property of the NWSDB.

Place: \qquad
Date: \qquad

Witnesses:
(Signature of Applicant on uncancelled stamp of the value of Rs. $1 /-$, with seal of company or firm which is relevant)

National ID No. of Applicant : \qquad

1. Signature :

\qquad
2. Signature : \qquad
Address : \qquad

* Delete as appropriate
** First original to NWSDB (M (OBM)), 2nd original to Consumer

SERVICE CONNECTION/DISTRIBUTION EXTENSION

JOB CARD

Job No.:

Enter totals on front of Job Card

Date: \qquad

Application No.: \qquad

To: OrC
\qquad Scheme

Instruction to install Connection
to premises at
You are authorized to install the above noted connection according to the following procedure:

1. Use the form of letter attached (Annex M) to agree installation date and time with consumer.
2. Draw materials from store.
3. Make installation at agreed time.
4. Complete the Job Card.
5. Complete the meter reading, meter number, date, etc. on Addendum to Agreement, and get consumer to certify the work was done and the meter reading (Annex N).
6. Hand over the water meter card to consumer.
7. Return Job Card and Addendum to Agreement to M (O\&M) immediately after connection is completed so that the consumer may be billed for water without delay.

Manager (OGM)

STANDARD LETTER TO CONSUMER RE INSTALLATION
National Water Supply \& Drainage Board
Scheme Office
Telephone:
Date:
Application No.:

Mr./Mrs. \qquad

Dear Sir/Madam,
Re: New Water Service Connection to premises at

I propose to install the above water connection on (date) at about (time). Please arrange for yourself or your representative to be present at the premises at this time, in order to certify that the work is carried out satisfactorily and certify the initial meter reading.

If this date or time is unsuitable, please contact the office stated on this letterhead to arrange an alternative date and time.

If you have elected to purchase materials please confirm to this office prior to the above that all materials requested are at the premises. If you fail to confirm this, then the above connection date will be postponed until such time as I receive your confirmation.

If you have not elected to purchase materials, then if I do not hear from you, I will assume that the above date and time are satisfactory.

Yours faithfully,

OIC
WSS

TO BE COMPLETED BY OIC AT TIME OF INSTALLATION
Category of Use
Tariff
Date of Connection
Meter Number
Initial Reading
Meter Card handed over
Connection size
Meter size
Connection supervised by:

TO BE COMPLETED BY CONSUMER AFTER INSTALLATION OF THE SERVICE CONNEGTION

I/We* confirm that the connection has been made to my/our* satisfaction and I / W^{*} have verified the initial meter reading and meter number above, which are recorded on the water meter card now in my/our* possession.

Signature of Consumer
Date: \qquad

This form should, after completion, be attached to NWSDB
Copy of Agreement.
*Delete as necessary

Date Issued	Hetter No.	Meter Size	No. of Digits int Meter	Commection File So.			$\begin{aligned} & \text { MIR } \\ & \text { Ho. } \end{aligned}$	Stock Balaricer					
					Address of	Presises		1/2"	3/4"	$1 "$		1/2"	2"
			-										

ITEV	CONECTION PHE Rameter					
	H酸 12 Cl		6/4in)			
:						
		257, 60	27.60	237.60	23, 09	275, 00
: 2 Fervie (Talbot)		22 Em	275.00	350.00		
- 3 pue Pipe (tass T1000)		140.60	240.00	372.00	976.60	1392.00
(4 Eends (3 \#0)		16.60	28.09	47.00	158.09	25.60
; S Sorkets i4 No.		13.06	20.00	27.00	82.00	114.60
if Stof cock (brass)		30.00	40.00	50.00	110.00	200.00
: 7 golvent coment		4.00	5.00	8.00	18.00	26.00
18 Water meter		470.60	580.00	939.00	1957,00	4902.00
S Sub-tokal, moteriais		1135.00	1425.00	2032.00	3474.00	7161.00
- $3 \% \mathrm{ETT}$		34.95	42.75	60.96	104.22	214.85
15\% handiling \& transport		170.25	213.75	304.80	521.10	1074.15
Materisis iatal		1337.30	1681.50	2357.76	4099.32	8447.98
\% 9 Labour for pipelaying,						
: complete, grayel surface, and for						
connection to main		170.00	170.00	170.00	170.00	170.60
110 Supervision (1 TA)		30.00	30.00	30.00	30.00	30.00
: Sub-total, labour		200,00	200.00	200.00	200.00	200.00
; 15\% overheads		50.00	30.00	30.00	30.00	30.00
Labour Total		230.00	230.00	230.00	230.60	230.00
'						
- TOTAL, for up to 10 m length		1569.30	1911.50	2627.76	4327.32	8679.98
; EXTAA, for over 10m length, per metre +		21.50	34.63	51.62	118.53	184.14
- EXTKA, for breaking tarred road, per m						

Iters 1-8 include 3\% BYT and 15% charge for handing and transport
items $9-10$ intlude 15% for overheads (12t EFF and 34 ETF)

- For 38 an and 50ne sizes, cost for PVC Tee instead of ferrule
+ Includes only Itens 3, 5, 7, 9, i0 plus respective overheads

TEN	COWNETION PIFE DIAMETE					
	1絧（1／2in）	20 虽（3／4in）	25．6m 41 in ）		（1－1／2in	50m $\mathrm{man}^{\text {a }}$
！；						
	254.00	254.00	254.00		270.00	30.10
｜ 2 Ferruis（Talbot） 1	225．00	275.00	350.00			
： 3 Put Pipes（Class Ttom）	140.00	240.00	372.00		876.00	1392．00
14 Eends 13 Nol	16.00	28.00	47.00	\therefore	158.00	252.00
－Euckets ${ }^{4} \mathrm{No}$	13.00	20.00	29.00		82.00	114．60
－ 6 Stop cect（brass）	30，00	40.00	50.00		110.00	20.60
17 5olvent ¢entrit	4.00	5.00	8.00		18．00	26.60
\％water meter	470.00	580.00	939.00		1897．00	40.02 .00
Sub－total，faterials	1152．00	1442.00	2049.00		351.00	7186.00
3 \％ETt	34.56	43.26	61.47		105.53	215.5
fith handing \＆tramsport	172.80	216.30	307.35		526.65	1077．90
Materiais lotal	1359.36	1701.56	2417.82		4142．98	8479.48
； 7 Labour for pipelaying，						
；conplete，gravel surface，and for						
tomection 0_{0} main	170.00	170.00	170.00	－	170.00	170.00
－ 10 Supervision（1 TA）	30.00	30.00	30.00		30.00	30.00
Sut－tetal，labour	200.00	200.00	200.00		200.00	200.00
¢57．pererneads	30.00	30.00	30.00		30.00	30.60
Labour Total	230.00	230.00	230.00		230.00	200.00
i						
：ToThL，for up to low length	1589，36	7931.56	2647.92		4372.98	8707.48
¢ EXTA，for over ioa lent par atrat	－ 21.80			，		
i EXTA，for over ion length，per metre＋	21.89	34.63	51.62		118.53	184.14
EXTRA，for breaking tarred road，per						

\geq 量

Wote iteas $1-8$ include 3% 日TT and 15% charge for handing and transport Etams 7－10 include 15\％for overteads（12\％EPF and 32 ETF）

－Includes only Itens 3，5，7，9，1．plus respective overheats

GEPVICE CONHECUMON COSTS

Sote: Itens $!8 \mathrm{jn}$ iude 3% 日TT and 15% charge fo ha ding and tra 500 c .
Items $9-10$ i- iade 15% for overheads (12\% EFF are 3\% ETF)

+ includes éty Iteas 3, $2,7,7,10$ plus resp-itive overheads

SERUICE CONNECTION COSTS

Note: items - 8 include 3% BTI and 15% charge for handling and transport itens ?-10 include 15% for overheads (12\% EPF and 32 ETF) * For 38ar and 50w sizes, cost for FVC Tee instead of ferrule + Includes only Itens $3,5,7,9,10$ plus respective overheads

SERVICE CONNECTION COSTS

For mferent man sum

SERVICE CONNECTION COSTS

Appendix E. Pipe sizing calculation

E. 1 Determination of flow rates

E.1.1 Assessment of probable demand

In most buildings it rarely happens that all the appliances installed are in simultaneous use. For reasons of economy therefore it is usual to provide for a simultaneous demand less than the possible maximum. This simultaneous demand can be estimated either by application of probability theory using loading units or from data derived by observation and experience of similar installations.

E. 1.2 Loading units

Loading units are factors taking into account the flow rate at the appliance, the length of time in use and the frequency of use. The number of each type of appliance fed by the pipe run concerned is multiplied by its loading unit as given in table 20 and the results added together to obtain a figure for the total loading units. By use of figure 24 this total of "loading units is converted into the total simultaneous demand for that group of appliances, as a design flow rate in litres per second. Owing to differences in the rates of flow and pattern of demand between hot and cold outlets, the loading units applicable also show some variation, but for most practical purposes the same loading units can be Fado d for both hot and cold outlets. Table 20 is based on mormul domestic usage and customary (or statutory) provision of appliances. It is not applicable where usage is Hntensive e.g. in theatres and conference halls. In such cases H5 necessary to establish the pattern of usage and

E. 2 Head losses in pipes, fittings and valves

E.2.1 Pipes

The rate of flow of water through a pipe depends upon the length and bore diameter, the roughness of the surface and the pressure drop (head loss) along the pipe. Copper, stainless steel and plastics pipes are smooth and the relationship between dimensions, flow rate and head loss for pipes of these materials is given in figures 25 and 26.

E.2.2 Pipe fittings

The loss of head through pipe fittings (elbows and tees) should be expressed as the loss of head through an equivalent length of pipe as set out in table 21. Alternatively, where it is impracticable to forecast in detail the numbers and types of pipe fittings to be used. an approximation may be made by adding an equivalent length, as a percentage of the actual length, to cover all head losses in pipe fittings. The percentage added may vary between 10% and 40% depending on the complexity of the pipe layout; the actual percentage used being left to the experience and discretion of the designer.

E.2.3 Valves

The loss of head through stopvalves and check valves is relatively large. These losses are expressed either as the loss of head through an equivalent length of pipe as in table 21 anil added to the actual length, or the actual head loss de:ermined from figure 27 and subtracted from the head available. The losses through full flow gate valves can be ignored.

Figure 24. Conversion of loading units to design flow rate

- Obtainable from the Institute of Plumbing. 64 Stiton Road hamahurgh, Esrax RM12 6NB

Figure 25. Determination of pipe diameter: cold water services (water at $12.8{ }^{\circ} \mathrm{C}$)

Figure 26. Determination of pipe diameter: hot water services (water at $80^{\circ} \mathrm{C}$)

Figure 27. Head loss through stopvalves
亿

Figure 28. Head loss through float-operated valves

Table 22. Typical loss of head through taps and equivalent pipe lengths

Tap	Flow rate	Loss of head	Equivalent pipe length
	L / s	m	m
Nominal size $1 / 2$	0.15	0.5	3.7
Nominal size $1 / 2$	0.20	0.8	3.7
Nominal size $3 / 4$	0.30	0.8	11.8
Nominal size 1	0.60	1.5	22.0

* Head losses for stated flow rates are typical only and may vary with taps of different manufacture.

E. 3 Available head

E.3.1 Storage cistern supplied systems

 initial available head should normally be measured from the outlet of a cistern, unless the supply is sufficient to allow a depth of half the cistern or 0.5 m (whichever is less) to be assumed. Each pipe length between pipe junctions should be sized on a trial-and-error basis, starting with the first pipe length from the cistern. The residual head at the end of each pipe length should be calculated taking account of head losses in pipework, fittings and valves. If a residual head is arrived at that is negative or less than the head absorbed by the outlet or tap, or if an impractical pipe size is indicated, the diameter of the preceding pipes should be adjusted and the procedure repeated (see E.4.5).
E.3.2 Mains pressure supplied systems

The minimum pressure in the main at the time of peak demand should be obtained from the water supplier (see 4.1) and if there is any doubt about this pressure being obtainable in the future a suitable factor should be applied. Once the minimum pressure has been established the rod for pipe sizing is identical with that indicated 4.1.

E. 4 Method of determination of pipe size

E.4.1 General

The principle underlying the design of a water supply system is the same whether the cold and hot water supplies to sanitary appliances are obtained from a storage cistern or direct from a main service pipe. Friction losses in the pipes may be determined by the general theory of
roughness, but this has too many variables for normal design purposes. Exponential formulae have been devised. which relate pipe diameter to head loss, water velocity and flow for new pipes in smooth-bore materials. Reduction in capacity with age can be ignored for pipe sizing calculations for pipes carrying clean potable water within buildings. Using figures 25 and 26, which are based on exponential formulae, a pipe diameter can be selected which meets the other three design parameters of design flow, maximum water velocity and permissible head loss.

E.4.2 Calculation diagrams

An approximate isometric or similar projection of the scheme should be drawn. This drawing should be to scale to facilitate measurement of pipe lengths and levels unless the data can be obtained otherwise. The possibility of future extensions or additions to the scheme should be considered at this stage. Each pipe junction and fitting should be numbered for calculation purposes and pipes referenced by their terminal junctions and fittings.

E.4.3 Calculation sheet

A calculation sheet should be used on which the following data can be entered (see tables 23 and 24):
(a) pipe reference;
(b) full demand in loading units;
(c) simultaneous demand or design flow rate (in L / s);
(d) pipe diameter:
(e) velocity;
(f) head loss (in \%);
(g) drop or rise (that is, the difference in level of inlet and outlet);
(h) available head at outlet end of pipe length;
(i) actual pipe length;
(j) equivalent pipe length (actual plus an allowance for fittings);
(k) equivalent pipe length of valves, etc.;
(I) total equivalent pipe length of pipes and valves:
(m) actual head loss;
(n) residual head at outlet of pipe length;
(o) remarks (size of taps, float valves and head required).

E.4.4 Alterations and extensions

Where an extension or alteration is carried out to old pipework, the existing pipes may be of imperial sizes, and the calculations should be adjusted accordingly.

E.4.5 Procedure

There is no particular 'correct' method for sizing a system of water pipework but one method, based on the use of a calculation sheet as described in E.4.3, is as follows.

Stage

Complete column

1. Prepare the pipework diagram and number each junction consecutively from the cistern or water main.
2. Enter the pipe reference on the calculation sheet.
3.
4. Determine the loading units for each length of pipe.
5.
6. Convert the loading units to design flow rates in litres per second using figure 24.
7. Starting from the source and using a straightedge in conjunction with figure 25 or 26 , select a pipe size, such that the velocity is $3 \mathrm{~m} / \mathrm{s}$ or less. Note the velocity and percentage head loss.
8. Determine the vertical distance between the inlet and the outlet of the pipe length (+ drop or - rise).
9. Determine the available head by adding or deducting the drop or rise respectively from the residual head at the inlet to the pipe length.
10.
11. Measure the actual length of the pipe being considered.
12.
13. Determine the effective length of the pipe by adding on to the actual length an equivalent length of pipe to cover head losses in pipe fittings.
14.
15. Determine the actual head loss of the pipework from columns 6 and 10.
16.
17. Determine an equivalent length of pipe for valves from table 21.
18. Add columns 11 and 12 to determine the total equivalent length of pipe for pipe, fittings and valves.
19. Deduct the actual head loss in column 13 from the available head in column 8 to give residual head.
20. If residual head is less than the head required for a particular outlet fitting, or if the head is negative, repeat stages 5 to 11 , selecting a larger pipe size.

E.4.6 Example

The procedure described in E.4.5 can be followed through in the example pipe sizing calculations for the three-storey flats shown in tables 23 and 24.

Figure 29. Example of pipe sizing for hot and cold water services, low pressure system

Table 23. Hot and cold water supply supplied from storage (see figure 29)

1	2	3	4	5	6	7	E	9	10	11	12	13	14	15
Pipe reference	Loading units	Design flow rata	Pipe sire	Velocity	Hoad loss per 100 m of pipe	Drop + Rise -	Available head	Pipe length		Head loss			Available residual head	Required residual head at fitting
								Actual	Effective	Pipework	Valves*	Total		
		L/s.	mm	m / s	m	m	$\left\lvert\, \begin{aligned} & m \\ & (14) \pm(7) \end{aligned}\right.$	m	m	$\begin{aligned} & \mathrm{m} \\ & \frac{(10) \times(6)}{100} \end{aligned}$	m	$\begin{aligned} & \mathrm{m} \\ & (11)+(12) \end{aligned}$	$(8)-(13)$	
Cold water distributing pipes in flats														Max. velocity $=3 \mathrm{~m} / \mathrm{s}$
$C 1$ to C2	13.5	0.35	28	0.63	2.5	$+2.0$	2.00	4.0	5.6	0.14	$\mathrm{GV} \pm=0$	0.14	1.86	
C2 to C3	11.5	0.32	28	0.6	2.0		1.86	1.0	1.4	0.03		0.03	1.83	
C3 10 C4	10.0	0.30	22	1.0	7.0	-0.6	1.23	1.5	2.1	0.15		0.15	1.08	Bath $=0.8 \mathrm{~m}$
C3 to C5	1.5	0.15	15	1.1	14.0	-0.7	1.13	0.7	1.0	0.14		0.14	0.99	Wash basin $=0.5 \mathrm{~m}$
C2 to C6	2.0	0.10	15	0.7	6.2	-1.0	0.86	1.0	1.4	0.09		0.09	0.77	$W \mathrm{C}[/ \pm)<0.5 \mathrm{~m}$

Hot water distributing pipes in flats \quad Max. velosity $=2 \mathrm{~m} / \mathrm{s}$

H_{1} to H_{2}	14.5	0.37	28	0.7	2.0	$+1.0$	1.00	4.0	5.6	0.11	$G V \neq 0$	0.11	0.89	
H2 to H3	14.5	0.37	28	0.7	2.0	$+1.0$	1.89	1.5	2.1	0.04		0.04	1.85	
H3 to H4	3.0	0.20	22	0.6	2.5	-1.0	0.85	3.0	4.2	0.11		0.11	0.74	Sink $(1 / 4)=0.5 \mathrm{~m}$
H3 to H5	11.5	0.32	28	0.6	1.5		1.25	3.0	4.2	0.06		0.06	1.79	
H5 to H6	10.0	0.30	22	1.0	5.0	-0.6	1.19	1.5	2.1	0.11		0.11	1.08	Bath $H>0.8 \mathrm{~m}$
H5 to H7	1.5	0.15	15	1.2	11.0	-0.7	1.09	0.7	1.0	0.11		0.11	0.98	WB $H>0.5 \mathrm{~m}$
1 to 2	$9+1=$	$0.6+0.3=0.9$	28	1.7	14.0	- 5.0	25.00	25.0	35.0	4.90	$2 \mathrm{SV}=2.2$	7.10	17.90	
2103	$6+t=$	$0.4+0.2=0.6$	28	1.2	7.0	-3.0	14.90	3.0	4.2	0.29		0.29	14.61	
3 to 4	$3+1=$	$0.2+0.1=0.3$	28	06	2.0	- 3.0	11.61	3.0	4.2	0.08		0.08	11.53	
4 to 5	$3+\dagger=$	$0.2+0.1=0.3$	15	2.2	45.0	$+1.0$	12.53	1.0	1.4	0.63	$\mathrm{SV}=2.0$	2.63	9.90	
5106	3	0.2	15	1.5	23.0	$+1.0$	10.90	6.0	8.4	1.93		1.93	8.97	Sink $=0.5 \mathrm{~m}$
5 to 7	-	0.1	15	0.7	6.2	- 0.5	9.40	1.0	1.4	0.09		0.09	9.31	FVs $(3 / 16 \phi)=3.0 \mathrm{~m}$

[^2]Main supply to storage cisterns $=0.1 \mathrm{~L} / \mathrm{s}$
$G V=$ gate valve.
FV = float-operated valve

Data used in this example		
	Loading units	Flow rate
		$Ł / \mathrm{s}$
Bath	10	0.3
Wash basin	1.5	0.15
Sink	3	0.2
WC	2	0.1

Figure 30. Example of pipe sizing for hot and colt water services, mains pressure syst m

Table 24. Hot and cold water supply direct off main service (see figure 30)

4105	16.5	0.40	22	1.3	11.0	$+2.0$	9.12	2.0	2.8	0.31	$\mathrm{SV}=0.73$	1.04	8.08	
5 to 6	13.5	0.35	15	2.6	60.0		8.08	1.0	1.4	0.84		0.84	7.24	
6 to 7	11.5	0.32	15	2.3	48.0		7.24	1.0	1.4	0.67		0.67	6.57	
7 to 8	10.0	0.30	15	2.2	45.0	-0.5	6.07	1.5	2.1	0.95		0.95	5.12	Bath $=0.8 \mathrm{~m}$
7 to 9	1.5	0.15	15	1.1	13.0	-0.7	5.87	0.7	1.0	0.13		0.13	5.74	Wash basin $=0.5 \mathrm{~m}$
6 to 10	2.0	0.10	15	0.7	6.1	-1.0	6.24	1.0	1.4	0.09		0.09	6.15	$W C(376 \Phi)=3 \mathrm{~m}$
5 to 11	3.0	0.20	15	1.5	22.0	-1.0	7.08	4.0	5.6	1.23		1.23	5.85	$\operatorname{Sin} k=0.8 \mathrm{~m}$
Hot water services to top flat														Max. velocity $=2 \mathrm{~m} / \mathrm{s}$
4 to R 1	14.5	0.37	22	1.0	7.5	$+2.0$	16.92	5.5	7.7	0.58	3 valves $=1.89$	2.47	14.45	
H 1 to H 2	3.0	0.20	15	1.5	18.0	-1.0	13.45	3.0	4.2	0.76		0.76	12.69	Sink $=0.8 \mathrm{~m}$
H 1 to H3	11.5	0.32	22	1.05	5.75		14.45	3.0	4.2	0.24		0.24	14.21	
H 3 to H4	10.0	0.30	22	1.0	5.4	-0.5	13.71	1.5	2.1	0.11		0.11	13.60	Bath $=0.8 \mathrm{~m}$
H 3 to H5	1.5	0.15	15	1.2	11.0	-0.7	13.51	0.7	1.0	0.11		0.11	13.40	$\mathrm{WB}=0.5 \mathrm{~m}$

- $6 \mathrm{~V}=$ stopvalve.
$C V=$ check valve
NOTE Recalculate for grourd and lirst hoor flats ats above

$$
\begin{aligned}
& \text { Law, No. } 2 \text { of } 1974
\end{aligned}
$$

24. (1) If any private street has been constructed 10 which one or more houses have access, the Board may lay, cnlarge, or cxtend a water main aloug such private strect of such dimensions as may be necessary, and may apportion the whole or part of the cost of laying, enlarging, or extending such main among the owners of the premises fronting upon, adjoining, abotting, or having access to, or deriving any degree of benefit from, such main according to the areas of the respective premises which may derive, or be so situated as to derive, any such benefit from the laying, eularging, or extending of the said main.
(2) The initial cost of laying, enlarging, or extending such main shall be borne by the Board, and the property in the said main shall remain in the Board.
(3) The sums apportioned for payment by the owners of the respective premises shall be made a charge upon such premises, and no private service shall be granted to such premises until the sum apportioned in respect thereof has been paid or an engagement to pay the same be made with the Board as bereinafter provided.
(4) When any premises in any such private street bas an already existing supply of water from the Board's mains by private pipes, the Board may, rhenever it shall become necessary to take up such private pipes for cleaning or renewal, call upon the ormer to connect with the new main.
(5) (a) In any case where any existing main has been laid in any private street at the expense of any private person, it shall be lawful for such person to recover from the owner or owners of any property fronting upon, adjoining, abutting on, or having access to such private street, who apply to the Board for a private service of water, such an apportionment of the cost of the laying of the said main as may be determined by the General Manager of the Board in proportion to the frontage of the premises abutting on such street.
(b) No person shall be permitted to make a connection with any such main until he has paid or given a guarantee for the payment of such apportionment to the satisfaction of such private person.
(6) (a) When any premises fronting upou, adjoining, abutting on, or having access to any auch private street has an cxisting supply of water from the Board's mains by private pipes other than the main which has been laid at the cost of any private person aforesaid, the owner of such premises may lie permitted to use such pipes until such time as it shall become necessary to take up such pipes for cicaning. or renewal.
(b) When it shall become necessars to take up such pipes for cleaning or renewal, the owner of the said premises shall not be permitted to re-Jay such pipes. in their former position, but shall connect ther with the main in the private treet laid by the private person aforesaid, and shall, before any connection is made therewith, pay such apportionment of the cost of laying the aforesaid main as shall be determined. by the General Manager of the Board in proportion to the frontage of the premises abutting on such: street.
(7) All mains laid in any private street shall vest in the Board, and the cost of their maintcnance, renewal, and repair shall be lorne by the Board.

My No. FD/10
Finance Division
15 September 1988
AGM (GCR),
Water Mains in Private Streets - Colombo MC

On Board Paper S/25/87-330 of 26 January 1987, the following received approval -
(a) Laying of water mains in private streets, for which the Board keep a rolling fund of Rs. 2 million from Foreign Aid/Consolidated Fund.
(b) A scheme for customers to pay their share in instalments. Due to lack of funds the implementation was delayed. With the limited funds now available the instalment concession has been deferred and is not included in the recommendation of AGM (GCR) in his memo to Chairman eference CWO/COL/37 of 23.3.1988, which :will now be the basis of implementation.

Eventually each consumer has to pay only the "proportionate cost" for the water main. This is determined when, the water main estimate is prepared. The percentage of $40 \& 20$ paid by the first three applicants are in the nature of advance. Any excess over the proportionate charges applicable to them, will be refunded. Thereafter when the fourth applicant and after pay their proportionate charges, these will be refunded to the first three applicants, until the amounts paid are reduced to their proportionate costs. The refunds will be in the ratio 4:4:2. The first three applicants will also receive interest at 20% on their excess payment. This interest will be included in the proportionate costs of subsequent applicants and will be based on the reducing balances of the first three applicants. Any amounts collected over and above the total cost and the 20\% interest, will be taken by the Board to cover administrative charges.

Project Manager (CMC) has informed me that CMC has been maintaining a set of registers. I recommend that these are examined and if suitable, used by the Board. These records will be maintained by the Accountant (GCR) and available for audit inspection.

The Finance Division will maintain a "Register of Funds - WMPS" (ie.Water Mains in Private Streets). An estimate for the proposed main has to be approved by the AGM (GCR) and if over Rs.100,000/= by General Manager. Two copies should be sent to Finance Division which will be checked with the above register and confirmed on the original that funds are available by giving an FD number, signing it and returning to AGM (GCR). It is only thereafter that work may commence.

All materials should be drawn from Greater Colombo Region store so as to have effective control.

A Job Card should be maintained for each construction and the materials drawn, entered therein. Details of materials, value, date, and MIRR numbers should be entered so that they can be traced back by audit to the stores records. The personnel costs should be entered in checkroll form 4956 daily and the total cost transferred to the job card when the job is completed. Samples are attached. On completion of the work the engineer incharge will check and certify on the job card that the work is commissioned and send it to the Accountant (GCR) to check with the original estimate. He will instruct the stores in writing, to stop further issues and DGM (F) of any excess spending compared with the approved estimate.. This should be done within two weeks of the completion of the work.

cc: General Manager DGM (0\&M) Accountant (GCR) Stores Manager C.I.A.

DLJS/ri.

Notes_on Imgortant AsEegts of Internal Plumbing

(Note to be atturthex to Lociel Authorities (La) tuidding applications).

1. Have the work plammed and designed by a gualified arctitect or expireeer, ard installed by a licensed plumber. (A list of licensed plumbers strould be aviailable from your LA).
2. Ensure that the plumbing system conforms in all respects to the Plumbing Gode before installation comaences (A cofy of the Plumbing Code should be availible from your LA as the NWSDB).
3. Use orly PVC pipes of Type 1000 bearineg the Sri Larka Standard mark for cold water fipirg.
4. Copper pipe is reconmended for hot watier systems, since galvenized iron (GI) pipe corrodes rapidly. PVC pipe shall not be used for hot nater systems.
5. Outside builditig, lay pipes at a minitum depth of 600 ma (2 feet). Bed pipes in soft, granular material and not int share storess or rocky ground.
6. Do not lay pipes underneath house wills, floors or foumdations - settlement may cause breakage and serious datage may result.
7. Pay special attentiort to the raross cormertion rules in the Plumbing code, to prevent backflow from contaminated sources into the drinking water supply.
8. Provide an elevated storage tank or cistern into whick the service pipe stoould discharge.

In suall houses it is usual for storage cisterns supplyine only cold water fittings to have a capacity of 200 jitres to 300 litres, and double this capacity if supplving all water outlets, hot arul cold. Int larger houses a to'al storage capacity of 200 litres per bedroor is recomureda..

If the buileim is to be divided moto 2 o: more semoret apartments, crisute that the plumbinis is de: iened to alluw a separate metere suppl: to each aportment.

[^0]: NWSDB will normally supply all materials and labour required. However, you may, if you wish, supply the necessary PVC pipes and fittings provided they conform to Sri Lanka Standards 147 and 659. Type 1000, and bear the SLS mark. No other pipes and fittings will be accepted. If you wish to take this option, check appropriate box on Form, itera 8. NWSDB will supply, in all cases, the ferrule saddle, water meter and any other fittings required.

[^1]: * If not greater, re-calculate with increased size of pipe

[^2]: SV = stopvalve

