Water-seal latrines

ISP-Negombo, Department of Architecture - Berlageweg 1-2628 CR Delft kabinet 13.05 - Phone (0) 15-781363

Negombo, june 1985.

Introduction.

In cooperation with the Negombo United Peoples Organization (NUPO), a team of dutch students came to Negombo to accomplish during four months a study on Munnakkare.
The aim of this team, ISP- Negombo, is to assist as much as possible the low-income groups on Munnakkare in order to improve the situation of these people within the limitations of a study-project. It is important to keep in mind that another leading aim of an ISP is the study purpose.

During the rich experience of working together with the St. Feter and St. Anthony societies in a community develonment project, the ISP-Negombo focussed the principal issues which have to be tackled for further improvement of the living standards and the development of the area.
Bearing in mind the strong tradition in Sri Lanka for building ones own house and the custom of Shramadana or the capacity inside the community to help each other for searching solutions, plus taking into account the high level of organization owned by the NUPO groups, it was decided to give an answer to existing problems, in the form of a booklet with technical solutions and practical advices.
This manual, written in a simple way, accessible to any kind of reader and conceptually easy to handle over, surveys various technical aspects and considerations that must be present when improving the revalue of local, indigenous materials and traditional construction crafts.

It was found that nearly every technical solution applied to solve a problem or to avoid a future nuisance, was
lacking the knowledge of the cause which originated the problem. Also the technological insight in the solutions and the economy and efficiency of a sound final result were missiñ.
Analysing the causes and checling the effects, it was discovered that attempts to solve problems were confronted with:

- a lack o: lnowledge concerning the use of materials and the application of constructing techniques and buildi:̈g methods.
- ignorance of the capacities, quali:ies and possiblities of the materials and their uses, which results in spoiling, wasting and losing these, with the consequence of negative, economic effects.
- a wrong application of techniques which can imply dangerous consecinences.
- a misuse of tools and building methods which originates waste of time and energy.
A survey on cause-effect was held on every issue and resulted on proposals based upon the criteria of low-cost, available materials, traditional techniques and, to a certain extent, autoconstrucion. Discussions, interchange of concepts, ideas and disciplinary knowledge among the members of the team took an important place in the process.
Taking into account the target group whon these manuals are pointed to, it was considered the best to use simple, attractive and illustrative dravings, accompanied by complementary texts and explanations.

These manuals do not pretend to matoh self-help manuals, but can be considered as a preliminary stage to initiate the process to reach an aided self-help programme. This contents advices, a more effective use of techniques and materials and simple systems to be carried out, even by nonaskilled laboures. It lacks however the intensive explanations, the exhaustive detailing and elaborated
demonstraion of systems and methods indispensable to build or construct any element; all these inherent properties to a self-help manual.
The scope of these manuals was prefixed by the ISP-Negombo in view of the limitation and constrains derived from time and capacities.

For the NUPO as main involved organization the manuals might be an instrument to support and strengthen the organization, initiating a new activity in their programme to activate the social consiousness and unity among the participants. Even these me:ris i.s wirere meant to reach all the NUPO members and the $S t$. Peters and St. Anthony communities in particular, then it was conceived with an eye on the NUPO leaders and the skilled laboures and craftsmen belonging to the organization. They would train and monitor the laymen, spreading their abilities.

There are two versions of the manual, one in Erflish and one in Sinhala. The first one will be distributed to NUPO leaders and to the governmental instancies and other organizations which have had an incidence in the work and process of the ISP-Negombo in Sri Lanka. The Sinhala edition is meant for the target group, as already described above, as well as for the Sri Lankan people who could be interested in reading or using it as a guideline.

ISP-Negombo
Jitske Calsbeek Urban Planning
Mirta Dobson-Demaré
Erik Hoeflaak
Jet de Jonge
Allert Schokker
Dirk v.d. Woerdt
Willem den Boer
Bart de Bruin

1. Introrluction
2. Evaluation present latrines
3. Infiltration
4. Possible improvements
5. Construction of a leach pit
6. Maintenance
7. Building in stages
8. Autuconstruction
9. Introrluction.

This ..nanual deals with the construction of incliviclual $\therefore \because{ }^{\circ}$ tary provisions ir a watcr-logeed area. The examples ancl the projosris are based on the sitration of rimmalekare: xinxe the less the application might be extencloc to areas with similar conditions in and around Negombo.

On Nunnalisare many families do rot posses any sanitary facility. The public facilities are scare, while the level of maintenance is insufficient accordine to the people. So a majority of these people are yeed to riefecatc in the lasoon.

Furthermore a number of houses is provided by private latrines, biat tiose are often malfunctioning. As main cauzes to this insatisfactory situation can be considered:

- The physical condition of a water-logged soil, which requires some attention to build a waŋl functioning
- latrine.
- The low-income of a majority of the inhabitants. The usual latrine option is not affortable to them.
Lack of space because of an increasing density of dwellings is another potential problem, though that fact is in the present situation overruled by the above mentioned causes.

The discussed subjects and options to improvement are restricted by the eye-mark of aclaption to the ersisting customs, materials, skills, financial means and physical circumstances.

The objective has been to increase insight in the design and construction of the sub srface structure. This because some =tubborn misunderstandings has been noticed on this subject. Finally design and implementation of a leach pit in brickwork are described.
2. Draruntion precont latrincs.

As this mqnual is composed with tro aim to adapt to the prorent sanitairy situation, first of all the existins latrines vill be consiclered on their suitebility. The ermpuation will. To focussce on the substructure as no problems are noticec and rill be expocted rith the construction of the sholter.

On Munnakkare the customary latrines are proviced by a water-seal squating pan connected to a so-called soptic..tank. As a matter of fact this "septic tank" is a lined pit ith unsenled bottom.

Sontictrn'e Seenero クit

Pits are usual constructed out of briclerorls or by means of pre-fabricnted concrate rincs, These its hovever do not function satisfactorily. To trace the ori,rin of this malfurstioning a light will be trown or the actual function or these pits.

Threc main processcs can be distinouishod:

- Settling down:

A11 parts heavier than water sink to the bottom. In this way a sludge is formed on the bottom of the nit.

- Decomposting:

The sludfe sterts to recay to water, eas and solijd material.
fresh slurgo

This biolocical pnocess needs time,rut finally only a small \because art of the fncsh slud.ro irill remain as solicl materinl on tlin bottom of the pi.t.

- Tnfilltation

Tho opon bottom of the pit has to allow the water to flow away into the soil.

The - Erst two processes ; onnt to a slovly incronsinc, anount of slucler on the bottom of the pit. ifter some years the pit will be full ancl onc has citilc to crosty the pit or to build a now pit. The moment that a full pit occur depencls on size and number of users.

The last montioned procoss points the causc of the manSunctioning of the existine lotrines. Screral times caily an amom': of flushine mater cators the pit. Th: came anount has conscquently to infiltrato into the soil, othorwiso the water levol in the pit will rise and finally block the flushine of the squattine pan. This phenomenon happons very often becnuse of insufficient infil.tration.
3. Infl? tration.

In the formor chapter the bottleneck of in aderuate infiltration 'ras been traced. So a more cletailed viev . on the aspects which influence the infiltration vill 'se usefull.

The permeabilit:- of the soil.

Yatcr rlovs easier throurh - Inycr of soil with hich perneability as through a layer rith lou permeabirity. The permea'sility depents or the size of the soil-particles.

e.E. líetal

- わí particles
- eosy flow
- hish permoobility

e.r. Sand and clay
- small farticles
- difficult flov
- Low perneani.jity

Thourch the permeability of the llunnakiane soil is low, it is still sufficient to allov the small amount of water of a nour-fiush latrine to flow away.

IIowever, in the prescnt "sertic tanks" the water has to pass the sluclge on the bottom. This is most unfortunate because the permeability of this sludge will be extremely low as these particles are small and stick together.

Provailinis eround vator lercl.

By dirriñ a pit the erouncl vater lovol vill aproar on a certain dorth. This lovel. is not fixcrl but depencls on the quanitity of rainfall cluring the last days. In reneral the level of the eround -ater will be lover durine the rlry scason and higk up to very hich durin. the vet scason.

As the hi-her water level inside the pit above the Eround water level is the lotive power to infintration, this also clears up that the present flushing problems occur curine the ret season.
In circumstences like on Munnakkare with a hicl level of the crouncl water, latrina and pit will have to be raiscd about one or tro feet to solve this problem. It makes no sense to exaggarate the elevation and two feet must be considered as maximum.

Closing of the soul.

The ofrluont larine- the pit will bo water carrying small particles. These particles cannot enter the soil and will remain on the surface. Actually the soil fundtion: =s a sieve.

An horizontal surface (bottom) will clog quic'ily, while this will take a long period on a vertical surface (wall).

To the construction of a pit this means:

- use vertical permeable walls instead of bottom surfaces for infiltration
- increase the available infiltration area as much as possible.

1．Possible impromments．

Tho o＂istinc sinelc pit latrines of lunnalriare mirht in rirst inctance be improved by an mncreasecl capacity to infiltration．This $c-n$ ve achiered by armittint a soalanco pit or sorlince tronch to the us？al pit．

To liunnalkare a snalage pit is the most suitable exten－ sion．Tmone＇res require a consiferable arnount of space and are more ornonsive bocauce of the noecled metan． Turthroon the life span of the sorkege pit rill＇c loneer because sottled slu＇ino ca－be removed．

To nev jits it is merc eco－ nomical to stick on 2 －iッグ・o pit solution hy introri：si．… perme－ble walls as i－miro－onent of the usual desirn．In c！nap－ ter eirrt of this manual a dosirn of such－lonching pit ort or brirlerork－ill be fircon．
3. Tonstruction of a leach pit.
vantorials.

Sevoral liinds of metcrials can be used to build tho suた-surface structure. The laind of matcrials choosen have consequences to the desisn, the implementation ancl the final costs.

Tricleworle:

- clicap
- casj to handle
- durable
- flexible
- permeable with open joints

Concrete rinfss and covers:

- high strength
- expensive
- very keavy
- clurable
- non-peraeable

Yire-mesh (2") wrapped with synthetic faloric:

- no structural strencht
- Iight and easy to handle
- corrosive
- permeable

Shape.

A circular form of the pit is more stable ancl more economic as a rectanfular shape.

Necause of the difference in stability only circular pits can be constructed in $4, \frac{1}{2}$ brick work. Rectangular types should be made out of $9^{\prime \prime}$ brick walls.

Structure.

I. the pit head with cover

II. permeable wall section

 with rilterIII. Non-permeable section and foundation

1 cl I．
As the uppor part of the pit will ivo raisocl a＇ovo rround－ level，the pithead has to rosist extcrnal forces and to assure the stability of the upper part of the structure． So，a firm construction is required．In caso this part． is macle or $9^{\prime \prime}$ bricli－riorle it is possible to rocluce slowly the innor dinm－ter．In this way the clianctor of the cover slab can be rolluced and by consofunce the woirlat．
「igecr shabs slould be marle out of several parts to re－？， cluce the vei：－lıt．

AC II．

The necessity of sicle－vall infiltration has becomo clear． Tether in a single pit（Iench pit）solution or in the secpase pit in another con「iruration．

Tise construction of the porneable wall and the filtcr has to Euarantce well functionin：－curinc a loñ period． Two conctrictions which match the requirements iill ie described．
－Open Jriclework with metal layer．

To assure the pormeability of the brickiorle only the horizontal layers are alter－ nately mortared，vhile the vcrtical joints are left opが・

Dehind the open＇rricle worle a $6^{\prime \prime}$ layer of matal has to divicle tire water to the next $\|^{\prime \prime}$ layer coarse sand．
－サire－mesh（ $\because \|$ ）wrapper with symthetic rabric． Thc construetion of this type of p in？eable wall is sim－ ple．Second luand bass of woven polyester（surar bacs） can 5 e usec 士o vrap the circular wire mesh． rravel is not necessar．r．However，a layer of coz＝sc sand is adviscd．Although arplication for bicerer pits can be－ come more difficult this mirht ’e an aporopiate soltution to sriall traporary pite．

L' 1 .

$\therefore \mathrm{d}$ III.
 it clownearcls. Co urote rines ara vory usenill to this part of the pit, thouch they aro expensive and dirrieult to hancle, because of their weimht. nriclework can also be uscd, hut should he masuncd on a concrete foundationring to cain the strencth and stability during sinking down of the linine.

「. Maintenance.

Arter some years of use the functioning of a latrine with pits as described will become less. Inspite of all qecombosini processes which reciuce the contents, always solids will romain and finally fill the pit with sludgc. Tre users notice that the Slushing water runs more difficult and somothing has to bo donc. To a permanent pit this will mean the removal of the sludrc.

Emptyins can best be executed cluri`ŋ the wet season by means of a vacuum truck of the municipality. The high rate of pumpinr out the dirty water will introcluce a flow of Groundwater into the pit which will clean the filterconstruction.

Toworer in many cases a dirty water borser will not be availainle or the pit is not accessible by a truck. In this case the job has to be done by hand. During this job continuously fresh ground water will fiow in. Tris cloes not matter, as the objective is to remove the sludge. Because of this reason use of a bucket and rope is less suitable.

The best tool to fix this job is a small bucloct fixod on a Etick. The stick allows to push the buckot in the slurlore rhich has to be removed.

Attention!

As noticed in chapter 2 easses are produced by the decomposting process within the pit. Normally these gasscs are absorbed in the ,round or escape by small amound in the open air. However, during clennine the contact of the ras with the onen air will cause an explosive ভ̇as mixture.

So, take care with cicarettes and open fire!
7. ?uil"im". a nov latrine in stares.

It has already been noticed that a complete, proper working, correctly built latrine will bn a hire investment to low -income families.

On Munnakleare a ride rap exists between those rio have to use the lagoon luring night time as latrine and those who can afford a private latrine. A sequence in luilorine sta,jes and quality from temporary somi-pormanont up to permanent mich narrow this gap. Further advances ara:

- Support to a consistent relation betrecn the available sanitary facilities and quality of the adjacent house.
- Investments can 're dirirled over several years.
- Lover initial investments might earlier result in the final aim to provide all houscholds of their own latrine.

The least-cost latrine option is a rus pit covered with a piece of rood, while the shelter can be reduced to a simple fence.
As first step this solution seems not attainable:

- The instable soil of Munnaklcare needs lining of the pit to prevent collapse. At least a simple brick lining is necessary.
- The solution is not very attractive because of the odours it spreads and the flocs it =ttrachs. From this point of view it mi.eht even be worse then the present situation.

A rolevant improronent can be roached lue the application of n squatting pan $\cdot i$ th inter seal. The type of

ji’orclass secms most suitable. It is stronmer, limhtor, choaper ancl rocuires loss flus'inn:r wher than the biceer coramic type.

In this manual is cescribed how to malce such a slas.
However, pre-r=brication can be considered

- to improve the quality
- to roduce the cost
- to allow easier arces
.

Iy moans or thus squattinc plate the builifir proross con be c!iricled in threc -taふのs.

In first inretence the slob . con cover a shallor pit linc-1 with briclas, rooren -oles or !iromesh.
\therefore tompora- fonco or sincleter con bo uscrl as superstructuro.

In a seconcl atrae the pit can be excanced by a pormanent one rhich peneirates cleaper in the "round lelow the rircunnrater ?.evel and is supplied of a filtcr constiruction to incroase the life roan.

In the final etn ${ }^{c} \mathrm{c}$ a permanent superstructure can be build, a nev slab corers the pit, rihile the squattins plate i reused as part of the floor i:r the permenont latrine.
 iron slocot-, ashostos or a~ rost aprropriats matorini cacljan (nalmtotch).

Thesc sholters con be locatod on ton of the jit. Necause of the pit is raised tro feet above the rround leyel the shelter has to be situated on r nounc of soil. "n qvoicl washing out by rain water it is better to provide in a simple protection by means of ilat layed bricks.

Permanent structures of bricks or concrete have to bo locatod detachor of the pit. Othervise problems vill occur with the foundation and the acces for cleaning.
8. Autocenstruction.

The construction or a learh pit is ratice simolc. Most work can be clon by unsl: J.led pcople. Only the prosonco of so : ore familiar "ił’masonry is most =dvisible. Tn this craptor is rescribod how to make the montionorl concrete slab vith vater-snal pan.

Althougr it is very well possible just to prepare this slab, overhere an economic m-riod is shorn to cut t'?e reinforcement of slab and foundationring out of ${ }^{+1}$ he same niece of wiremesh. "iremesh is used as reinforce ment becausc of it is easy to hanclle by less sivilled noople.

Furthoron thn closign ancl implementetion of a familysized leach-pit are "escriber. This resign fits rith the dimensions of the descrived slab and concreterine.

- opinrinis the roinforcoment.
 piccos accorciner the pattern as s'ow in tho rirurc.

This can neatly and quiclily be done by bincling up a rope in the centre of the wire mosh where upon two \therefore nots are macle in this rope on the exact distances
 round and scperate t'ac minf, by means of a wire cutter.

Pinish \int inally the inncr circular nettinc by folcian donnwards the four small sefments on the edpe accorcline the ciot-line of the ficurc. Put the squatting pan upsicle down on a flat surface and fold the gotinn around the nan in a way that blee cntire netting romnins $1 \frac{1}{2}{ }^{\circ}$ arove the surfaco.

Casting the concretc slab.

- Cover - fiat surface of at least 4^{\prime} a'l' $^{\prime}$ with a plastic shect. Laj dorn a square of bricl:s vith insido dimonsions of $3^{\prime} \times 3^{\prime}$.
- Place the fiberelass squatt-
 ins pan upside down on the sheet and put the circular nottine around the pan.
- Be surc that bricks and pan do not move by sticliing them with some clay.
.. Remove the circular netting
- IIx the concretc(1 part coment,? pa=ts sand, 4 parts metal $3 / h^{\prime \prime}$). Mix first cement ancl sand to add afterwards the metal.
- Dour the mould with a " " laycr of concrete.
- Dlace the four piecos of notting in the corners. Yeep 1 " away fro:n the ecse.
- Pour the concrete upto the bricl: edge of $2^{\prime \prime}$.

- Lay tice circular netiing over the fresli concretc and pusll it ciontly an half incli under the surfacc.
- `ix mortar 1 part cemont. 2 parts sand
- Finish the s'rrface witl a thin layor of mortar.
- Necp during ten days the slab wet and covered by a sheet to obtain a strong slab.
- A finished slab can 're immoved by adding Cootrests and a (coloured) comont mortar(1:2). My flasterin? wo have to take care tha: the surface slightly slants towards the contre.

Casting the concrete foundationring

- Put the wiremesh ring on a flat surface covered with a sheet of Enastic.
- Prepare a mould $c:$ bricks and clay around the ring. Two coarses of briclis offer the right height of 4 ".
- Take cre that at least one inch jpace remains between the bricl mould and the wiremesh.
- Take ai ay the wiremesh .
- Mix the concrete (1:24) and pour the concrete in the mould up to a trickness of $4^{\prime \prime}$.
- "ut the wiremesh ring on the fresh corarste and push the mesh an half inch below the surface.
- Neep the rinf wet and covered during ten days.
nui T-1ine prornes.
- Propare forvintion rin $\rightarrow \rightarrow$ squattinn plate.
- Dis a hole rith the inner mianoter of 5 foot just up . to the proveiliner mroundwater.
- Place the founclation rina nncl level it in loriontel position.
- Start circular masonry up to 3 foct (16 coarses). In
 can be laici rouncl.
- Neep the masonry ret curine threc days to gain stronsth.
- Then the brickrorl is lnarcienect the masoned rine can be ounk downwardj kr cileging away the soil from the inside. Dntoring sroundwator rhouTd recular bo cinawn.
Lower the ring up to the upper cise is nenr tho fround water.
- Nason the opon briEl: work up to the orisina. Frouncllevel. Use only Fortar on the alterate horizontal coarsos. Feep betweer all the vertical joints open spaces of $1 / \Omega^{\prime \prime}$.
- A: J-e Ground level tit $9^{\prime \prime}$ masonry starts. Fieduco the dia.noter of erory next coarso ritil one inch. The wost upper coarse \sin to Lo a $4 \frac{1}{4} \%$ layor.
- Plaster the outsicle of the pitaad with cernent plaster.
- Put the layers of hetal (2") and sand bohind tine opein bric!-wn=le. On= niant use temporary sheets to aroicl ixing of the filter matazial.
- Fill the surrounding of the pit up to two foet by using the cxcarated soil.

Costs of : terial incoicd son construction of tre rescoibud Joac':-it.

- Concretc \therefore lab rith vaterscal Fan
- Poundaiion
- Nric`־ork for pitlininr
Itom Quantity Rate(Rs.) \therefore Oount(R. .)

squatting pan		150	
wire mesh	0.16 sqrs	750	120
metal 2"	0.16 cbs	800	128
metal $3 / 4^{\prime \prime}$	0.03 cbs	1250	40
sand	1.00 cbs	180	180
bricks	800	0.45	360
cement	2 cwts	120	$2!+0$
			total Rs.

$x_{2} \operatorname{cis}_{\sin 0}$.

ఎ

 qсолemondic.
 อcర ब
 รరి, ,

 ${ }^{6} k$.

$$
\text { ece } 2
$$

 GUSD Oू

 ω_{2} ถิల

－\％Cu

 द्रOusumioc -
$\partial_{2} \omega \mathrm{Dic}$ De

3. \sec mosk రిo.

OGen

$x^{\circ} \infty$ Cl

- gcosaroo
- 0囚G రెもర
$\partial_{z} \mathrm{E} \omega \omega \omega_{z}$ రె

 - टర అા

sorect oc ojoe.

 ต

- రఅ ชิน ర్ 830 actousc.
- $\partial_{2} \omega \hat{\omega} \mathrm{C}$ อccir tea mis 40930.

 xecger

థ๐

 QC刁 tea

5. 'qich

 థ刀ర రి

- 8eq

- 4 రి

- بटిఎ ఎర

- రCo α mis cmobo

- Oc casoco
- $\operatorname{\omega tarccec}^{2}$ 20

- CCu

OR CO

อิช ఐ द్రై

万iderxas.

1. Q⿴C G
2. $\tilde{\Sigma}$
 दर्ण
3. Oृtherc

 $-\infty \cos 2 \sigma^{\circ}$ प

11 .

ต

111.

6. n en o

ーढิ

qeoreco

7. ทO O

- 0 四

 cisc.

 C, ล かん

D

 $\otimes_{2} \delta 0$.

 $\infty \infty \infty_{2} \infty$.
 xC

 स०

- $\mathrm{\omega} \in \mathrm{O}$ घ习ึ刃.

- هroty

 MCO WCJ Cricoro

OGC
 ๑ิठึ

- दx qDo दoेx
 ६టియు.
- दx

De $\sigma \cos \boldsymbol{\omega}$ かimg．

 ६Эシึ่า．

 ఎद习 ब円
－ब
 इएか）

ごで25

Sous	yosere	¢T0u 0	®ee（or ${ }^{\text {e }}$
	01	－	150.00
బలిลे दç		750	120.00
$\omega \cos ^{\prime \prime}\left(2^{\prime \prime}\right)$		800	128.00
$\operatorname{OC}(3 / 4)$	0.03 ＂	1250	40.00
$\partial_{2} \hat{E}$	1.0 ＂	180	180.00
■®Dr	800	0.45	360.00
EGOひm	2 c00\％f0	120	240.00
	0080		1220.00

-

\div

