
WORLD BANK TECHNICAL PAPER NUMBER 127

Watershed Development in Asia

Strategies and Technologies

John B. Doolette and William B. Magrath, editors

RECENT WORLD BANK TECHNICAL PAPERS

- No. 63 Mould, Financial Information for Management of a Development Finance Institution: Some Guidelines
- No. 64 Hillel, The Efficient Use of Water in Irrigation: Principles and Practices for Improving Irrigation in Arid and Semiarid Regions
- No. 65 Hegstad and Newport, Management Contracts: Main Features and Design Issues
- No. 66F Godin, Préparation des projets urbains d'aménagement
- No. 67 Leach and Gowen, Household Energy Handbook: An Interim Guide and Reference Manual (also in French, 67F)
- No. 68 Armstrong-Wright and Thiriez, Bus Services: Reducing Costs, Raising Standards
- No. 69 Prevost, Corrosion Protection of Pipelines Conveying Water and Wastewater: Guidelines
- No. 70 Falloux and Mukendi, Desertification Control and Renewable Resource Management in the Sahelian and Sudanian Zones of West Africa (also in French, 70F)
- No. 71 Mahmood, Reservoir Sedimentation: Impact, Extent, and Mitigation
- No. 72 Jeffcoate and Saravanapavan, *The Reduction and Control of Unaccounted-for Water: Working Guidelines* (also in Spanish, 72S)
- No. 73 Palange and Zavala, *Water Pollution Control: Guidelines for Project Planning and Financing* (also in Spanish, 73S)
- No. 74 Hoban, Evaluating Traffic Capacity and Improvements to Road Geometry
- No. 75 Noetstaller, Small-Scale Mining: A Review of the Issues
- No. 76 Noetstaller, Industrial Minerals: A Technical Review (also in French, 76F)
- No. 77 Gunnerson, Wastewater Management for Coastal Cities: The Ocean Disposal Option
- No. 78 Heyneman and Fäger ind, University Examinations and Standardized Testing: Principles, Experience, and Policy Options
- No. 79 Murphy and Marchant, Monitoring and Evaluation in Extension Agencies (also in French, 79F)
- No. 80 Cernea, Involuntary Resettlement in Development Projects: Policy Guidelines in World Bank–Financed Projects (also in Spanish, 80S, and French, 80F)
- No. 81 Barrett, Urban Transport in West Africa
- No. 82 Vogel, Cost Recovery in the Health Care Sector: Selected Country Studies in West Africa
- No. 83 Ewing and Chalk, The Forest Industries Sector: An Operational Strategy for Developing Countries
- No. 84 Vergara and Brown, The New Face of the World Petrochemical Sector: Implications for Developing Countries
- No. 85 Ernst & Whinney, Proposals for Monitoring the Performance of Electric Utilities
- No. 86 Munasinghe, Integrated National Energy Planning and Management: Methodology and Application to Sri Lanka
- No. 87 Baxter, Slade, and Howell, Aid and Agricultural Extension: Evidence from the World Bank and Other Donors
- No. 88 Vuylsteke, Techniques of Privatization of State-Owned Enterprises, vol. I: Methods and Implementation
- No. 89 Nankani, Techniques of Privatization of State-Owned Enterprises, vol. II: Selected Country Case Studies
- No. 90 Candoy-Sekse, Techniques of Privatization of State-Owned Enterprises, vol. III: Inventory of Country Experience and Reference Materials
- No. 91 Reij, Mulder, and Begemann, Water Harvesting for Plant Production: A Comprehensive Review of the Literature
- No. 92 The Petroleum Finance Company, Ltd., World Petroleum Markets: A Framework for Reliable Projection
- No. 93 Batstone, Smith, and Wilson, The Safe Disposal of Hazardous Wastes: The Special Needs and Problems of Developing Countries

Watershed Development in Asia Strategies and Technologies

John B. Doolette and William B. Magrath, editors

The World Bank Washington, D.C. Copyright © 1990 The International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, U.S.A.

All rights reserved Manufactured in the United States of America First printing July 1990 Third printing November 1994

Technical Papers are published to communicate the results of the Bank's work to the development community with the least possible delay. The typescript of this paper therefore has not been prepared in accordance with the procedures appropriate to formal printed texts, and the World Bank accepts no responsibility for errors. Some sources cited in this paper may be informal documents that are not readily available.

The findings, interpretations, and conclusions expressed in this paper are entirely those of the author(s) and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility whatsoever for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this volume do not imply on the part of the World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries.

The material in this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to the Office of the Publisher at the address shown in the copyright notice above. The World Bank encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommercial purposes, without asking a fee. Permission to copy portions for classroom use is granted through the Copyright Clearance Center, Inc., Suite 910, 222 Rosewood Drive, Danvers, Massachusetts 01923, U.S.A.

The complete backlist of publications from the World Bank is shown in the annual *Index of Publications*, which contains an alphabetical title list (with full ordering information) and indexes of subjects, authors, and countries and regions. The latest edition is available free of charge from the Distribution Unit, Office of the Publisher, The World Bank, 1818 H Street, N.W., Washington, D.C. 20433, U.S.A., or from Publications, The World Bank, 66, avenue d'Iéna, 75116 Paris, France.

ISSN: 0253-7494

John B. Doolette is a senior agriculturalist in the Agriculture Division, Asia Technical Department. William B. Magrath is a land resource economist and was in the Environment Policy Research Division, Environment Department. He is now in the Agriculture Division, Asia Technical Department of the World Bank.

Library of Congress Cataloging-in-Publication Data

Watershed development in Asia.

(World Bank technical paper, ISSN 0253-7494 ; no. 127) Includes bibliographical references.
1. Soil conservation—Asia.
2. Watershed management— Asia.
3. Water conservation—Asia.
4. Rural development projects—Asia.
I. Doolette, John B., 1928–
II. Magrath, William.
III. Series.
S625.A78 1990
333.73'095 90-12722
ISBN 0-8213-1606-0

CONTENTS

FORWARD. v OVERVIEW. vii CHAPTERS 1 1. STRATEGIC ISSUES IN WATERSHED DEVELOPMENT. 1 William B. Magrath and John B. Doolette 1 2. SOIL AND MOISTURE CONSERVATION TECHNOLOGIES: REVIEW OF LITERATURE. 35 John B. Doolette and James W. Smyle 3. 3. ECONOMIC ANALYSIS OF SOIL CONSERVATION TECHNOLOGIES. 71 William B. Magrath 4. 4. ECONOMIC ANALYSIS OF OFF-FARM SOIL CONSERVATION STRUCTURES. 97 William B. Magrath 97
CHAPTERS 1. STRATEGIC ISSUES IN WATERSHED DEVELOPMENT
1. STRATEGIC ISSUES IN WATERSHED DEVELOPMENT. 1 William B. Magrath and John B. Doolette 2. SOIL AND MOISTURE CONSERVATION TECHNOLOGIES: REVIEW OF LITERATURE. John B. Doolette and James W. Smyle 3. ECONOMIC ANALYSIS OF SOIL CONSERVATION TECHNOLOGIES. 71 William B. Magrath 4. ECONOMIC ANALYSIS OF OFF-FARM SOIL CONSERVATION STRUCTURES. 97
William B. Magrath and John B. Doolette 2. SOIL AND MOISTURE CONSERVATION TECHNOLOGIES: REVIEW OF LITERATURE
 SOIL AND MOISTURE CONSERVATION TECHNOLOGIES: REVIEW OF LITERATURE
REVIEW OF LITERATURE
 3. ECONOMIC ANALYSIS OF SOIL CONSERVATION TECHNOLOGIES
William B. Magrath 4. ECONOMIC ANALYSIS OF OFF-FARM SOIL CONSERVATION STRUCTURES 97
4. ECONOMIC ANALYSIS OF OFF-FARM SOIL CONSERVATION STRUCTURES 97
William B. Magrath
5. REVEGETATION TECHNOLOGIES 109
Ajit K. Banerjee
6. LAND TENURE ISSUES IN WATERSHED DEVELOPMENT
Augusta Molnar
7. A FRAMEWORK FOR PLANNING, MONITORING AND EVALUATING WATERSHED CONSERVATION PROJECTS
Glenn S. Morgan and Ronald C. Ng
8. BIBLIOGRAPHIES ON SOIL AND MOISTURE CONSERVATION TECHNOLOGIES
Global Studies on On-Farm Impacts
Impacts on Soil Moisture and Surface Runoff 191
Impacts on Erosion and Sedimentation

×

FOREWORD

This review of watershed development issues arose from the realization that a number of current and planned World Bank-supported projects in the Asia region deal with the linkages between upland productivity and environmental conditions and are, in various ways, motivated by concern with downstream impacts such as flooding and sedimentation. A collaborative effort emerged, involving the Environment Department (within the Bank's Policy, Research and External Affairs Complex) and the Technical Department of the Asia Region. From the start, it focused on deepening the Bank's collective understanding of watershed development. High priority was attached to identifying discrete operational problems that could be better understood from review of existing data and analysis. In addition, the review was to provide overall guidance to the Bank's dialogue with borrowers on strategies for resource management.

Working papers on six issues of direct operational concern were initiated, to be conducted by World Bank staff and consultants in the context of ongoing operations. These working papers, presented as chapters in this report, illustrate methodological approaches to project analysis, summarize the state of the art on solutions to technical problems and discuss institutional and social processes that bear heavily on the viability of watershed management projects.

In addition to the research and operational work that has gone into the working papers, a colloquium on watershed management was held at the World Bank in October 1988. Experts from research organizations and other agencies presented results of their work on a number of topics, including the impact of erosion on crop yields, sedimentation processes, and the impact of land tenure on development investments. The first chapter draws heavily from the presentations at the colloquium, discussions with officials in the region and a review of literature on watershed management.

ain Robbe

Daniel G. Ritchie Director Asia Technical Department

Washington, D.C. July, 1990

OVERVIEW

Watersheds as hydrologic units provide appropriate units for conceptualizing and implementing development investments. They comprise combinations of arable and nonarable land and drainage lines and are utilized by permanent and transient populations with varying skills and commitment to long term resource husbandry. The range of issues relevant to watershed management is enormous and includes environmental issues, crop and livestock production, a whole range of social and cultural concerns, infrastructure planning and entire questions of governance and control. This volume presents the results of a highly selective program of research and consultation.

In Chapter 1, Magrath and Doolette present a discussion of the major watershed development problems of the Asia Region. Taking a policy and investment perspective, the chapter tries to sort out what can and cannot be reasonably expected from watershed management efforts. While not minimizing the importance of linkages between upstream landuse and downstream environmental quality, the authors suggest that there are severe limits to our ability to manage these linkages in a cost effective manner. However, they observe a wide range of technological opportunities for intensifying productive activities in the uplands that, in addition to being privately profitable, will ultimately have positive impacts on downstream areas. In light of this they conclude by proposing an overall approach to watershed development that focuses on small farm development and common property management.

In Chapter 2, Doolette and Smyle examine the fundamental building blocks of watershed management projects. They present a careful review of the impacts of a broad range of land management technologies and illustrate the potential and constraints facing projects that attempt to influence erosion, runoff, and agricultural productivity. They make the point that, despite the availability of a wide range of options, most development projects have relied on a limited and generally high cost set of interventions. Emphasizing emerging, low cost methods of vegetative soil and moisture conservation, the authors reinforce the conclusion that agricultural productivity in upland areas can be intensified in an environmentally sound and sustainable manner.

In Chapters 3 and 4, Magrath demonstrates how benefit-cost analysis techniques can be used to assist in the selection of watershed management technologies. Chapter 3 compares alternative systems for soil and moisture conservation and shows an approach for integrating information on the physical and economic dimensions of erosion and for overcoming uncertainty about the impact of new technologies. Chapter 4 employs a similar approach to small multiple purpose conservation structures that are seldom subject to analysis.

In Chapter 5 Banerjee takes on revegetation of denuded forest land. The discussion addresses both technical issues, especially the need for moisture conservation practices that enhance survival rates, and social considerations, focusing particularly on generating participation in the early stages of project planning. Molnar, in Chapter 6, explores one of the most analytically troublesome subjects in conservation policy, land tenure. The chapter discusses the range of land tenure systems found in the uplands of Asia and examines the forces that operate within these systems to encourage or discourage conservation. Project interventions have often interacted with these forces to produce unanticipated results. The analysis in this chapter argues that efforts to understand local social processes, to utilize existing local groups and to identify privately profitable technologies will have high returns.

Morgan and Ng, in Chapter 7, elaborate the connections between planning, monitoring and evaluation of watershed projects. These projects, which often are spread over large and remote areas, employ new and sometimes unproven technologies, and call for unusually high levels of community participation and local involvement, present unique management problems. In addition to conventional, sound management systems, watershed development projects can benefit from special studies, with carefully thought out experimental designs. Morgan and Ng point the way toward the incorporation of efforts of this kind into standard project practice.

These topics were selected and addressed on the basis of available expertise, and the operational priority of pressing issues. The list of other topics that could have, and need to be, examined is indeed long. However, to have attempted to treat them all would have precluded serious examination of any. There continues, for example, to be pressing need for policy research on livestock management systems in upland areas, for work on environmentally sound upland infrastructure and for serious examination of connections between upland development strategies and water quality. Notwithstanding, we believe that together, the chapters in this volume provide a unified treatment of what we consider to be significant and generally unappreciated topics in watershed management.

1. STRATEGIC ISSUES IN WATERSHED DEVELOPMENT

William B. Magrath and John B. Doolette

Following a description of the significance of watersheds to the Asia region, this chapter defines the problems in watersheds as loss of agricultural productivity due to erosion, deforestation, population pressure and poverty, sedimentation of infrastructure downstream, flooding and erratic stream flows. The main themes emerging from analyses of watershed problems are summarized and a strategy to address them is presented. The rationale for a watershed management approach is explored in the context of physical, economic and political linkages and takes into account the interplay between upland and lowland areas. In proposing how investments may be made to solve watershed problems, a case is made that the most technically and economically efficient approach would focus on site-specific technologies that are environmentally benign. Specific actions that development agencies should pursue in their operations and in discussions with governments are presented.

INTRODUCTION

Land that can be defined as watershed in the Asia region is a significant proportion of the total.1/ Of a gross area of 1,700 million hectares (ha), about 236 million (14%) has slopes exceeding 30% (upper watershed) and another 664 million (39%) in the 8-30% slope category (lower watershed). The 900 million hectares covering more than half the region constitute what is conventionally accepted as the watershed area. However, it is difficult to ignore nonirrigated land below 8% slope, because most strategies discussed for steeper lands are relevant and can usefully be treated on a watershed basis. About 65% of the region's rural population of 1.6 billion live and earn their livelihood in these rainfed, watershed areas. Despite the existence of soil conservation agencies and watershed management authorities in Asian countries, the real managers of these lands are local farmers and villagers. Constrained by poverty and technology, their pursuit of arable land, food and fodder has profound effects on the land and water resources of both upland and lowland areas. Mounting pressure on scarce land and forest resources, stemming from rising human and animal populations, is leading to severe environmental degradation throughout the region.

The extent of degradation has not been exactly measured, but it is manifest in numerous ways, including high rates of soil erosion and declining

^{1/} The simple definition of watershed acknowledges the hydrologic concept of a watershed being the dividing line between two catchments: this has devolved to include the area of land contained within a drainage divide above a certain specified point on a stream. The latter is intended herein, and the land area above 30% slope is regarded as upper watershed and that between 8% and 30% slope as lower watershed.

yields on large areas of agricultural land, reduced livestock-carrying capacity, sedimentation of dams, reservoirs and irrigation systems, and clearance of forests with consequent loss of biological diversity and forest products. Together these trends threaten the ability of upland people to sustain an already precarious existence.

It is misleading to speak of the watershed problem of the Asia region. There are, in fact, multiple problems, some directly amenable to solution through physical actions requiring investment, some requiring policy reform and research first, and some, principally the consequence of geology and climate, which require continued adaptation and accommodation. These watershed problems are, however, connected by the fact that they can best be understood and dealt with in the context of physical planning units defined by the flow of water. It is important to recognize significant physical differences between watersheds of the large river systems of the Hindu-Kush-Himalaya region, characterized by high rates of erosion linked to ongoing processes of tectonic uplift, and the smaller, steeper watersheds of insular Southeast Asia. The latter, which result from quite different geologic processes including volcanic activity and upheavals of the ocean floor, offer considerably different responses to human activity. The review attempts to distinguish between these differences where appropriate and avoid inappropriate generalizations.

DEFINING PROBLEMS AND RESPONSES

Major Watershed Problems

Loss of Agricultural Productivity Due to Erosion. The uplands of Asia include widely diverse land forms. The Hindu-Kush-Himalaya region extends from Pakistan across northern India, Nepal, Bhutan and China and includes the world's highest mountains and poorest countries. The range is in a continuous state of formation as tectonic drift drives the Indian plate under the Eurasian Plate at a rate of 5 cm per year, lifting the Himalayas 1 cm per year in altitude. Volcanic activity, on the other hand, is responsible for the original formation and continuous change of much of insular Southeast Asia. These geologic processes, combined with intense tropical rainfall, are also responsible for the formation and high agricultural productivity of the alluvial plains of the region. Uplifted marine sediments provide yet another facet of the Asian uplands' fragile calcareous soils.

The estimated distribution of the region's major soils is summarized in Table 1.1. The diversity of soil types is often just as pronounced at the local level as for the region as a whole. An important common characteristic of the soils of the region is their susceptibility to productivity loss due to erosion. Those soils that are particularly susceptible, principally the Luvisols, Acrisols, Nitrosols, Lithosols and Ferrasols, constitute nearly 75% of the arable upland area. Of the remainder, volcanics (Andosols), deep loess deposits and some alluvial soils (Fluvisols), which together account for only about 10% of arable area, have deep effective rooting depth and are highly insensitive to productivity loss from erosion.

									(000 ha)						_				
	Bengladash	Shutan	Burna	China	India	Indonesia	Kampuchea	Kores	Lao POR	Halayala	Nepsí	Papus New Guines	Philippines	Sri Lanka	Thai land	Vietnam	Total	Percent of	total
							Rol	ting to	Hilly (8	- 205 510)								<u></u>
Acriaola Caubiaola Chernozeme				20,516 13,986 86	18,614	10,784 979		2, 643 496		24	443	8,310		581			44,225 80,123 36	2.4 1.8	
Ferrasola "ithosola Kastandzens Alviaola			786	27,453 40	10 971	6,199 8,586						578		452			10	- 0.4 1.6	
litrocola Indzola Indocola Indocola Indocola			786 4,964	~	85,830 12,224 14,808 917	1,144 2,104 440							8,433 10,170	402			27,453 44,363 28,502 2,104 15,248	2.6 1.7 0.1 0.9	
indonota ferti sola feronota feronota				11,591 19,880	5,993	567 525					1,298						917 1,865 6,518 11,591 19,330	- 0.1 0.4 0.7 1.1	
lubtotai Ialling to hilly			5,750	92,983	91,389	28,278		8,139		24	1,741	3,866	18,603	1,033		236	240,033	13.8	
						******	Steeply Die	wected	to Hounta	inous (Bic	yan > 30	28)							
criacle ambigole endzinas errelacle haedzene	1,863	2, 665 524	34,879 9,256	108,038 4,470	-	13,673 13,894 2,112 5,006		1,205		448	5,976	1,256 20,256 4,004		938 154			168,520 71,795 6,115 5,008	9.8 3.0 0.1 0.3	
ithosols iviaola reyzens itrasols		1,156	1,610 817	857,244 2,695	1,775 29,042 2,427	6,349 8,003	42	47	64	400 1,160	3,103	691	2,348	106 443	1,356 638	907 408	1,775 402,035 16,155 2,343	0.1 23.4 0.9 0.1	
ngonola Ndonola		123			7 ,45 4 491	814 6,879		182				1,785	1,248				7,777 805 9,494	0.5 0.4	
stotal lesply dissected to mountainous	1,863	4,450	45,562	472,447	62,710	55,722	42	1,384	64	2,008	9,079	27,942	8,591	1,641	1,994	1,315	691,824	38.6	
stal sloping			51,812	565,399	154,099	82,010		4,523		2,032	10,820	31,830	17,194	2,674	1,994	1,551	931,857	52.6	
ital area	13,400	4,700	65,800	932,600	297,300	181,200	17,700	9,800	23,100	32,900	13,700	45,000	29,800	6,500	51,200	32,500	1,727,600		
									- Percent		-								
incent ling to hilly			8.7	10.0	80.7	14.5		82.0			12.7	8.6	45.6	15.9		0.7	13.9		
emply dissocted to munitainous	13.9	94.7	69.2	50.7	21.1	30.8	0.2	14.1	0.8	6.1	65.3	42.1	12.1	25.2	8.9	4.0	40.0		
ercent staping	13.9	94.7	78.0	60.6															

India 1.1: EXTENT OF SLOPING LAND IN THE ASIA REGION BY SOIL TYPE AND SLOPE CLASS (000 hs)

Sources: FAO/UNESCO, "Morid Soil Nee." Total land erese from World Resources Institute, <u>World Resources Resort</u> (1988).

A study of the costs to the economy of soil erosion on the uplands of Java illustrates the magnitude of these damages. Based on analysis of factors causing erosion, the impact of erosion on the productivity of different soils, and the economics of alternative cropping systems, it was estimated that erosion costs the economy US\$315 million annually. In Nepal, overall yields of cereal fell by over 17 per year from 1970/71-1980/81 in the Hills (Yadav, 1987) (Table 1.2). Erosion's role in this decline is not known but in the Terai where erosion is less significant, yields were essentially constant. The impact of runoff and erosion on productivity and yield is discussed in Chapter 2.

	H	ills	T	erai	Total Nepal		
Crop	Percent	t-statistic	Percent	t-statistic	Percent	t-statistic	
Paddy							
Area	1.98	8.93	0.71	2.96	0.93	4.10	
Production	0.72	1.45	0.73	0.87	0.73	1.03	
Yield	-1.24	-3.25	0.02	0.02	-0.20	-0.39	
Maize	· · ·			• •			
Area	0.72	4.94	-0.86	-3.99	0.24	1.81	
Production	-1.14	-2.30	-0.88	-1.11	-1.06	-2.62	
Yield	-1.84	-4.70	-0.02	-0.02	-1.30	-3.68	
1 K 1 K 1	а ^н (
Wheat	the the second						
Area .	2.08	3.41	8.50	6.60	5.82	10.18	
Production	. 3.86	6.05	12.79	5.17	8.64	7.54	
Yield	1.74	3.51	3.96	2.13	2.67	2.74	
Barley							
Area	0.24	1.00	-3.35	-1.89	-0.71	-2.35	
Production	-1.61	-3.48	-0.20	-0.08	-1.19	-1.83	
Yield	-1.85	-4.16	3.25	2.61	-0.49	-1.26	
· · · · · · · · · · · · · · · · · · ·	· · · ·		· · ·				
Millet	0.69	2.07	-0.24	0.56	0.54	1.78	
Area			-0.24 0.16	-0.56			
Production	-0.54	-0.86		0.31	-0.44	-0.81	
Yield	-1.22	-3.54	0.41	2.41	-0.97	-3.32	
Total cereals	•						
Area	1.27	8.77	1.50	5.90	1.42	8.13	
Production	0.12	0.38	1.44	2.30	0.95	2.10	
Yield	-1.14	-3.87	-0.06	-0.12	-0.46	-1.39	

Table 1.2: NEPAL - ANNUAL GROWTH RATE OF CEREAL CROP AREA, PRODUCTION, AND YIELD, BY REGION, 1970/71-1980/81

Notes: Computed from unpublished data on area, production, and yield from the Department of Food and Agricultural Marketing Services, Nepal. 1979/80 is omitted because it was a drought year. Investments in agricultural research and extension oriented toward upland crops have lagged behind those for lowland areas, as evidenced by considerably lower rates of penetration of high-yielding varieties in the uplands. In Nepal, for example, high-yielding varieties account for 33% of rice, 91% of wheat, and 30% of maize in the Terai, while in the Hills, respectively, only 21%, 87% and 16%, and in the mountains only 6%, 72% and 7% (see Table 1.3).

Crop	Mountain	Hill	Terai	Nepal
Paddy	6.0	21.0	33.0	20.0
Maize	7.0	16.0	30.0	18.0
Wheat	72.0	87.0	91.0	84.0
Potato	6.0	5.0	5.0	5.0

Table 1.3AREA COVERED BY IMPROVED VARIETIES IN NEPAL
(Percent of Total Cropped Area)
(1985)

Source: R.M. Joshi and M.K. Khatiwad, "Agriculture Handbook Nepal," 1986.

<u>Deforestation</u>. Approximately 19% of the region is under closed forest. It is estimated that forest cover is receding at around one percent per year and that, in addition, degradation through overcutting and grazing is reducing productivity on much of the remaining stand. In much of the region forest resources are integral to the agricultural system as sources of fodder and minor products. In India, for example, fodder available from forest and wasteland is estimated to be almost 30% of the total availability (600-620 million tons, dry matter).

It is important to understand the dimension of degeneration in forest areas. In the Asia region, the steeper upper watershed areas were mostly naturally forested. Over time, characteristically they have been overexploited for timber, fuel and fodder, and now many areas are no longer forested and in others the forest is extremely degraded. Regarding runoff/erosion, evidence suggests that trees by themselves in such circumstances provide little soil conservation benefit except to the extent that they foster the understory.2/ This understory of shrubs, herbs and litter is what protects the soil surface, maintaining the natural higher rates of infiltration. Without it, even dense forests, as seems to be the case with some tree species, have high rates of erosion even when reasonably managed, while degraded forest with dense undergrowth of grass and shrubs with intact litter have low erosion rates. Data on volcanic soil with 10% slope in Indonesia

^{2/} This discussion pertains to rill and interrill (sheet) erosion. At the same time it is readily acknowledged that the root system of trees is probably the best of all kinds of vegetation in providing slope stability in landslip-prone areas.

show the estimated rates of surface erosion in tons/ha/year as 5 tons or less for both degraded forest with dense undergrowth and a pristine forest with litter intact, yet greater than 75 tons for both a 40-year-old teak plantation and a forest with all litter removed (Carson, 1989). In discussing the ambivalent effects of vegetative cover for soil erosion control, Stocking (1988) points out that even at slopes of 55%, rates of erosion from undisturbed forest are usually less than 0.5 tons/ha/year, whereas planting a monoculture of Eucalyptus species as an erosion control measure stifled ground cover and accelerated sheet erosion.

<u>Population and Poverty</u>. The population of the upper watershed areas in Asia is roughly 128 million, of which 27 million people live in the Himalayan region, 50 million in the steep uplands of China and about 30 million in the uplands of insular Southeast Asia.

Country	Rural Population	Upper Watershed Population Slope >30Z			
Bangladesh	84.62	0.58			
Bhutan	1.25	1.25			
Burma	28.88				
China	577.10	50.00			
India	586.05	17.50			
Indonesia	124.80	12.00			
Kampuchea	-	-			
Korea	14.94	6.55			
Lao PDR	3.15				
Malaysia	9.98				
Nepal	15.81	8.46			
Papua New Guinea	2.92	1.34			
Philippines	41.50	18.00			
Sri Lanka	12.72	2.92			
Thailand	43.13	8.42			
Vietnam	50.64				
Total	1,598.19	127.72			

Table 1.4: UPLAND POPULATIONS OF THE ASIA REGION (Million)

Source: Bank Staff Estimates.

There are few reliable data to indicate whether poverty and landlessness are more acute in upland areas than elsewhere in the region. Data from Indonesia indicate that landlessness is more common in lowland villages than in the uplands of Java, but conclude that many households in the uplands are among the poorest in Java (World Bank, 1989a). In the Philippines, it is estimated that recent immigrants to the uplands have an average per capita income of Peso (P) 2,168, well below the official poverty line (World Bank, 1989b).

Downstream Sedimentation. The deposition of eroded material in reservoirs and irrigation systems is a major management problem throughout the region, yet a relatively small percentage of the total number of watersheds have such infrastructures. It is clear that sedimentation imposes a high cost in terms of shortened investment life, high maintenance requirements and reduced services. Sedimentation on Java alone is estimated to cost the economy about US\$26-91 million per year (World Bank, 1989a) (Table 1.5). Comparisons of the design and currently estimated lives of reservoirs in India show that erosion and sedimentation are not only severe and costly, but accelerating (Table 1.6). It is now obvious that the original project estimates of expected sedimentation rates were faulty, based on too few reliable data over too short a period.

	West Java	Central Java	Yogyakarta	a East Java	Java
On-Site	141.5	29.1	5.7	138.6	315.0
Off-Site					
Irrigation System Siltation	1.7-5.7	0.8-2.7	0.1-0.5	1.2-4.0	7.9-12.9
Harbor Dredging (1984/85)	0.4-0.9	0.1-0.3	· •	0.9-2.2	1.4-3.4
Reservoir Sedimentation	9.0-41.3	3.5-16.3	-	3.8-17.3	16.3-74.9
Total	152.6-189.4	33.5-48.4	5.8-6.2	144.5-162.1	340.6-406.2

Table 1.5: TOTAL ESTIMATED ANNUAL COSTS OF SOIL EROSION ON JAVA (US\$ million)

Source: World Bank (1989a).

<u>Flooding</u>. Although floods are a natural feature of the lowland areas of the region, they nonetheless impose severe hardship on local population and national economies. In India between 1953 and 1976, 1,240 lives were lost, 77,000 cattle destroyed and annual property damage occurred in excess of Rupees (Rs) 2 billion annually due to floods. In 1988, the flood in Bangladesh claimed some 1,500 lives. As Rogers <u>et al</u>. (1989) point out, flood disasters in lower basins are caused by two much rainfall (or snow melt) in too short a time for the soil and the channels to handle, and are determined more by basin characteristics, river constrictions by bridges and roads, large amounts of compacted surface in cities, glacial outbursts, landslides, inadequate levees and increasing flood plain occupancy, than by forest use or even forest conversion per se.

Reservoir	Assumed Rate (acre-feet	Observed Rate per annum)	Expected Lif as Percent o Design Life Z		
Bhakar	22.000				
Maithon	23,000 684	33,475 5,980	68 11		
	•	•			
Mavurakshi	538	2,080	27		
Nizam Sugar	530	8,725	6		
Panchet	1,982	9,533	21		
Ramgange	1,089	4,366	25		
Tungabhadia	9,796	41,058	24		
Ukai	7,448	21,758	34		

Table 1.6:	SILTATION	OF	SELECTED	INDIAN	RESERVOIRS

Source: Brown and Wolf (1984).

There are no reliable estimates of the economic damages caused by flooding. In addition to direct damages, floods, or more properly, the expectation of flooding, reduce perceived returns to investment and probably slow growth to a significant but unmeasurable degree. While it is likely that the floods of 1988 were the worst on record from an economic perspective, there is evidence that the physical severity of flooding has not worsened. An often neglected positive effect of flooding downstream is the delivery of nutrients to agricultural land. Soil moisture stored when flood waters recede also contributes to dry season yields. For example, in the dry season following the 1988 Bangladesh floods, production reached near-record levels.

Dry Season Stream Flows. A direct consequence of excessive surface runoff that contributes to flash flooding is the reduced temporary storage of water in the soil profile and groundwater aquifers. Some of this stored water would normally have rejoined the surface water and contributed to stream flow in the dry season. Reduced dry season stream flow has serious consequences on downstream uses for power, irrigation and municipal supplies.

Policy Responses

<u>Governments</u>. Governments in the region and multilateral and bilateral donors have attempted to respond to the various watershed management problems of the region in a number of ways. Responsibility for watershed management is typically disbursed across a number of government agencies, including agricultural and forestry line agencies and in some cases freestanding watershed development agencies and soil conservation services. The common administrative approach is to focus on the implementation of physical investments on public and private land, often with a predominant single technical solution, and on encouraging the adoption of conservation-oriented farming practices on private land. Traditional low-technology farming systems have frequently been not only risk-minimizing, but also soil-conserving, whereas cash crops are much riskier in both respects. Cash cropping has sometimes exacerbated erosion problems (Carson, 1989).

<u>Donors</u>. Greater interest in environmental issues by donor agencies has led to an increase in the level of support for watershed management projects and programs. World Bank involvement in watershed management has, over the past decade, primarily been through forestry, agriculture and integrated rural development projects. To the extent that there has been a Bank strategy towards watershed development, it has focused on attempting to improve the productivity of smallholder agriculture, thereby leading to a reduction in environmental deterioration. Table 1.7 lists Bank-financed projects now under implementation in the Asia region.

	PROJECTS UNDER IMPLEMENTATION
China	Red Soils Area Development Gansu Provincial Development
Indonesia	Yogyakarta Rural Development Upland Agriculture and Conservation Forestry Institutions and Conservation
Thailand	Northern Agricultural Development <u>/a</u>
Philippines	Central Visayas Regional Watershed Management & Erosion Control
Bhutan	Forestry Development
India	Kandi Watershed and Area Development <u>/a</u> Himalayan Watershed Management Haryana and Jammu Kashmir Social Forestry National Social Forestry Pilot Project for Watershed Development
Nepal	Second Rural Development Mahakali Hills Community Forestry Development and Training Second Forestry Marsyandi Hydroelectric

Table 1.7: WORLD BANK-ASSISTED WATERSHED MANAGEMENT RELATED PROJECTS UNDER IMPLEMENTATION

<u>/a</u> Recently completed.

The Evolution of Conservation Technology. The pattern of investment and organizational design followed by governments and donors has failed to keep pace with the rapid evolution of soil and moisture conservation technology for tropical situations that has occurred during the past 20 years. Early approaches to soil conservation were developed for large landholdings in temperate regions and were based on structural and engineering treatments, such as graded earth banks and broad grassed waterways. Attempts to apply these approaches to developing country agriculture, characterized by small holdings, diverse cropping systems, extremes of topography and climate and severe limits on financial resources and skills, have proven disappointing. With rigorous attention to appropriate design criteria, engineered systems can, under some circumstances, function in tropical environments. However, experience has shown that these criteria are usually lacking. Moreover, the high unit costs of these technologies and their indivisibility imply that they are beyond the means of all but the most favored farmers and communities unless heavily subsidized. Even with government subsidies for initial investment costs, recurrent costs in the form of maintenance and land taken out of production seem, judging by farmer response, to make these approaches uneconomic.

While recognition of the technical shortcomings of traditional approaches to conservation--so far as smallholdings in the tropics are concerned--is growing, alternative technical and institutional approaches are emerging. For example, although it has long been known that maintaining continuous vegetative cover is the most effective way of reducing sheet erosion, it has been difficult to promote heavy applications of mulch and retention of significant areas under permanent cover on small farms. Typically, the pressure on smallholders to cultivate all available land and to utilize all available fodder militates against maintenance of permanent vegetation. Even when individuals farmers are inclined toward such practices, the widespread practice of free grazing makes such a strategy impractical.

The concept of conservation-oriented farming in the uplands in which farming systems and individual production treatments combine to conserve soil and water and improve total production and net benefit is now recognized. Currently, two complementary strategies for the development of conservationoriented upland farming are evolving. The first is the adoption of a problemsolving approach aimed at identifying, on a site-specific basis, the key constraints to and opportunities for expanding output. The second, possible because of the uniquely nonsite-specific characteristics of vetiver grass, Vetiveria zizanioides, is the widespread promotion of this grass for use as a contour hedgerow. Properly balanced, these two strategies can form the basis for a comprehensive approach to treatment of upland areas in the Asia region. A focus on small farmer development does not deny the seriousness of downstream watershed problems in the region. It is, however, a recognition of both the difficulties of reducing downstream problems and of the complementarities between agricultural development and environmental improvement. The next section elaborates on the difficulties of dealing with downstream damages through land-use changes, such as reforestation and development of vegetative barriers, in upper watersheds, and the following section returns to the theme of strategies for small farmer development and common property management.

INTERSECTORAL LINKAGES

Discussions of watershed management are generally dominated by concern about physical linkages related to movement of soil and water within drainage basins. While the significance of the hydrologic cycle for water resource planning cannot be overstated, research and project experience, however, show that conventional approaches to watershed management have little effect. Often neglected in analyses of watershed management are political, economic and social linkages between upstream and downstream. Understanding of and intervention in these three areas provide an underexploited avenue to improve productivity and the quality of life of upland populations.

Physical Linkages

The need for watershed management arises from the interconnected nature of soil, water and land-use systems. Explicitly recognized is the fact that upstream land use generates not only direct outputs such as timber, crops and fodder, but downstream impact on sedimentation and water yields. In the absence of unified management, or some comparable arrangement, upstream users will adopt practices without regard for impacts on downstream residents. An additional consequence is that the party that undertakes watershed management will not be able to charge for all the services it provides. Charges are feasible for certain products, such as timber, but experience with cost recovery through charges for reductions in sedimentation and flood control are not encouraging.

<u>Types of Physical Linkages</u>. The physical connections between upland and lowlands are manifested in two specific ways: (a) <u>sedimentation</u>, the delivery of eroded material into or adjacent to waterways and infrastructure; and (b) <u>stream flows</u>, the quantity, distribution and timing of flows from upper catchment to lower channels. The two are intimately connected by the fact that a major source of sediment movement is provided by raindrops as they strike and flow across the soil surface. In addition, the ability of soil to permit rainfall infiltration and (at least temporarily) retain moisture tends to be associated with its ability to withstand detachment and transport. Another major source of sediment when it occurs mostly in young active mountain systems, subject to high rainfall, is mass wasting.

The initial movement of soil particles is termed detachment and ultimately all eroded material is deposited downhill and then downstream. However, the processes of delivery are highly dependent on the local environment, including catchment size and topography, levels and intensity of rainfall, slope, soil type, vegetation and land use. The time that may elapse between the initial detachment of the soil and its final flushing out from the system is frequently measured in decades for watersheds larger than 100 km².

Flows of water are much faster but no less complex. The movement of water from its original landfall, to minor and major channels and ultimately to the sea, is influenced by antecedent moisture conditions, the inherent infiltration and storage capacity of the soil, vegetation and land use. Typically, in a mild rain and during the initial phases of more intense storms, water that reaches the ground through any vegetative canopy first enters into storage in the upper layers of the soil. A portion of this stored water will evaporate, some will be taken up by plants and transpired, and the remainder will percolate to the groundwater from which some portion will be returned as surface water. As the storage capacity of the soil diminishes, water accumulates on the land surface and moves downslope through various processes of inter- or overland flow. Depending on the length and intensity of the storm, topography and other factors, this inter- or overland flow may continue to a watercourse or may end in percolation into the downhill soil. If a storm of sufficient duration occurs and soils begin to be saturated or a storm of sufficient intensity occurs such that the soil's infiltration capacity is

1

1.

exceeded, then several processes (surface and subsurface) deliver water to the drainage lines and streams. Vegetation affects these processes by storing water on leaf and stem surfaces, increasing surface roughness (thus slowing runoff and affording greater opportunities for infiltration), adding to the storage capacity of the soil by the presence of roots, reducing the initial intensity of raindrop impact, and to a minor extent, by immediately absorbing moisture through the root system.

The two important aspects of stream flow are quantity and distribution over time. Quantity of flow has obvious implications for the viability of downstream investments in power, irrigation and municipal water. Alternative land uses can have significant impact on water yields principally through the substitution of more or less moisture-using vegetation. Hamilton and King (1983), reviewing the literature on the impact of forests on stream flow, found that forests are heavy water users and that conversion of forested watersheds to agricultural or other uses tends to increase total water yield, but increase peak flow and stream flow for any storm event.

The distribution of flow throughout the year also has obvious implications for downstream investments and stream bank erosion, but peak flows are more importantly related to the danger of flooding. There is some uncertainty as to the effects of environmental conditions in upper watersheds on the frequency and severity of flooding, because the effects diminish as distance down the watershed increases.

Disentangling the impact of upland land use from other factors in determining the frequency and severity of downstream flooding has proven an elusive task. Both the quality and quantity of historical data on land-use changes and flood occurrence are so poor as to make statistical analysis impossible. The large number of variables involved similarly makes theoretical analysis speculative and somewhat hazardous. A consensus among policy analysts is now starting to emerge, however, that suggests that agriculture and forestry in upper watersheds play a relatively minor role in exacerbating the effects of major catastrophic flood events (Hamilton, 1987; Ives and Messerli, 1989; Rogers et al., 1989).

Data on annual runoff, sediment load and high and low flows for the Brahmaputra river system for the period 1955-79 show no definitive trend towards a deterioration in environmental quality. Moreover, the data on high and low flows are not consistent with the generally accepted expectation of land degradation causing higher peak flows and lower dry season flows (for details see Ives and Messerli, 1989, pp. 136-7). Data on the incidence and physical severity of floods in the Ganges-Brahmaputra delta do not support the hypothesis of a trend toward worsening floods. It is likely, however, that concern over flood damages is growing as a function of greater economic activity in flood-prone areas.3/

^{3/} See, for example, Kumra and Rao (1985) who found that the value of agricultural flood damage has been falling in Bangladesh while nonagricultural damage has been increasing.

<u>Erosion-Stream Flow Interaction</u>. As noted, the tendency of some soils to resist erosion is often associated with their infiltration and storage capacities. In addition, land management practices to reduce erosion frequently have the effect of reducing runoff (see Chapter 2). Another way in which erosion and stream flow may interact to exacerbate the danger of flooding is via the accretion of river bottoms. Diminished channel capacity due to sedimentation lowers the magnitude of flow required to cause flooding and may contribute to the frequency and severity of flood damage.

<u>Watershed Management Investments</u>. In practice, most watershed management projects have multiple objectives. In many circumstances, it is possible to improve the environment and increase the output of goods and services at the same time, particularly when a project also averts long-term economic losses due to productivity declines. This aspect of trade-offs in watershed management is frequently misunderstood.

The fact that watershed management projects can accomplish more than one objective has important policy implications. Generally, tax or subsidy schemes are recommended to resolve an externality problem in order to "internalize" it. Farmers might be given subsidies to adopt soil conservation practices or be taxed if they fail to adopt. Subsidies are the more frequently used approach and their budgetary cost is justified on the basis of reduced downstream damages. However, when watershed management practices make both upstream and downstream residents better off and leave no one worse off, this simple justification no longer holds. Some subsidies may, however, be justified on other grounds, such as an inability on the part of poor farmers to finance purchased inputs or to wait for the maturation of tree crops (that is, capital market imperfections). $\underline{4}/$

In order to be both multipurpose and to leave no one worse off, watershed management projects must be able to address a characteristic of unimproved watersheds, namely, technical inefficiency, or to introduce technological change. Typically, projects do both.

Economic Linkages

While physical linkages remain the basis for watershed management interventions, a strategy that also takes advantage of social, economic and institutional linkages between upstream and downstream provides the greatest opportunity for success. Upland areas have critical connections with national economies in three significant ways.

Sources of Raw Materials. Despite difficult conditions, upland areas often possess a comparative advantage in the production of certain commodities. In much of the Asia region, timber and grazing represent the primary resources with potential in upland areas. In Indonesia (Roche, 1987), upland

^{4/} It is conceivable that situations will arise where there are real and significant conflicts between alternative uses. This situation was first analyzed by Gregory (1955) and (1957). Such conflict and the tax-cum-subsidy schemes it suggests, are more relevant to developed country, low-population density watersheds.

areas may have advantages in specialty crops such as clove, high-value horticultural crops and animal products. Significantly, many agricultural products for which upland areas are well suited possess a high income-elasticity of demand, so that income growth in lower areas can contribute to strengthening economic linkages between uplands and lowlands. In so doing, the strengthening provides opportunities for expanding sustainable agriculture in the uplands.

Sources and Sinks for Labor. Upland areas in the region were historically, with some exceptions, notably Nepal's Terai, relatively sparsely populated. Recent increases in population pressure in more favored downstream environments has resulted in increased migration to the uplands. This has been offset to some extent by growth in nonfarm employment opportunities in urban areas. Seasonal employment opportunities in lowland agriculture and urban areas are increasingly important contributors to upland income. Shifts in the opportunity cost of labor brought about by changing opportunities off the farm also have important implications for farmer interest in adopting more intensive soil conservation measures. On the one hand, they may be more likely to afford the costs but, on the other, have less time.

<u>Markets for Downstream Production</u>. Because of low incomes and high transport costs, upland areas have generally not been major markets for goods produced in lowland areas. Upland areas, however, where incomes have grown and infrastructural investments have reduced transport costs, do constitute significant markets.

Political Linkages

Upper watersheds, in addition to being physically remote, are often politically remote as well. The attention of national policymakers is naturally drawn to the concerns of urban and more affluent lowland agricultural populations. To the extent that developments in upper watersheds are a major item on the national agenda, it is because of their impact, via the physical linkages related to movement of sediment and water, on the well-being of downstream groups. Political forces further bias policy and investment against upland areas in other ways. Watersheds are physical units that frequently do not conveniently overlap with administrative boundaries. Although the downward flow of the physical consequences of land use do not observe these boundaries, limits on the ability of government agencies to transcend them are severe.

Asymmetry and Rigidities of Linkages. From the perspective of investment analysis and policy-making, the most important aspect of the various linkages described in this chapter is whether or not they can be manipulated. In this respect, certain of these linkages are either rigid and hence not amenable to manipulation or they are asymmetrical. The most obvious asymmetry is the one-way flow of soil and moisture in watersheds. This implies a role for involvement by public agencies.

<u>Temporal Asymmetry</u>. As noted, the movement of sediment in watersheds may involve extended periods of time. A corollary to this is that remediation may also involve long time delays after the intervention. Pearce (1986) estimates that the time required for sediment to be flushed from drainage systems of large basins may exceed 40 years. In a present value sense, any reductions in sediment made possible by the adoption of watershed management practices will be of minimal economic significance. However, there are downstream benefits to be achieved within shorter time periods from conservation land treatments, like contour hedge rows, as the focus moves upstream to subwatersheds. These benefits relate to both sediment and flooding in nonmajor storm events (Hamilton, 1988).

<u>Geologic Erosion</u>. While in principle it is possible to stop erosion, the underlying potential of soil to move is frequently so great as to preclude stopping erosion at any reasonable economic cost. This underlying rate of soil loss is termed geologic or natural erosion and provides a partial but useful guide to the design of soil conservation policies. Much of the steep uplands of the Asia region are naturally prone to erosion due to their geology.

<u>Asymmetry of Policy Linkages</u>. Agricultural policy linkages, particularly price and incentive policies, between uplands and lowlands have not received the attention they deserve. Theoretical analysis of farmers' incentives for soil conservation, however, have been largely unable to demonstrate how these linkages operate. Barbier (1988), for example, using an optimal control framework, modeled farmers' decisions to implement soil conservation practices and showed that price of products and other agricultural policies could play a significant role in determining privately profitable soil management strategies. Barrett (1988), using a similar approach, found product price to be unrelated to soil management.5/

Taking a different approach, Roche (1987) analyzed the impact of these policies and growth patterns on upland land use in Indonesia. He notes that rapid lowland income growth, due in part to the successful intensification of irrigated rice production and industrialization, influenced by high income-elasticities of demand for vegetables and fruits, has created an incentive for upland farmers to shift to cropping patterns that are less likely to cause erosion. Observations further indicate that in upland areas with access to good markets, and particularly where the demand in these markets for meat and livestock products is strong, the incentive for establishing and maintaining permanent vegetation is also strong. The aggregate environmental impact of these incentives has never been assessed.

Hyde (1988) explored the consequences of unemployment in lowland areas of the Philippines on the environment of the uplands through a general equilibrium model. The model, which allowed migration as an equilibrating process, showed that tax policies which in the aggregate favor capital have a significant influence on migration to upland areas. Similarly, rice subsidies were found to increase both the agricultural labor force and the upland population. Trade policies that would encourage exports were found to have a positive impact on the uplands via an expansion of lowland industrial employment.

^{5/} Similar models have been presented by McConnell (1983), and Bhide, Pope and Heady (1982).

INVESTING TO INFLUENCE LINKAGES AND SOLVE PROBLEMS

Altogether, the data reviewed on watershed linkages suggest that although physical connections shape the environment for investment planning and policy interventions, there are marked rigidities in both time and space. These rigidities limit the scope for economically viable investments aimed primarily at resolving off-site and downstream problems. Fortunately, there is ample opportunity for directly productive investment in upland areas. Most of the approaches that would fit into such a strategy are also consistent with the long-term objective of preventing or ameliorating the downstream consequences of watershed deterioration.

Essential elements of a strategy for upland development are the same as would apply in lowland areas and include the need for a positive incentive framework and the availability of appropriate technical innovations. In contrast to lowlands, upland areas are characterized by much greater agro-ecological diversity, are less amenable to large-scale investments (especially irrigation), and generally face runoff and soil erosion problems. Accordingly, strategies for upland areas require greater emphasis on generating a capacity for site-specific recommendations, and particularly a focus on improving rainfed agriculture through low-cost methods of soil and moisture conservation. Due to the greater reliance of upland farm households on nonarable land such as forest and communal grazing land, farm development strategies in the uplands also need to focus more on diversification than farming systems in the lowlands which can be more commodity-oriented.

Technologies and Techniques for Improving Upland Agriculture

Although the development of agricultural technologies for upland areas lags far behind those for the lowlands, the general principles for increasing yields are known and numerous interventions can be recommended for specific applications. The two key constraints to improving agriculture in upland areas relate to soil and moisture conservation.

In practice, productivity decline due to soil erosion is related to the following soil characteristics (discussed in more detail in Chapter 2): rooting depth, water reserves available to the plant, distribution of plant nutrients in the soil profile and the chemical/physical properties of the subsoil. Of primary importance for design of an upland strategy is the connection between soil moisture and erosion. In tropical soils, water-use efficiency (kg dry matter produced/liter of water use) can be cut more than half, despite high rates of fertilizer application, if topsoil is progressively removed up to 35 cm.

General Approaches to Enhancing Upland Agriculture

Better agronomic techniques, improved varieties, higher-quality seeds and improved pest management and tillage practices often provide the best opportunities for increasing agricultural output. A key technique that is integral to improvements in rainfed agriculture is contour cultivation. Compared with the traditional up-and-down slope cultivation, contour cultivation and ridging across the slope $\underline{6}$ have produced 6-66% yield increases on 3-32% slopes, with further increases if combined with other treatments such as mulching. The evidence to support the general recommendation that all rainfed cropping activities, annual or perennial, be carried out on the contour is overwhelming.

Recent and less frequently the subject of published research is the application of cropping/farming system technology to on-farm soil conservation. It is motivated by the acknowledgement that social, economic and tenurial factors influence farmers' ability and willingness to adopt and maintain soil conservation measures. Farmers, especially poor smallholders, need direct short-term benefits from any innovation in their farming systems. Investments in soil-conservation measures apparently have not met this criterion and, indeed, frequently have been perceived as taking away from the farmer's limited resource base by demanding space for banks and water disposal structures. By contrast, downstream farmers in irrigated areas respond quickly to investments in similar structures that have immediate benefit, as is the case with levees for rice paddies.

Farming systems research has not commonly been applied to soil conservation. Yet attempts to implement physical conservation works and land-use planning are usually frustrated by lack of acceptability. It becomes important, therefore, to find points within farming operations where practices that meet soil conservation objectives and increase incomes without unduly increasing risks can be introduced.

Specific Techniques

While there is clearly a need to design a package of conservation and yield-increasing interventions to be consistent with the needs of a specific site, there are several generic approaches which have widespread usefulness as well as potential for misapplication. They can be grouped as structural and vegetative/cultural. Current conservation practices in the Asia region focus on structural approaches and there is a need to assess the potential for fuller utilization of alternatives. While Chapter 2 provides a fuller discussion of these approaches, some aspects are relevant to a strategy for upland development.

<u>Structural Treatments</u>. Structural treatments, earth banks, land leveling, and terracing have been applied extensively in watershed projects throughout the region. Experimental and project-level results with structural measures have been mixed but generally poor. These observations may seem inconsistent with the fact that terraces, in particular, are a widespread and integral part of the agricultural landscaping of the region (see Box 1.1). However, several features of structural approaches may account for their generally poor performance.

^{6/ &}lt;u>Contour cultivation</u> refers to cultural treatments that follow surveyed guidelines linking points of the same elevation marked at 2-3 m vertical intervals, whereas <u>across-the-slope</u> refers to treatments at right angles to the general slope direction and, hence, deviate at times from the true contour.

Box 1.1: ROLE OF BENCH TERRACES IN ASIA

Bench terraces are part of the landscape of the Asia region, especially Southeast Asian countries, China and the Philippines. <u>Reverse-</u> <u>sloped bench terraces</u> and <u>outward-sloped bench terraces</u> are used in steep uplands of humid and semi-arid regions, respectively, to change the slope of the land in order to increase the area that can be cultivated "safely" and "control" runoff. <u>Level bench terraces</u> (irrigation-type) are used for rice paddy and <u>conservation bench terraces</u> are used in arid regions to harvest rainfall on part of the slope and direct it to a level bench.

While it may be questionable whether bench terraces represent the best treatment for the respective locations in terms of land-use capability or meeting the needs of the population, they are in place over vast areas and future land development programs should start from this reality.

A review of research on the effectiveness of terraces of the first two types in uplands regarding sediment yield, runoff and productivity (Chapter 2) highlights widely divergent results. Although terrace technology is well understood and engineering design readily available, it is frequently poorly applied. There are three common shortcomings: failure to relate soil type-rainfall characteristics-cropping pattern to design; not viewing the water disposal component of terrace systems as integral--farmers are reluctant to lose the 3-5% land required--and compromise in design increases runoff and damage; shoddy operation and maintenance by farmers compared with level benches used for paddy, which implies a questionable economic situation.

Developing a program for correcting these shortcomings should start by defining the treatment options. Carson (1989) discussed the limitations of terraces in several agro-ecological zones in Indonesia and suggests some appropriate soil conservation strategies. The key issue is identifying a farm production system attractive enough to induce the majority of occupants to become involved and finding a way for them to convert to it. After this, the treatment options can be laid out, with priority going to vegetative-cultural measures which should be cheaper to implement and maintain. For example, if the horizontal grade of the existing terrace exceeds 1%, judicious use of a vegetative barrier such as vetiver grass would induce natural and rapid leveling and at the same time control the effluent point, which in turn would change the dimension of waterway rehabilitation. Only then would structural treatments be considered for problems still without solution.

The upper limit of slope is normally 60% for any sort of terrace. Beyond this slope, riser height and width are too great, bench width too narrow, and the net arable area down to about 50%.

- (a) <u>High Unit Costs</u>. Costs for terracing in Indonesia are estimated to range from US\$400-1,000/ha. Construction of earth bunds in India is estimated to cost between US\$23 and US\$150/ha depending on soil type and slope. Aside from high initial costs and the financing burden they impose, structural techniques inevitably require high levels of maintenance. Failure to maintain structures properly can lead to their total failure and can actually accelerate soil loss.
- (b) <u>Inappropriate Design</u>. With structural measures there has been widespread failure to adjust designs and standards to accommodate the engineering properties of particular soils and local rainfall patterns. The inherent instability of some soils can result in massive failure of structures. For example, saturation of the topsoil over relatively impervious subsoil results in soil slumping.
- (c) <u>Inadequate Drainage</u>. Operating on the principle of slowing water, with structural measures water is usually directed along field boundaries toward natural drainage ways. Drainage ways need to be large enough to accommodate peak flows, otherwise they will be overtopped, damaging the adjacent field or the drains themselves will fail. Moreover, the natural drains may receive more runoff than they are capable of safely handling, resulting in a danger of gully erosion. The planners' incentive to design drains to accommodate peak flows runs counter to the farmers' desire to minimize land taken out of production. This conflict usually results in no drains or undersized drains prone to failure.
- (d) <u>Exposing Subsoil</u>. Construction of soil conservation structures usually entails earth movement that exposes infertile subsoil. This reduces yields in early years of the structure and amounts to an additional construction cost.

Research has added very little to traditional farmers' understanding of the potential use of structural measures. Detailed analysis of terrace designs and maintenance in Nepal, for example, has shown that use of outwardsloping terraces is an effective means of allowing surplus water to move off the terrace while causing minimal surface erosion. Attempts to reduce runoff by introducing backsloping terraces resulted in collapse of the "improved" terrace due to concentration of water. Similarly, the apparently low levels of maintenance and poor-quality construction of terraces supplied by projects in Indonesia may reflect the interaction of farmer perception of the dubious value of terracing and the attractiveness of the assorted subsidies and incentives provided. In the absence of compelling evidence that a significantly new and attractive on-farm structural technology can be suggested to farmers, there seems limited justification for the central role such structures now play in watershed development projects.

<u>Vegetative/Cultural</u>. Vegetative/cultural measures to improve upland agriculture include contour cultivation, techniques to reduce tillage, addition of new crops and changes in timing or cropping pattern (intercropping, etc.) or stand architecture to provide for more continuous and effective soil cover. In some cases the use of vegetative treatments is intimately mixed with cultural practices, such as contour cultivation with grass strips, while in other cases vegetative measures stand alone as in the establishment of permanent cover. Vegetative measures have been shown to be highly effective in minimizing erosion by reducing the impact of raindrops as they strike the soil. Mulches, certain agroforestry options and permanent cover crops can perform this function.

Plants can also be used to form a physical barrier to slow runoff and arrest already moving soil. For a long time, suitable species have been sought and several have been proposed for use in this manner, including napier grass, vetiver grass, and the tree species <u>Leucaena</u>. The utility of different species in this capacity will vary, depending on circumstances. The particular features of vetiver grass, discussed in detail in Box 1.2, make it particularly well suited for this application.

<u>Box 1.2</u>: VETIVER GRASS - CONTOUR SYSTEM FOR SOIL AND MOISTURE CONSERVATION

The notion of carrying out all farming operations especially cultivation and planting on the contour in any rainfed situation, on any slope, for any crop is overwhelming. Customarily, barriers are constructed on the contour at certain vertical intervals according to slope to break the length of the slope so as to check the velocity of runoff water and trap silt. These also serve as guidelines for contour cultivation. Graded earth banks (bunds) usually with a horizontal gradient of up to 1% to feed excess water into a prepared waterway have been employed extensively. These structures have severe limitation in the tropics (Chapter 2) and do not fit small holdings due to loss of arable area for the bank itself and the waterway.

Vegetative barriers on the contour have distinct advantages over earth banks, namely, vegetative barrier requires about one tenth of the space and no water disposal system is necessary, vegetative barrier slows down surface runoff and causes it to deposit the silt load while the water seeps through spread out, with increased opportunity to infiltrate. This also avoids the problem of waterlogging which is common behind the bank.

A plant suitable for a vegetative barrier requires particular morphological characteristics. Its root system should be aggressive and deep without rhizomes or stolons so as not to spread out of line; the crown should be below the surface for protection against fire and overgrazing; the culms tough and unattractive to animals and pests; and the flowers, if any, essentially sterile so as not to permit spreading by seed. The plant should be a perennial and persistent, tiller freely and intermingle with its neighbors (some clump grasses do not). To date, the only plant know to meet these criteria is vetiver grass, (Vetiveria <u>zizanioides</u>). It has an extremely wide range of climatic conditions over which it is adapted and further exhibits adequate growth over a wide range of soil types, including those with highly unfavorable properties for many plants. Vetiver grass has been used for this purpose and as permanent field boundaries for a long time, and hence it is known to persist, once established, without maintenance indefinitely. It is propagated by root slips which the farmer may plant himself on a roughly surveyed contour lines. Given moderately favorable conditions, the hedge would be complete after three growing seasons, fewer with high fertility, high rainfall and close planting.

Apart from physical advantages, establishing and maintaining the system is low-cost and can be carried out entirely by the farmer. Compare this with the engineered system which requires earth-moving equipment, complete cooperation among neighbors especially for water disposal components that may impose an intolerable burden on those further down the slope, and regular rebuilding every three to five years.

Vetiver grass has other applications due to its unique morphology. Among these are protecting paddy banks, dam catchments and drainage lines from siltation, roadsides and stream banks from erosion, and performing the soil- and moisture-conservation function when planted in V-ditches with fruit and forest trees.

The same technology can be used for the stabilization of degraded nonarable lands. Vetiver grass can be used, but in these nonarable situations, shrubs that can be coppiced for fuel or fodder could also be used as barriers on the contour. The search for suitable shrubs continues. Vegetative systems, of whatever species, have a number of advantages over structural systems:

- (a) <u>Cost</u>. Vegetative measures for soil conservation generally can be promoted at low cost. Costs for establishing vetiver grass hedgerows in India are estimated to be US\$18/ha. In many cases the major cost item for promoting these measures is for extension advice.
- (b) <u>Adaptability</u>. Unlike structural measures which require detailed engineering and site planning, vegetative approaches are relatively insensitive to issues such as proper alignment on contours, irregularities in field boundaries and minor errors in placement. Hence, surveyed contour guidelines can be replaced by planting across the slope.
- (c) <u>Farmer-Controlled</u>. Because vegetative methods are relatively inexpensive and do not require use of machinery or sophisticated surveying, individual farmers can take the initiative in adopting conservation measures. An indigenous system of contour alley cropping using bands of <u>Leucaena</u> has been used widely in the steep lands of Cebu in the Philippines. A particular advantage is that the cropping area sacrificed to the conservation measure is considerably less than with the typical structural approach, and is especially true in the case of grass contour hedgerows. Farmers' willingness to devote arable land to essentially permanent cover is often largely dependent on the degree to which livestock are integrated in the farming system.

Investing in Nonarable Areas

A large proportion of a typical watershed anywhere in the region is nonarable in the sense of not being suitable for agriculture due to soil or slope characteristics. Yet the consequences of runoff/erosion on nonarable lands are quite significant. Productivity is lost, and more so than on arable lands, sedimentation and local flash flooding are increased, and dry-season stream flows reduced.

Land use and ownership are generally less complicated in arable areas, where crop-based agriculture and mostly private ownership prevail, than in the nonarable areas divided among forest, grazing and community lands and variously owned by government (mainly forest department), communally and privately. The condition of nonarable land is further complicated by de jure and de facto rights of access by both landed and landless rural families. This diversity of use and ownership has exacerbated the effect of degradation and makes remediation more difficult on nonarable land.

In order to redevelop nonarable areas, something has to be done first to restore soil moisture status. Contour vegetative hedge treatments improve infiltration. Lowering livestock populations would reduce soil compaction, as would less use of heavy equipment in forest harvesting. Controlling fire, which induces water repellancy in some soils, can also assist.

Redefining land use becomes the important next step. While it may be the most advantageous use of land and the best soil conservation strategy to try to return bare land or degraded forest areas to the original mix of species, other options could include closed mixed-species forest, single-species plantations, fuelwood plantations, silvipastoral plantations or pasture. It is not within the scope of this study to develop guidelines for determining which option might be employed under any given situation. At the same time, the importance of doing so ought not to be underestimated since it takes account of the needs of the population and may ultimately determine the success of the investment.

Treatment of Forest Areas

<u>Stabilization</u>. Denuded slopes in nonarable areas need to be stabilized by using vegetative barriers on the contour at approximately three to four meter vertical intervals first, before any of the options are applied. This treatment cuts down runoff, increases infiltration and traps erosion products. This stabilization technology can be applied on village common land, grazing land and wasteland, as well as forest land. The vegetative barrier should ideally comprise indigenous, locally adapted shrubs that are unpalatable, deep-rooting, easily propagated and capable of forming a dense hedge, planted into a V-ditch or trench. In the absence of suitable shrubs, vetiver grass would form a suitable hedge in most circumstances in the region. As noted above, the cost of of establishing this treatment is likely to be on the order of US\$18 per hectare. It would be applied regardless of what the interhedge spaces might later be used for.

Revegetation. Artificial forestation is the option most commonly applied to nonarable land, probably because most areas are under the jurisdiction of forest departments whose mandate is to plant trees and manage plantations. The success rate for forestation is low and costs per hectare high, which call the technology into question. Questioning the technology is valid, but only when the issues of stabilization/soil moisture status and land use are resolved. Chapter 5 reviews the methods of revegetation presently practiced in Asia. There are key shortcomings regarding selection of species and quality of planting materials, land preparation, methods of planting and planting geometry, protection and management. A serious nontechnical shortcoming has been that forestation has been carried out without the support or agreement of local people who may customarily harvest some resources from these areas. The technical shortcomings are well understood and little or no additional research is required to be able to grow most tree species successfully. Addressing all these issues so as to do everything well, however, results in costs per hectare in the range of US\$500-1,000. This cost is generally too high to be replicable over wide areas.

The Problem-Solving Approach

Beyond doubt, removing the vegetative cover causes accelerated erosion so, if over time an undisturbed vegetative cover can be recreated, the problem is solved. However,

(a) time may not be an option, in which case intervention is required to accelerate growth of vegetative cover;

.

- (b) natural regeneration may not be an option, if the soil moisture and nutrient status have been changed due to degradation; and
- (c) an undisturbed vegetative cover may not be an option, if land is to be used for arable agriculture, grazing, fuelwood or fodder production, in which case a vegetative/cultural farming system, or structural intervention or combination of interventions is required.

The issue is how to decide, within the choices, which to take and how to avoid the common mistake of opting for a single solution to a complex problem. Information specific to the site and a clear understanding of impact are required. There are two main questions. The first is one of scale: what should be the size and definition of the planning unit? The larger the area of the planning unit the greater the heterogeneity of land use, land capability, microclimate, soils, vegetation and people. The larger the size the more likely that one or two widely applied solutions will fail. The second question relates to what must be achieved. If, for example, the objective is solely to reduce downstream sedimentation, then it might be achieved by a simple technique such as a checkdam, but the dam would have no effect on erosioninduced productivity decline in arable areas. The objectives are rarely simple and hence invariably require a set of solutions.

Folly of a Single Solution. Terracing as a treatment is a common choice in the tropics and done properly can be effective. Yet terraces by themselves do not necessarily conserve soil or moisture, improve productivity or decrease sedimentation. In fact, poorly farmed terraces may result in greater degradation, and inappropriate types of terraces or terracing inappropriate soil types may reduce productivity and accelerate soil loss. Even when properly used, terrace technology is only part of a system. Whether or not terracing is a sound proposal depends on the type of terrace in relation to rainfall, soil depth, drainage and structural strength, land ownership patterns, crops to be grown on the terrace, farming systems and quality of the extension services. This is true of all soil conservation interventions. There is no one technology that applied in isolation will achieve a soil conservation benefit on anything but a very small scale.

Importance of Planning at a Micro Level. For selecting appropriate on-site soil conservation practices, it is possible to construct guidelines that can be easily followed at the local level. At the regional planning level it is more difficult due to increased heterogeneity and the limited quality of information available. Information on where and under what circumstance various soil conservation technologies are applicable is available; whether this information can be used depends on the quality of the information from within the planning area. Given the importance of scale and linkages ascribed to economic functions, ascertaining the nature and optimum dimension of the planning unit is critical. There are advantages and disadvantages in using a hydrological (physical) unit, an administrative (political) unit or a set of villages (social unit) and a case can be made for each. Since villages tend to be located close to drainage lines in order for occupants to exploit lower arable and higher nonarable lands, the boundaries of a village's area of influence frequently coincide roughly with watershed boundaries. As a general rule, the hydrological unit is preferred. A typical watershed (100,000-200,000 ha) comprises a series of subwatersheds (5,000-15,000 ha) which in

turn are made up of five to ten microwatersheds (500-2,500 ha). Experience seems to suggest that the subwatershed, as it is defined here, is a convenient planning unit, provided that plans respond to an aggregate of information from constituent microwatersheds.

Having avoided the single solution trap, the preferred approach in developing a conservation strategy is to define the problems that are evident in the subwatershed and to define the objectives of possible solutions. Since there is no immediate linkage in very large watersheds (above 200,000 ha) between erosion in the upper catchment and downstream sedimentation, the most supportable programs are those whose objectives are to raise farm incomes and increase on-site sustainability of both arable and nonarable land in the upper watershed.

Techniques such as rapid rural appraisal (see Box 1.3) can be used in problem definition through interactive planning with the population. In a short time, it would be possible to identify the population's dependencies, needs and aspirations, perceptions of the dimension and causes of degradation, to describe the microwatershed itself in terms of land classes (arable, nonarable, private, village, public) and identify respective needs for treatment, and by this method to come up with objectives, a strategy and action plans.

Menu of Solutions. Within any subwatershed there will be a number of treatments appropriate to addressing the problems defined in the interactive planning process. A list of eligible treatments can be assembled easily, given what is known about the efficacy of each in particular agro-ecological situations, their synergism and cost. It remains then to match solutions to the problems, an exercise that has several dimensions. For private arable land, farmers will undoubtedly choose treatments that are income-enhancing in the short term. Although support may be required, little coercion would be needed. Treatments such as stabilizing or revegetating nonarable areas or treating drainage lines would require the population's consent and cooperation, and would mostly be implemented by an agency or organization rather than individual farmers.

Incentives for Participation in Watershed Development

Three well recognized factors influence farmers' willingness to participate in watershed development programs, and more specifically to implement soil conservation treatments:

- (a) land tenure;
- (b) profitability of the farming system and scope to improve profitability; and
- (c) economic status, whether a cash or subsistence farming system, and portion of income derived from the farm.

Box 1.3: PROBLEM DEFINITION IN A MICROWATERSHED

Interactive Planning

Numerous approaches have been developed around the world for carrying out interactive village planning in microwatersheds. These planning approaches have as their objective to put planners, agency staff, and villagers on a common ground for identifying key problems, analyzing their causes, and devising realistic action plans that reflect local needs and the availability of government and local resources. Successful approaches are those which include techniques for collecting and discussing information in an open-ended way, which draw strongly upon indigenous technical knowledge as well as professional expertise, and which are conducted in stages to allow villagers to participate in devising action plans, rather than simply reacting to plans drawn up by government extension agents or officials.

The Technique

Rapid rural appraisal is a technique that is often employed in interactive planning. It is not a <u>methodology</u>, but a set of investigative <u>tools</u> adapted to short-term analysis of particular sets of problems of natural resource management. It is often used to gain an initial understanding of problems on the basis of the analysis of secondary data combined with a structured field investigation. In combination with other formal surveys, it can be used in monitoring program performance and evaluating program efficiency or program impact. Unlike traditional research, rapid rural appraisal teams include planners as well as researchers, and their investigative tools are designed to encourage as much interaction with villagers as possible. These tools include: (a) group and individual interviewing; (b) cross-checking information (triangulation); (c) direct observation; (d) use of sketch maps, diagrams, village transects; (e) sampling tailored to a shortened time frame; and (f) redesign of plan as hypotheses change and new options emerge.

A Sample Application to Watershed Development

A watershed development program which includes soil and moisture conservation, forestry, on-farm tree planting, and pasture improvement is being implemented by several government agencies in a subwatershed. A team of one or two persons trained in the technique and government extension agents would visit villages to analyze people's needs and conduct individual interviews with different types of households. The team reviews environmental/economic problems with the villagers, adding to villager statements with their own observations, and plotting the information with villagers on sketch maps showing village areas of influence. Conflicts over use of the resources within the village or between villages and over government regulations or uses are important topics, as are the institutional mechanisms for resolving these problems. Villagers discuss options that they feel will help to resolve their problems and with the team draw up an action plan, based on their own time and resources and the available government inputs, programs, and resources of the extension departments represented.

Land Tenure. Tenurial arrangements on arable land are complex. Insofar as they affect implementation of soil conservation measures, the issues go beyond guaranteed long-term access to land to include access to credit, ability to make decisions on land development, the proportion of returns that accrue to the user, and the ability to transfer rights. About eight categories of tenure, ranging from very secure for privately owned land with title to very insecure for some forms of sharecropping and for private cultivators on public lands, pertain. The attributes, categories and consequences for participation in development programs on arable land are discussed in Chapter 6. An important conclusion of that review is that tenurial arrangements do have an important influence on the land user's decision to participate or not to participate. On private land, low adoption rates have frequently been attributed to tenurial constraints whereas poor technology options are the real constraint. Two significant changes in recent Bankassisted projects are:

- (a) greater use of vegetative, cultural and farming systems-related conservation treatments that are, overall, more effective and more amenable to a wider range of tenure categories, and
- (b) presentation of a menu of technical options from which the farmer may choose according to personal conditions rather than a single package that may be intimidating and therefore rejected.

<u>Profit, Sustainability and Risk</u>. An on-farm production system that is more lucrative than the current one and involves minimal increase in risk provides incentives to farmers to participate. Evidence suggests that in all but the most marginal situations (shallow stony soils, steep slopes), total production can be improved by managing soil moisture and restoring soil fertility, which techniques generally mitigate runoff and soil erosion. Yield increases, for example, from contour cultivation alone which involves very little cost can be 50% or more: the resulting improvement in soil moisture then allows modest levels of applied fertilizer to be effective. Improved plant density due to seeding rate and adjustments in row spacing, an improved fertilizer strategy or intercropping can also improve yield and soil protection.

<u>Support for Participants</u>. However attractive the incentives may be, most smallholders need support in several ways to implement new initiatives:

- (a) to lay out, establish and maintain hedges on the contour (for example, with vetiver grass);
- (b) to reshape inappropriately designed terraces, plant surface risers with suitable fodder plants;
- (c) with good-quality planting materials of the most suitable cultures;
- (d) with demonstrations of improved farming systems and cultural treatments; and
- (e) with credit and extension.

RECOMMENDED APPROACHES TO WATERSHED DEVELOPMENT

The data reviewed make clear that there is no single watershed management problem in the Asia region. Rather there is a complex of issues related to increasing soil and moisture loss, land degradation, sedimentation and irregular stream flows, and poverty that can best be understood in the framework of watersheds as physical planning units. The analysis suggests that the donor community should continue, and accelerate, its efforts on the development of environmentally sound and higher-productivity, upland farming systems. Greater attention should be given to the diversity of upland agriculture and the need to develop local capacity for diagnosis of constraints to productivity growth and design of site-specific solutions. Forest lands and livestock grazing systems similarly need to be addressed, because few soil and water conservation measures are in place on them. Projects promoting singlesolution, structural approaches to soil conservation problems should be reduced and greater effort given to the use of vegetative techniques. Technology development projects, with provision for careful experimental design and rigorous testing of proposed techniques, may be required before largescale projects can be expected to be viable.

Flooding and Sediment

The potential for reducing flood and sediment damage downstream in large basins by means of land-use changes, rehabilitation, and reforestation in the upper watersheds of the Asian region appears limited. Catastrophic floods seem to be the result of heavy rains largely falling on already saturated soils and nonabsorbant surfaces in lower reaches; and by nature, deltic regions, formed by flood-borne deposition of eroded material, are subject to flooding. No statistical evidence indicates a secular increase in the occurrence of flood events, yet increases in flood damage are largely explained by increased population and higher-value land use in floodplains.

Data on sedimentation support the argument that in large river basins whose headwaters lie within the geologically young, unstable mountain ranges of Asia (for example, Himalayas), the largest portion of sediment load is the result of natural processes, and the damages therefrom are to the same extent ascribable to geological processes. Human-induced sedimentation, while having severe impact within smaller watersheds, has much less impact within the context of larger river basins. Reducing geologic erosion is not practicable and reducing human-induced erosion in areas with already widespread disturbance by altering land use or reforesting, for example, will not necessarily have the impact required. This relationship is particularly true, given the prolonged residency of sediment within a catchment whereby sediments currently stored within channels and floodplains will continue to move through the system for extended periods. Nonetheless, at some point, watershed rehabilitation must be undertaken to begin the process of reducing the transport and deposition of sediment, though for large basins the time lag for noticeable reduction downstream may be decades or centuries. While the problems caused by sedimentation are real and significant, they should be dealt with by such means as operating practices, dredging and appropriate infrastructure design. In particular, decisionmakers should give greater attention to assessing the validity of assumptions about sedimentation rates and predictions of investment life. In some cases, it may be necessary to either accept or reject water

resource developments, depending on whether the expected lifetime in the face of sedimentation is sufficiently long. However, the likelihood of eventual sedimentation must be recognized.

Similarly, recognition of the probability of flooding should be factored into policy-making with respect to downstream areas. The design of infrastructure and buildings and the decisions to site developments in floodplains and to promote settlement should recognize the certainty of an eventual flood.

Cost Sharing and Cost Recovery

A corollary of the limited impact of upstream land-use changes on downstream damages is that there is limited justification for schemes to compensate upland farmers and communities for adopting conservation practices. There is considerable scope for identifying techniques that will reduce or at least not increase erosion and runoff and that are profitable for upland farmers. Various subsidies and compensation schemes may be required to bridge the gap between adoption of a conservation measure and the realization of a sustainable net return. If so, such compensation should be seen as transitional and not as part of a policy of ongoing subsidy.

Experience with subsidy schemes for adopting conservation measures has not been encouraging. Unless carefully designed, subsidies can lead to an overemphasis on construction of structural measures and neglect of maintenance requirements and serve as a disincentive to less-expensive measures that would otherwise be adopted by farmers on their own. An example of a promising strategy has been used in the Central Visayas Regional Project in the Philippines. To promote adoption of contour hedgerows, the project lends breeding cattle to farmers, conditional on establishment and maintenance of a hedgerow sufficient to support stall feeding of the offspring. This provides a powerful incentive for both establishment and maintenance of the hedgerow and has been extremely effective.

Rural Infrastructure

Road and trail construction in upland areas can contribute to either environmental improvement or deterioration and is one of the few ways of significantly affecting downstream sedimentation. The extension of road networks can lead to deterioration of watersheds by facilitating access to fragile remote areas. On the other hand, improved access to markets can improve incomes which can generally be expected to lead to adoption of more conservation-oriented farming. Road and trail design and construction methods need to incorporate adequate safeguards to minimize erosion and sedimentation. As attention is shifted from use of structural conservation measures to agronomic approaches, the engineering expertise of soil conservation agencies can be reallocated to road construction and rehabilitation.

Analytic Methods

There are no special characteristics of watershed development projects vis-a-vis other development projects that require a fundamentally different approach for their economic analysis. Standard approaches to the analysis of agricultural projects, based on a with-without comparison, will produce a satisfactory estimate of project worth. Special attention may be required, however, to understanding incentives as perceived by farmers and communities, given the importance of common property resources and the often precarious nature of land tenure systems.

While this review concludes that the downstream impacts of land-use changes within large river basins will generally be of marginal importance over any time period of economic interest, there are no conceptual constraints on taking any such benefits into account. Meaningful judgments on the physical impacts of a specific intervention can be developed through approaches such as sediment budgeting, as well as on the basis of long-term measurement and modeling studies. Well-established approaches can then be used to translate physical impacts into economic terms.

More relevant to most watershed development projects is the need to integrate technical judgments on the impact of erosion and of conservation practices on crop yields with economic and financial analysis of cropping systems. Although data are seldom available for a particular project site, there is usually sufficient evidence from other sites to guide economic analysis. Input from experienced agricultural specialists is needed to ensure the validity of assumptions made in these calculations. Input from social scientists is also important in order to assess constraints to adoption, especially on common property and public land.

Guidelines

There appears to be no need to prepare technical guidelines for watershed development projects. Annex 1.1 lists guidelines issued by several government and international agencies on various aspects of watershed development projects.

Funding Procedures

New approaches to disbursing project funds are required, given that: (a) overall project costs can be estimated by extrapolating from detailed plans developed at the microwatershed level; (b) a number of different government and quasi-governmental agencies and nongovernmental organizations can legitimately be involved in implementing watershed actions; and (c) not all activities need to be synchronized. For example, it is reasonable to envisage a program-type watershed development fund from which approved agencies may be reimbursed for completing treatments eligible for reimbursement. This requires definition of the eligible treatments, definition of the organizations who may implement them and verification procedures relating to implementation. The Bank and other development agencies would be advised to explore more effective funding procedures.

Need for Commitment

Watershed management projects are complex interventions that require effective multidisciplinary collaboration, commitment by governments and local communities, and sustained efforts. For development agencies to be effective partners in this process, it is necessary to recognize that watershed projects, while not necessarily large or expensive, require heavy inputs of staff, particularly in preparation and supervision. Agencies also need to recognize and act on the need for government commitment in resolving watershed problems. Without serious commitment by governments and their field staff, investments are unlikely to succeed.

Guidelines for Watershed Management

- Dani, Anis, and J. Gabriel Campbell. 1986. <u>Sustaining Upland Resources:</u> <u>People's Participation in Watershed Management</u>, ICIMOD Occasional Paper No. 3, International Centre for Integrated Mountain Development and FAO: Kathmandu.
- FAO. 1986. <u>Strategies, Approaches and Systems in Integrated Watershed Man-agement</u>, FAO Conservation Guide 14, FAO: Rome.
- Gregersen, H.M., K.N. Brooks, J.A. Dixon, L.S. Hamilton. 1987. <u>Guidelines</u> for Economic Appraisal of Watershed Management Projects, FAO Conservation Guide 16 (East-West Center, SIDA, FAO) Rome.
- Hamilton, L.S. and P.N. King. 1983. <u>Tropical Forested Watersheds: Hydrolo-</u> gic and Soils Responses to Major Uses or Conversions, Westview: Boulder.
- Hufschmidt, M.M., D.E. James, A.D. Meister, B.T. Bower and J.A. Dixon. 1983. <u>Environment, Natural Systems and Development - An Economic Valuation</u> <u>Guide</u>, The Johns Hopkins University Press: Baltimore.
- Kunkle, S., <u>et al</u>. 1987, <u>Monitoring Stream Water for Land Use Impacts: A</u> <u>Training Manual for Natural Resource Management Specialists</u>, Water Resources Division, U.S. National Park Service: Fort Collins, Colorado.
- Pearce, Andrew J. and Lawrence S. Hamilton. 1986. <u>Water and Soil Conserva-</u> <u>tion Guidelines for Land Use Planning Report of a Seminar Workshop</u>, East-West Center: Honolulu.
- Spears, J.S. and R.D.H. Rowe. 1981. "Preliminary Guidelines for Designing Watershed Rehabilitation Projects for Bank Financing" in World Bank, <u>Proceedings of the Second Agricultural Sector Symposium</u>, pp. 408-423. World Bank: Washington, D.C.
- United Nations Environment Programme. 1982. <u>Environmental Guidelines for</u> <u>Watershed Development</u>, UNEP Environmental Management Guidelines No. 3, UNEP: Nairobi.

REFERENCES

- Barbier, Edward. 1988. "The Economics of Farm-Level Adoption of Soil Conservation Measures in the Uplands of Java," World Bank Environment Department, Working Paper No. 11.
- Barrett, Scott. 1988. "Optimal Soil Conservation and the Inadequacy of Agricultural Pricing Reforms," unpublished, Cambridge University, Cambridge, England.
- Bhide, Shashanka, C. Arden Pope and Earl O. Heady. 1982. "A Dynamic Analysis of Economics of Soil Conservation: An Application of Optimal Control Theory," <u>CARD Report 110</u>, SWCP Series III, The Center for Agriculture and Rural Development, Iowa State University, Ames, Iowa.
- Brown, Lester and Eric Wolfe. 1984. "Soil Erosion Quiet Crisis in the World Economy," Worldwatch Institute Paper 60, (Washington, D.C.), September.
- Carson, Brian. 1989. "Soil Conservation Strategies for Upland Areas of Indonesia," Occasional Paper No. 9. Environment and Policy Institutes, East-West Center, Honolulu.
- FAO/UNESCO. 1982. Soil Map of the World, (Rome/Paris) Gilmour.
- Gregory, G. Robinson. 1957. "Economic Research Needs in Watershed Management," <u>Proceedings</u>, Society of American Forestry, Syracuse, New York.
- _____. 1955. "An Economic Approach to Multiple Use," <u>Forest Science</u>, Vol. 1, No. 1, March.
- Hamilton, Lawrence S. 1988. "The Recent Bangladesh Flood Disaster Was Not Caused by Deforestation Alone," <u>Environmental Conservation</u>, pp. 369-370.
- and P.N. King. 1983. <u>Tropical Forested Watersheds; Hydrologic and</u> Soils Response to Major Uses or Conversions (Westview: Boulder).
- Hyde, William. 1988. "General Public Policy Impacts on Upland Resources and the Environment in The Philippines." Draft, World Bank.
- Ives, J.D. and B. Messerli. 1989. <u>The Himalayan Dilemma</u>. Rutledge: New York.
- Joshi, R.M. and Khatiwada, M.K. 1986. <u>Agricultural Handbook Nepal</u>. Agri. Publication Series: Kathmandu.
- McConnell, Kenneth. 1983. <u>American Journal of Agricultural Economics</u>, February, pp. 83-89.
- Pearce, Andrew J. 1986. "Erosion and Sedimentation," paper prepared for the Workshop on Ecological Principles for Watershed Management, April 9-11, East-West Center, Honolulu.

- Roche, Frederick. 1987. "Sustainable Farm Development in Java's Critical Lands: Is a Green Revolution Really Necessary?" (unpublished manuscript), Cornell University.
- Rogers, Peter, Peter Lydon and David Seckler. 1989. "Eastern Waters Study: Strategies to Manage Flood and Drought in the Ganges - Brahmaputran Basin," report prepared for USAID, April.
- Stocking, M.A. 1988. "Assessing Vegetative Cover and Management Effects" in
 R. Lal, ed., Soil Erosion Research Methods, Soil and Water Conversion
 Society, Ankeny, Iowa.
- UNEP. 1986. <u>Environmental Guidelines for Rural Roads</u>, UNEP Environmental Management Guidelines No. 13, Nairobi.
- World Bank. 1989a. "Indonesia: Forest, Land and Water: Issues in Sustainable Development," Report No. 7822-IND.

_____. 1989b. "Philippines: Forestry, Fisheries and Agricultural Resource Management," (FFARM Study). Report No. 7388-PH.

Yadav, Ram P. 1987. <u>Agricultural Research in Nepal: Resources Allocation</u>, <u>Structure and Incentives</u>, Research Report 62, International Food Policy Research Institute, Washington, D.C.

2. <u>SOIL AND MOISTURE CONSERVATION TECHNOLOGIES</u>:

REVIEW OF LITERATURE

John B. Doolette and James W. Smyle

This chapter reviews research literature concerning on-farm impacts of soil and moisture conservation technologies on surface runoff, erosion/sedimentation and productivity and yield. It is preceded by a brief discussion of the range of treatments applied in relevant World Bank projects. The review includes data from more than 200 studies globally that appear to be based on valid experimental methods. The limits to extrapolating from the data to other sites and projects are noted. The literature covered is presented in bibliographies in Chapter 8.

INTRODUCTION

The process of watershed improvement involves several important aspects, not the least of which is the selection and application of technical methods for bringing about stabilization of degraded land surfaces, that is, the reversal or arrestment of degradation, or protection against it in newly exposed watersheds, and redressing the loss in agricultural productivity due to diminished soil and nutrient status.

Erosion Effects and Control Measures

<u>World Bank Project Interventions</u>. The World Bank has financed many projects with substantial watershed development components. Staff appraisal reports on 35 relevant projects (20 in the Asia region), spanning 1976-87, show estimated total project costs (in current dollars) in excess of US\$500 million. In most cases, unit costs for individual treatments were estimated at appraisal, but project benefits were less frequently estimated. Table 2.1 shows the technologies to be implemented over the 35 projects, their unit cost and the impacts anticipated. Categorized by on-farm and off-farm conservation interventions, respectively, the unit costs and assumed benefits are looked at more closely in Tables 2.2 and 2.3.

This substantial investment, combined with the sizable commitment implicit in projects under preparation or in the pipeline, prompted regional staff to question the technologies and treatments from the standpoint of efficacy, synergism between them, the benefits accruing from them, and relative cost and replicability. This questioning called for a systematic review of the performance of on- and off-site 1/ soil and moisture conservation treatments in terms of physical effectiveness and benefits. The literature

^{1/} On-site refers to the area under treatment in a micro- or subwatershed, whether it be on-farm or off-farm, whereas off-site is further downstream below the area under treatment and outside of the micro- or subwatershed.

review herein especially focuses on determining benefits and, to the extent possible, on establishing links between physical treatments and socioeconomic analysis.

<u>Perceptions of the Effects of Soil Erosion</u>. A basic premise is that soil erosion is undesirable for reasons that are generally easy to support in quantitative and economic terms. It is important to understand that erosion effects and runoff effects are closely related and, indeed, in terms of cause and effect, runoff comes first. Defining the effects of runoff/erosion is important in determining the relevance and benefits of technical measures. In this context, surface runoff and the concomitant soil erosion result in:

- (a) loss of agricultural productivity through:
 - (i) reduced rainfall infiltration and moisture-holding capacity in the soil;
 - (ii) reduced depth of topsoil;
 - (iii) impaired soil surface characteristics and seedbed quality; and
 - (iv) loss of soil nutrients.
- (b) increased sedimentation which impacts on:
 - (i) downstream agriculture through siltation of irrigation canals and deposition of silt on farm lands; and
 - (ii) reduced reservoir life, damage to fisheries, reduced water quality, pollution from agricultural chemicals which are adsorbed to soil particles, increased maintenance costs in waterways and harbors, and stream aggradation.
- (c) flooding; and
- (d) decreases in dry season stream flow.

<u>Types of Runoff and Erosion Control Measures</u>. The total range of treatments is better seen when grouped in terms of land-use categories, namely, <u>on-site</u>--arable land, nonarable land including forest and drainage lines--and <u>off-site</u>--downstream drainage lines and compacted areas. Within each group there may be the option of structural or vegetative/cultural measures. The following measures have been applied and to varying extents have been studied:

On-Site

- (a) arable land contour farming;
 - contouring with vegetative (vetiver grass) barriers;

		-	contouring with earth banks and waterways;
		-	earth banks on field boundaries;
		-	furrowing, ridging, ridge tying;
		-	tillage practices, subsoiling;
		-	vegetative ground cover, mulching, manuring;
		-	grass cover, grass strips, grass barriers;
		-	improved farming (cropping) systems;
		-	agroforestry;
		-	terracing; and
		-	land leveling, smoothing.
(b)	nonarable land	-	vegetative barriers on the contour;
		-	earthen or rock barriers;
		-	afforestation, reforestation, revegetation;
		-	area closure;
		-	reduced grazing pressure, stall feeding;
		-	pasture improvement;
		-	silvipastoral plantations;
		-	buffer zones; and
		-	trail, rural road and forest road treatments.
(c)	drainage lines	-	gully control structures;
		-	checkdams, silt traps;
		-	diversion drains; and
		-	vegetative stabilization of natural drainages.
	<u>Off-Site</u>		
(a)	drainage lines	-	grassing of artificial waterways;
		-	stream bank protection; and
		-	channelization.

(b) compacted areas - roads; overall design, retaining walls for cut batters; and

- settlements; diversion drains.

LITERATURE ON THE IMPACT OF CONTROL MEASURES

<u>Methods</u>

The body of work on soil erosion/degradation processes is extensive, yet predominantly empirical in nature, making results site-specific. A review of the literature pertaining to the on-farm impacts of soil conservation technologies on surface runoff, erosion/sedimentation, and site productivity was conducted. The sources for the review were obtained through comprehensive searches of the USDA's Agricultural Library (Beltsville, Md., USA), and the World Bank's Sector Library (Washington, D.C., USA). In both libraries the computerized on-line bibliographic search facilities 2/ were used. The review considered only that literature which appeared to result from valid experimental design and methodologies. Even so, the research conclusions available from the selected literature are included without making judgment as to their validity. Such judgments would require extensive analysis beyond the purview of this exercise. In addition, a special review of the Indonesian experience with soil conservation technologies was carried out within the country. A lack of standardization in field and laboratory research methodologies makes comparison of results difficult. Problems of scale compound the difficulties of applying research results, for example, when modelers try to apply pan or small-plot data to answer questions that arise on a watershed scale. Considerable work is still required for a more complete understanding of the physical/chemical/biological processes that drive the erosion/degradation process. That work must be accomplished before an accurate "universal soil loss" process-based model can be formulated. Quantitative studies on the wide array of approaches to soil conservation technologies are scanty and only available in a few widely scattered research locations. Gaps exist in work that is applicable to tropical areas, especially high rainfall, mountainous areas. Lack of standardized methodologies and problems of scale also create problems with the applicability of these studies. Despite the problems with modeling, quantifying erosion/soil degradation and predicting quantitatively the impacts of proposed soil conservation technologies, there is sufficient understanding to allow the application of soil conservation treatments in a straightforward, systematic manner.

The review groups the literature on the impact of control measures into three subjects, namely:

- (a) on soil moisture and surface runoff;
- (b) on erosion rates and sedimentation yields; and
- (c) on productivity and yield.

2/ USDA library facility = "AGRIS" and "SILVER PLATTER".

- 38 -

Erosion is a term easily misused. This review is concerned with what is often called "upland erosion" in the literature: it is what the universal soil loss equation estimates: rill and interrill erosion. Rill erosion takes place when water is concentrated into tiny rivulets and proceeds predominantly by the erosive force of flowing water. Interrill erosion (often referred to as sheet erosion) proceeds predominantly by the force of raindrop impact. A further source of confusion may relate to whether soil erosion or soil loss is meant. Erosion takes place if a soil particle is at all disturbed; soil loss takes place if the particle is at all moved. The difference then is one of measurement. Since it is almost impossible to measure average soil disturbance in any fashion that is meaningful, due to spatial and temporal variability, researchers set up collectors and capture sediment. The sediment captured represents soil loss and the data used to infer erosion rates. Soil loss is then defined by where the collector is placed and, therefore, so is the erosion rate. The problems of scale are beyond the scope of this report. The only confusion that can be resolved easily is semantic; the terms to be used will be "erosion rate" and "sediment yield."

Evidence suggests that tropical soils erode more quickly when disturbed and that the impact of erosion is greater than in temperate counterparts (27, 50, 51, 93, 95, 97, 158, 160, 215).3/ El Swaify (51) also reports that the downstream impacts of sediment on water quality may be greater from oxidic tropical soils than from temperate soils.4/

On-site erosion/sedimentation control practices that have been studied may be broken down into two broad categories, namely vegetative/ cultural practices and structural practices. Since these two categories are not mutually exclusive and are often mutually supportive, the question of which approach to take must be decided on the basis of site-specific factors and goals. Often a combination of the two approaches is necessary, such as when vegetatively stabilizing a stream bank, it is necessary to control structurally the forces that cause further degradation so that the vegetation may be established (22).

IMPACT ON SOIL MOISTURE AND SURFACE RUNOFF 5/

Clearing Land for Agriculture

Evidence from several studies on small watersheds shows that land clearing increases surface runoff, especially when carried out with heavy equipment (6, 62, 100, 118, 166, 201). The one exception is where heavy ash inputs, following manual slash-and-burn clearing, increased soil permeability

- 3/ Numbers refer to list of references in Table 8.1, which are then cited in Tables 8.2, 8.3, and 8.4.
- <u>4</u>/ Where possible, soil types are presented using the FAO-UNESCO (1974) soil taxonomy. The translation from USDA to FAO-UNESCO was done based on: Breimer, R.F., van Kekem, A.J., and H. van Reuler, 1986.
 <u>Guidelines for Soil Survey and Land Evaluation in Ecological Research</u>.
 <u>MAB Technical Notes No. 17</u>, UNESCO, pp. 29-30.
- 5/ Literature cited in Table 8.2, page 191.

so that surface runoff decreased (181). Conversion of land from forest to grass has been found to increase surface runoff and total water yield (20, 62, 77, 134, 160, 176) except when grass production is high (77, 176). Conversion to agricultural lands also has significant impact on surface runoff from small watersheds (63). The impact is, however, use-dependent. Poor land management will increase surface runoff; significant reductions in surface runoff are usually associated with intensively managed areas (155). Little effect of soil/moisture conservation practices has been noted on water yield from areas larger than 120 hectares (155).

Vegetative and Cultural Measures

Grass Cover and Strips. The effect of a grass cover on surface runoff varies--runoff reductions from 56% to 90% have been observed on slopes from 0.5% to 46% when compared to surface runoff from other agricultural types (50, 68, 102, 103, 173, 182)) and one study (161) showed no difference in surface runoff between a grass cover of Imperata cylindrica or Saccharum spp. compared with secondary or plantation forest on 36-70% slopes. Yet, Pennisetum spp., Cynadon spp., Urochloa spp., Panicum spp., and Desmodium spp. showed no effect on surface runoff when compared to conventional cultivation in two cases with, respectively, 5% and 46% slopes (102, 202). Effects of grass barriers or strips have not been well investigated, though it appears that they do have an impact on surface runoff. On 12-22% slopes, grass strips reduced surface runoff 9-14% (3, 183), and planting grass strips on bench terraces on 28% slopes reduced surface runoff 69%, compared to unplanted terraces (102). The spacing of strips and types of grass affect the impacts on surface runoff--2.5 meter spacing of grass barriers gave a 59% greater reduction in surface runoff than grass barriers spaced 5 meters apart, and Eragrostis spp., guinea grass, and South African pigeon grass barriers reduced surface runoff 30% and 25%, respectively, on 0% and 23% slopes (102).

Mulching. Mulching protects the soil from raindrop impact, reduces evaporation from the soil surface, and slows down runoff, giving more time for water to infiltrate (96, 160). Measurements of soil moisture storage on mulched plots showed an increase of 38% when mulch was applied at 1.1 t/ha; by increasing the amount of mulch to 4.4, 8.8 and 12 t/ha, moisture storage was increased 61%, 93% and 104%, respectively (180, 197). Mulch applied at 9 t/ha conserved the equivalent of 23 days of a soybean crop's moisture requirements (189) and 0.66 t/ha of mulch increased soil moisture storage 3% (38). Surface runoff, an indicator from which increases or decreases in soil moisture storage could be inferred, has been shown to be reduced by 16% to 91% on slopes ranging from 1% to 46% as the result of mulch applications (54, 97, 102, 122, 188, 189, 192, 199, 213). Rainfall simulator studies have shown that mulch has no effect on surface runoff from low-intensity rainfall (171), yet reduces surface runoff by 11-96% on 5% slopes (with mulching rates of 0.63-4.94 t/ha) for higher-intensity events (113). One study (21) on 2% and 8% slopes showed a combination of mulch and manure at different rates to reduce surface runoff from 64% to 93% compared to untreated plots. Stubble mulching with crop residues has also been shown to increase soil moisture storage (180) and to decrease surface runoff (84, 116).

<u>Cultivation practices</u> may also be effective in reducing runoff. As a general principle, tillage and cultivation reduce the size of soil aggregates

and promote pore clogging which can result in decreased infiltration (66, 133). Increases in surface runoff of 150-1,317% have been reported as a result of taking land out of permanent grass and putting it under cultivation (158). However, infiltration increases ranging from 72% to 860% have been observed as a result of different tillage and cultivation practices, compared with untilled land, as a result of increased surface roughness slowing down or detaining surface runoff (28). Poor tillage practices, such as up-and-down slope cultivation, can increase runoff, even when combined with beneficial practices such as cover cropping or mulching (54, 68). No-till/minimum till methods on 1-18% slopes have decreased surface runoff from 7% to 86% in comparison to traditional and conventional cultivation methods (90, 116, 122, 157). No-till systems combined with mulching have reduced surface runoff from 432 to 92% on slopes from 3.5% to 14%, compared to unmulched, traditional cultivation (116, 190). On slopes as high as 21%, no-till carried out on the contour reduced runoff 43% compared to clean tillage (73). Increased surface runoff has been observed in a no-till/stubble mulch/chemical weed control system compared with conventional tillage/stubble mulch. The study reported a 167 increase in surface runoff attributed to chemical weed control (212). Disk plowing/stubble mulching were shown in one study (116) to reduce surface runoff about the same amount as a no-till/mulch system.

<u>Contour Cultivation</u>. Reports from India on contour cultivation and planting, based on 30 years of work at an agricultural experiment station, suggest that this practice alone will reduce surface runoff 25% when compared to up-and-down slope cultivation (46). Other studies have found a decrease of 70% in surface runoff on a 25% slope (68) and an 82% decrease on a 20% slope when contouring was combined with mulching (102). These two studies were also in comparison to up-and-down slope cultivation. A 29% and 48% decrease in surface runoff was observed on 2.2% and 6% slopes, respectively, when the only difference was contour cultivation (16, 60). Direct measurement of soil moisture showed an 8% increase in storage on medium- and fine-textured soils on contour-farmed lands and no soil moisture benefits in coarse-textured soils that are contour-farmed (24). Compared to a control continuously under shrub and grass, contour-cultivated land showed a decrease in surface runoff of 8% on a 25% slope and an increase of 14% on a 30% slope (54).

<u>Ridge and Furrow</u>. Ridged and furrowed plots have demonstrated deeper percolation of water (164, 218), with increases of 121% in soil moisture storage (47) and decreases in surface runoff on the order of 31-86% (122, 131); combined with broadbedding or field banks, surface runoff has been reduced on the order of 38-68% (130, 142, 180). There have been, however, concerns that runoff may increase in situations where water is allowed to concentrate in the furrows (178). In a structurally unstable soil, broadbed and furrowing caused a 38% increase in surface runoff and a 67% increase in peak discharge on a slope of less than 1% (142). It has also been noted that there are few or no moisture conservation benefits from this practice in sandy soils, in clay soils which become compacted from in-field operations, on rough or broken land, on steep slopes, or where large amounts of sediment will accumulate (78, 120, 200).

Structural Measures

Earth Banks. Earth banks require frequent repair and maintenance (26, 68) and in some structurally poor soils (142) or poorly drained soils are impractical--as one author, working in vertic soils, commented that traditional farming consisted of "...breached banks, local varieties and no fertilizer" (203). Also, ponding of water behind banks may occur on poorly drained soils (68). Grading of banks and putting them on the contour can reduce runoff 23-37% when compared to ungraded/uncontoured banks; however, a 50% decrease in depth of percolated water (168) and a 70% increase in surface runoff (169), as well as 18% and 37% decreases in runoff (142, 187), have been observed with contour-banked compared with unbanked plots.

Land Leveling. Little work was encountered on soil moisture/runoff impacts of land leveling. One study showed that a leveled area accumulated in seven months the soil moisture that 19-21 months of fallow would accumulate (126). But this same study also concluded that benefits were dependent on the timing and distribution of rainfall; this may explain the lack of any effect of leveling on soil moisture found in the other study (112).

Terraces. Studies conducted on terracing generated a wide range of findings. No changes in surface runoff were found between terraced land and contour-planted corn on 2-18% slopes (177); between terraced and unterraced land (10, 74); and on coarse-textured soils and other soils with low waterholding capacity (75). Direct measurement of soil moisture found either no changes from terracing (76), that any changes were temporal and may only be observed during the rainy season (58), or that there was a 50% decrease in the depth to which water percolated (168). Terraces, when compared with graded furrows on gentle slopes, were found to increase surface runoff on the order of 25%, with the greatest increases coming in small storms (84, 155) or to perform no differently (68). Compared to unterraced plots, terraced plots have been found to increase surface runoff if antecedent moisture conditions are high or decrease it if they are low (10). As the result of terracing, increases in surface runoff of 20% (10), 116% (169), 140% (182) and 31-201% (183) have been observed. Significant increases in peak discharges and time to peak discharge, decreases in soil moisture, and low flows have been observed as the result of completely terracing small watersheds (108, 110). Conversely, a 28-year study reported that terracing decreases peak flows with the magnitude of decrease inversely proportional to the size of the watershed (10), and in an 11,500-ha watershed there was a reported 11% decrease in surface runoff after 42% of the watershed was terraced and a 44% decrease in surface runoff after 75% of the watershed was terraced (89). When comparing terracing to other practices, such as clean cultivation on slopes of 9-47%, terracing reduced surface runoff 31-86% (72, 102, 103, 163, 191). The moisture retention function provided by terraces in some situations (75, 124) has also created difficulties in carrying out tillage as a result of excess soil moisture (17) in others. It is apparent, however, that when terraces are used in conjunction with other improved practices they do enhance moisture conservation. In general, the experience in the United States has been that contour-farmed terraces reduce surface runoff 9-37% compared to unterraced agricultural land (74, 219). Inclusion of such practices as conservation cropping, permanent covers, mulches, rotations, and deep tillage have been shown to decrease runoff 20-90% on terraced lands (10, 11, 103, 167).

IMPACT ON EROSION RATES AND SEDIMENT YIELDS 6/

The effect of treatments on erosion rates and sediment yields is arranged by climatic zones, which is not to suggest that research from one climatic zone is not applicable to another. Physics is not changed by rainfall and temperature regimes; what does change, however, is the relative importance of individual parameters in the erosion/sedimentation process. For example, antecedent moisture conditions are much more important in a monsoonal climate than a semi-arid climate. Since soil types are also loosely correlated with current climatic regimes, climatic zone seems a useful basis for compartmentalizing research results.

Climatic Zones

Equatorial Monsoon	<pre>- receives both monsoons, no regular dry season [precipitation (Pt) = 2,000+ mm/yr], and,</pre>
Continuously Wet Tropics -	- humid for more than nine months (Pt = 1,400+ mm/yr)

The review found limited quantitative research on soil conservation in these two climatic zones. It is reasonable to assume that given their large volume of annual precipitation, soils are often near or at saturated conditions. Extensive overland flow in well-vegetated areas could be expected as a common phenomenon (176) and erosion/sedimentation hazards high in disturbed catchments. Research available shows that for slopes of 3.5-22% techniques such as minimum tillage with mulching could reduce sediment yields 56-99%, compared with unmulched traditional farming systems and that grass strips reduce sediment yields 93% compared to bare soils (3, 190). Commercial fertilizer applications and manuring were also found to reduce sediment yields 997, compared to nontreated plots, due to increased yield (21). These results suggest the linkage between a productive cover crop, infiltration, and reduction of runoff velocities. Some evidence from these zones supports the idea that traditional hill-slope agriculturalists practice farming systems that minimize erosion (160). No research on structural soil conservation treatments in these two climatic zones was encountered.

> <u>Dry/Wet Monsoon</u> - One monsoon predominates, receiving relatively little precipitation from the other (Pt = 1,800+ mm/yr).

A wide variety of research exists for this climatic zone. Work has been done on <u>permanent grass covers</u> in comparison to clean cultivated agricultural lands (7, 30, 41, 68, 102, 152, 161, 167, 202); research findings taken from slopes ranging 5-70% show decreases in sediment yields of 50-94%. <u>Grass strips</u> alone have proven effective on slopes up to 30% (no available research at slopes beyond this figure), reducing sediment yields from 71% to 99.7%, compared to clean cultivation (33, 102, 103, 205). The effectiveness of grass strips in reducing short-term erosion rates, however, may not be as great. Compared to clean cultivation, erosion rates ranged from not significantly

^{6/} Literature cited in Table 8.3, page 203.

different to 24% less on areas with grass strips (4,183). The addition of mulch in conjunction with grass strips was very effective on slopes of 23-28%, reducing sediment yields 97-99% compared to clean cultivation (102). Mulch alone reduced erosion rates from 16% to 99% (1, 188, 189) and sediment yields from 64% to 152% (41, 116) on slopes up to 35%.

Research on cultural treatments for soil conservation in this zone found that <u>no-till/stubble mulch</u> systems can decrease sediment yields 64-93% (116), and that <u>contour cultivation</u> by itself (based on 30 years of experiment station research in India) decreases sediment yield 30% in comparison to upand-down slope cultivation (46). Research in other areas found reduction in sediment yield from contour cultivation to range from 30% to as high as 80% when used in combination with mulching (68, 102) in comparison with uncontoured plots. One study reported that at higher slopes, 25% in this case, contour cultivation alone was ineffective and yielded 14 times more sediment than a bench-terraced plot (143). Other cultural practices such as <u>mixed</u> <u>cropping</u> reduced erosion rates by 74-99% on 20% slopes when compared to strip cropping or monocultures (106, 213), and the <u>addition of manure</u> (16 t/ha) reduced erosion rates 42% on a 16% slope (2). Finally, when compared to seedbed preparation by plowing on a 10% slope, <u>burning and dibbling</u> reduced erosion rates 38% in a corn field (30).

The structural treatment of contour banks (syn. bund) appears to have a limited life span of 2-5 years in this zone and at slopes above 11% to fill rapidly with silt and have trap efficiencies on the order of 30-50% the first year and 02 the second (79, 116). Contour banks also have been found to be useful only where soils have good drainage (116, 159), otherwise they are susceptible to breaching and failure (68, 79, 116, 159, 203). They have, however, been shown to decrease sediment yields 32-46% on well-structured soils, in comparison to unbunded plots (169,187). Many types of terraces have been tested in this zone, such as inward-sloping, outward-sloping, leveldrainage and level-retention bench terraces. As a generic type of structural practice, over a range of slopes from 10% to 30%, terraces have been found to decrease sediment yields 50-902 (33, 68, 102, 103, 104, 143, 169, 205); they have also been shown to reduce erosion rates 20-95% on slopes ranging from 9% to 40% (71, 152, 163, 184, 191). Compared among themselves, it is evident that evaluation of slope, soil, and rainfall/runoff regime should decide the type of terrace used. Sediment yield increased 17 times with outward-sloping, compared with inward-sloping bench terraces (104) and no difference in sediment yields was found in two studies between the less costly approaches of graded terracing and hillside ditching, compared with bench terraces (68, 169). Erosion rates may also be effected by terrace type; flat-bench terraces and sloping-bench terraces increased erosion rates 125% and 800%, respectively, when compared to ridge terraces in an upland situation (140).

Over the range of slopes researched in the dry/wet monsoon climatic zone, 5-30%, it appears that vegetative/cultural approaches such as grass cover, grass strips, and mulch are almost as or are as effective as structural approaches. Wet and Dry Tropics

- Clearly defined wet and dry seasons. Dry season persists for 3 to 6 months (Pt = 1,000+ mm/yr).

A variety of soil conservation work has been carried out in this zone. No research was encountered that investigated the effects of grass strips. <u>Permanent grass cover</u> has been found to reduce sediment yields 84-100%, compared with clean cultivated plots (54, 62, 182, 215). <u>Mulch</u>, tested on slopes of 3-8%, reduced sediment yields 38-98% in comparison to traditionally cultivated plots (122); on 30% slopes, the mulching of plots that were cultivated up and down slope reduced sediment yields by 28% (54). Experiments with a 50% cover of asphalt mulch reduced erosion rates 68% (149).

Poor cultural practices such as cultivation up and down slope have been shown to accelerate erosion rates, even when combined with good practices such as cover cropping or mulching (54). When compared to conventional tillage and bare soil, no-till systems have proven to decrease sediment yields by 61-98% on slopes ranging from 1% to 52% (27, 67, 122, 157); when combined with mulching, a no-till system reduced sediment yields 99%, compared to conventional cultivation (139). Land clearing and cultivation, especially on sandy soils, may increase erosion rates drastically (up to 115 t/ha/yr) (97, 98, 100). Burning to clear a site for agriculture, then practicing no-till cultivation decreased sediment yields 85%, compared to conventional tillage (90); bulldozing, leveling and conventional tillage increased sediment yields 105% versus burning and conventional tillage (90). <u>Hand cultivation versus mecha-</u> nized cultivation reduced sediment yields 38%, compared to plowing and harrowing or mouldboard plowing and 70%, compared to plowing and bare fallowing (139). Other practices found to be effective when compared to up-and-down slope cultivation are cross-slope and contour cultivation and ridge and furrow systems which have reduced erosion rates 43-96% on slight slopes (16, 90). One study (122) showed that on one of two sites no-till, minimum till, and contour cultivation actually increased sediment yields 33-205% when substituted on 3% slopes for a traditional mixed cropping scheme. Tillage practices appear to be site-specific in impact. Deep tillage when compared to shallow tillage on a erodible sandy soil subject to compaction decreased the erosion rate 63% (36); on a highly weathered Ferrasol, deep tillage increased the erosion rate 100% in comparison to shallow tillage (114). Shifting cultivation by traditional practitioners on steep slopes appeared to result in little accelerated erosion (150, 209), but practiced by newcomers to the area resulted in disaster (209).

<u>Terracing</u>, compared to unterraced lands and the same cultural practices, showed 26-89% decreases in sediment yield on slopes of 5-45% (56, 94, 129, 182). When comparisons were made among terrace types, a study on 5% slopes (56) demonstrated that sediment yields from different types of terraces could range from a 70% decrease to a 69% increase, depending on whether the terrace was backsloped or broad-based in comparison with level or out-sloping. One <u>contour banking</u> study showed that earthen banks were superior to stick or stone banks on 30% slopes. The earthen banks were 34-39% more efficient at reducing sediment yields versus the stick or stone type; compared to <u>bench</u> <u>terracing</u>, however, the earthen banks were 58-70% less efficient on these steep slopes (129). Temperate Zone - Rainfall every month or well marked rainy season. May be snow in winter (Pt = 600+ mm/yr)

The majority of work done on soil conservation has been done within the temperate zone. The applicability of this work to the tropics has always been in dispute, though Sanchez (160) states that for soils that are Entisols, Vertisols, Yermosols, Solonetz, and others with little or no iron or aluminum oxides, the classic concepts of soil conservation developed in the temperate zones are entirely applicable.

Research on grass strips has found a 40-70% reduction in sediment yields in farm fields on relatively flat lands, compared to no grass strips (31, 74, 217). Vegetative riparian buffers and very wide (> 50 ft) grass strips were found to have a trap efficiency for sediment of 84-99% for runoff moving at low velocities (39, 217). <u>Mulches</u> alone, at rates of as little as 0.33 t/ha, have been shown to reduce sediment yields by 42% (171). Doubling that rate of application to 0.66 t/ha of mulch reduced sediment about 66% and mulch at about 2.5 t/ha reduced sediment yields 80-97% (99, 113, 123 171).

Cultural operations such as <u>contouring</u> were considered to be most effective on slopes of 3-9%, reducing sediment yields by 50-86% compared with uncontoured fields (73, 219). Most research on cultural operations involved a treatment package of different tillage types with mulch/chemical weed control/crop residue management or stubble mulching. Ranges of sediment yield reductions were 26-99.9% on nearly level to 21% slopes (12, 31, 73, 74, 137, 178, 195, 219). There is also evidence that some tillage practices, for example, ridge tillage without crop residue management, are inappropriate and may increase erosion/sedimentation when not used in combination with other practices (178).

Structural approaches to soil conservation were, again, found to be site-specific in their application. On 9% slopes in shallow erodible sand, <u>contour banks</u> increased sediment yield 200% (121), whereas on a 32% slope, contour banks reduced sediment yields 25%, 77%, and 99.9%, depending on whether the banks were placed every 10 rows, every 5 rows, or every row (148). Research has characterized <u>terraces</u> as effective, but not necessarily more effective than grass or graded furrows, at reducing sediment yield (74, 177, 219) (155, 177); expensive ("more expensive per ton of soil erosion reduction than any other alternative for soil erosion control") (198); and prone to failure if used in structurally unsound soils (23, 87).

<u>Semi-arid, Tropics</u>	- One rainy season, marked by 4-8 month dry season (Pt = 400+ mm/yr), and
<u>Semi-arid, Temperate</u>	- One rainy season or patchy rainfall dis- tribution (Pt = < 600 mm/yr).

In these two climatic zones, natural upland erosion can reach its peak. Density and distribution of vegetation are patchy, long-term wetting and drying cycles create hydrophobic conditions in soils; initial infiltration rates, especially in sandy soils, can be quite low; and finally, what precipitation does occur often comes in the form of high-intensity rainfall. The little soil conservation research encountered for these climatic zones was mostly of the cultural practice-type, where methods to increase infiltration and contain runoff for future crop use predominate.

Permanent grass cover as an alternative to wheat was found to decrease sediment yields 98% on 8% slopes (50), but as an alternative to natural cover on 0.5-1% slopes to increase sediment yields 6-12%. In comparison to other agronomic treatment, though, the grass-covered plots produced from 74% to 92% less sediment (173). One study on grazing effects (211) showed a 200% increase in sediment yields when short-duration grazing (a few days of high-density grazing) was practiced in place of moderate continuous grazing. Cultivated fallows are a common practice in semi-arid zones as a means of storing soil moisture for later crops. This practice has been called into question due to erosion hazard and, on very gentle slopes, sediment yields from these fallows have been shown to be 850-1,239% higher than natural cover and to be 22-214% higher than when in crops (86, 173). Manuring and mulching have proven effective in reducing sediment yields on slopes of 2-25%: decreases of 73-98%, depending on whether used alone or in combination, have been reported in comparison to bare fallow and no sediment yield increase has been reported in comparison to a vegetated fallow (21, 167).

<u>Contour cultivation</u> has been found effective on slopes ranging from 3% to 8%; at less than 3%, cross-slope cultivation approximates the contour and at greater than 8% increased washouts negated short-term benefits (54, 58). <u>Broadbed and furrow systems</u> have been found to increase sediment yield on poorly drained soils compared to better drained soils (130, 142) for traditional cropping systems. One study (142) warned of structural instability for furrowing or bunding in a fine-textured Alfisol. A <u>broad-based terrace</u> study, the only terrace study encountered that was concerned with erosion/sedimentation, demonstrated a 92% decrease in sediment yield in comparison to an unterraced field (144).

IMPACT ON PRODUCTIVITY AND YIELD 7/

Inevitably, erosion decreases the productivity of a site. If the subsoil characteristics of eroded sites are favorable, then erosion necessitates higher production costs without affecting yields (93, 95). Generally, soils with favorable subsoil characteristics are Andosols and Cambisols, while soils with unfavorable subsoil characteristics are often Ferrasols, Acrisols and Nitosols. On shallow, infertile tropical soils, productivity may decline more rapidly than in similar temperate soils (93, 95). Some studies on the effect of natural erosion on yield have found a yield decrease of an average 0.14 tons/ha per mm of soil loss (95), $\frac{8}{7}$ or that yield declines 3-7.57 after 1 mm of soil loss and declines 10-257 after 8 mm of soil loss (115). Other studies have shown that an erosion rate of 5-14 mm/yr (77-216 t/ha/yr) resulted in yield declines of 50-707 (57). In comparing crop yields from plots that had eroded down to subsoil and plots where topsoil was intact, a decrease of 15-287 was found for the various crops planted in the exposed

- 7/ Literature cited in Table 8.4, page 219.
- 8/ For purposes of conversion of soil depths or soil volumes to soil mass, a conversion factor of 1.4 grams per cubic centimeter was used.

subsoil (31). Certain volcanic soils (Andosols) and loessial soils have fairly uniform physical, chemical, and structural characteristics present to great depths in the soil profile. In such soils the loss of several centimeters of topsoil will have little or no effect on crop yields (93); convincing the cultivators of such soils to employ soil conservation measures may be difficult.

Causes of Productivity Decline

Causes of erosion-induced yield decline differ among soil types, ecological environments, climatic conditions and crops, with no single factor or combination explaining yield variability. There are obvious causes such as decrease in net arable area or burial by erosion products. There are indirect causes such as when timeliness of farm operations is disrupted by difficulties in seedbed preparation or delayed planting. The significant causes of yield or productivity decline are primarily due to changes in three soil variables, namely, plant-available soil water, plant-available soil nutrients, and organic matter.

Soil Moisture Loss. The conclusion of the United States National Soil Erosion-Soil Productivity Research Committee was that the primary effects of erosion on productivity are due to loss of plant-available water (93). The reduction of soil water reserves available to the plant is due to several factors, namely:

- (a) <u>Increased Surface Runoff</u>. The increase is dependent on slope, vegetation (type and distribution), soil characteristics, climatic regime, level of disturbance, and subsequent management practices. Estimates of loss due to increased surface runoff vary widely.
- (b) <u>Decreased Soil Depth</u>. The decrease directly reduces water-storage capacity and effective rooting depth, especially in soils with shallow/rooting lithic contacts, unfavorable subsoil characteristics or restrictive layers.
- (c) <u>Decreased water-storage capacity</u> due to physical changes in soil structure (e.g., loss of noncapillary porosity, crusting) and the preferential depletion of soil organic matter and certain clay fractions by the erosion process; organic matter and clays contribute disproportionately more to water-holding capacity relative to other coarser soil fractions.

The literature does not disaggregate the separate effects of these factors, nor does it distinguish moisture from the other key soil factors. It mostly concerns water-use efficiency. Drought effects are magnified on eroded soils (95) and water-use efficiency of crops is decreased (186). A 4-57 decrease in plant-available water in an eroded soil caused a 12-367 decrease in yield (61). Yost <u>et al</u>. (186) report reduction in water-use efficiency due to soil loss. Kilograms of dry matter per liter of water used ranged from 0.66 kg to 0.7 kg in uneroded control, 0.39-0.64 kg when 10 cm depth was removed and 0.07-0.45 kg for a loss of 35 cm. Water-use efficiency for a soil that lost 35 cm was only 507 that of an uneroded control.

Soil Nutrient Loss. The impacts of erosion have been investigated by removing soil from plots and attributing subsequent yield differences to the depth of soil removed. These soil removal studies are useful only as indicators of the effects of erosion. This is true, in part, because the process of erosion under natural conditions preferentially removes soil components, namely, organic matter and certain clay particles that are important in maintenance of cation exchange capacity (CEC) and moisture-holding capacity. Soil removal, on the other hand, impartially removes all soil fractions. The experience with soil removal studies has been, averaging across different soil and crop types, that the removal of 5 cm of soil reduces yields on the order of 60%, of 10 cm reduces yield on the order of 65%, and of 20 cm reduces yield on the order of 80% (95, 96, 118, 221). It should be noted that these percentages are useful only as indicators of the magnitude of the response, in that it is the removal of the top few centimeters that has the greatest impact. Lal (93) states that the available data on yield reduction per unit loss of topsoil is more drastic for the tropics than for the temperates. Other studies have combined soil removal and fertilizer inputs to look at the unrecoverable productivity decline associated with soil loss (117, 221). One study (96) analyzed sediment and surface runoff from different slope classes to determine the amount of nutrient export taking place. Combining both parts of the study, nutrient flux off site for slopes of 1-15% ranged from 9 kg to 235 kg/ha/yr nitrogen, 0.7-9 kg/ha/yr available phosphorus, 4-6 kg/ha/yr potassium, and 50-3,070 kg/ha/yr organic carbon. Looking at nutrient loss as a function of soil loss, it was observed that on slopes of 3-6.5%, losses of organic carbon and nitrogen were soil-dependent (52). On well-drained sands, losses were 0.97 kg of nitrogen and 10.7 kg of organic carbon per ton of soil loss per year. On other soils, losses were 2.1 kg and 15.4 kg of nitrogen and organic carbon, respectively, per ton of soil loss per year. Losses of phosphorus were the same irrespective of soil type, with 0.16 kg of phosphorus per ton of soil loss per year. On 18% slopes, nutrient losses per ton of soil loss per year were 30 kg of organic matter, 1.5 kg of nitrogen, 1.0 kg of phosphorus, and 2.0 kg of potassium (30). Artificial stabilization of a soil surface decreased the loss rate of major nutrients by more than 90% (44).

Maintaining and/or replacing nutrients is the basis for sustainable productivity. The most common approaches to nutrient management have been to use organic or commercial fertilizers. Organic matter is essential in unfertilized systems--it supplies nitrogen and sulfur, blocks phosphorus fixation, maintains CEC, improves structure of the soil, and forms complexes with micronutrients (160). Organic matter is important in soils with a low CEC or in poorly aggregated sands. Commercial fertilizers, by providing for increased on-site productivity, increase soil organic matter through the decomposition of roots. In choosing between organic or commercial fertilizers, the decision, if soils are adequate, should be based on economics, transport, accessibility, and social criteria (160).

Organic Matter. Organic matter effects soil moisture by enhancing soil permeability, infiltration capacity and moisture retention. In terms of soil nutrients it supplies most of the nitrogen and sulfur and half of the phosphorus taken up by unfertilized crops (the slow release pattern from organic matter is an advantage over chemical fertilizers), it limits phosphorus fixation and can form complexes with micro-nutrients to restrict their leaching. Its depletion in eroding soils is serious. Typically in tropical soils, the zone of enrichment is narrow and removal of the top layer exposes subsoil layers with very little organic matter, poor structure, porosity and nutrient content. Under forest conditions, tropical soils are high in organic matter due to the rapid rate of replacement, but once cleared, even without erosion, the high rates of decomposition, mineralization and leaching lower organic matter content rapidly. Losses of organic matter are high with erosion products and rates of replenishment low because of the competition for crop residues and other sources for fuel and fodder. Organic matter in whatever form is essential to preserve and protect top soil, for optimizing soil water and for the efficient use of chemical fertilizers. It is the only soil amendment that can be produced on or near the farm.

<u>Treatment Effects</u>. Soil treatments variously affect productivity and yield and the literature reviewed isolated the effects of several treatments as follows:

- (a) <u>Cover</u>. Vegetative soil covers have been shown to conserve or increase soil nutrients. On a grassed plot, soil nutrient decline was only about 19% of what it was on a bare tilled plot (182), and on plots cover cropped with legumes there was about a 52% increase in major nutrients compared to clean cultivated plots (85). <u>Mulches</u> have been shown to increase yields from 7% to 188% in comparison to yields from unmulched plots (38, 91, 105, 149, 153, 174, 185, 193).
- (b) <u>Clearing of land</u> with heavy equipment for agricultural use, compared with clearing by slash-and-burn, has had yield impacts ranging from none (40) to 16-74% declines in various crops (136, 166); subsequent fertilization did not return yields from the mechanically cleared plot to yield levels of the slash-and-burn plots (136). The observed yield differences were attributed to the benefits of ash on the slash-and-burn plots versus soil compaction and topsoil disturbance by the heavy equipment.
- (c) <u>Tillage</u>, by itself, significantly reduces nutrient loss in agricultural systems by incorporating fertilizers into the soil (44). A comparison of shallow hand cultivation (to 5 cm), deep mechanical cultivation (15-20 cm) plots, and uncultivated plots showed a 22-103% yield increase and a 8-73% yield increase for hand and mechanical cultivation, respectively (36). Deep tillage was shown to increase yield an average of 28% in 10 crops, over four years, in seven regions of India (153). One author (158) warns that physical degradation and productivity decline caused by mechanized agriculture is more rapid in the tropics than the temperate regions; therefore, the beneficial effects of tillage will not last without liming or inclusion of rotations with deep-rooted grasses. No-till/minimum till systems have shown a range of impacts from a 217 yield decrease (in peanut yields, attributed to the low growing habit of peanuts, exacerbating the effects of weed competition) to a 51% increase in yield compared to traditional cultivation (97, 122). In combination with mulches, no-till has shown a range of impacts, from a 7% decrease (in peanut yields) to a 139% yield increase (mung beans) compared to traditional cultivation (190, 212).

- (d) <u>Contour cultivation</u> and <u>ridging</u> across the slope have shown yield increases of 6-66% on 1.5-32% slopes, when compared to traditional or up-and-down slope cultivation (16, 34, 46, 104, 105, 122, 131). Based on 30 years of research station experience in India, contour farming increases yields up to 35% (46). The inclusion of mulch with contour farming increased yields on a 28% slope by 105%, compared with up-and-down slope cultivation (123).
- (e) Vegetative Barriers on Key Contour Lines. The vegetative barriercontour cultivation system using vetiver grass. Vetiveria zizanioides (Chapter 1, Box 1.2), being developed and promoted in World Bank projects in India, has not yet been referenced in the research literature and data to quantify its benefits are just being collected. A recent set of data from Karnataka, India compared two factors, namely, soil moisture in the top 15 cm and yield, on a contourcultivated field with vetiver hedges and a field cultivated up-anddown slope. It showed that, on the contour-cultivated field, the soil's wilting point was delayed 14 days, the yield of finger millet without fertilizer increased by 25% from 550 kg/ha and with fertilizer by 57% from 790 kg/ha: in short, a classic pattern of increased growing season, yield and response to fertilizer. Data from the first year of experiments in Maharashtra showed the same yield pattern and reductions in soil loss, ranging from 38% to 73%; the maximum observed difference was a decrease in soil loss from 33 tons/ha to 8 tons/ha when cross-slope cultivation was changed to contour cultivation with vetiver grass contour hedges. Surface runoff decreased 20-60% with treatments of vetiver grass, explaining the observations of increased crop-available soil moisture.
- (f) <u>Ripped furrows</u> in semi-arid zones have shown 250% and 300% yield increases over nonfurrowed areas (25, 47). Furrow dams in a semiarid study area increased yield 15-20% compared to no-furrow dam areas (180).
- (g) <u>Construction of banks</u> as soil or moisture conservation structures has failed to show any significant or stable increase in yield in controlled experiments at ICRISAT (86). In poorly drained Vertisols, contour-banked plots showed yield decreases in each of eight years, due to ponded water interfering with tillage and damaging crops (68). A 1962 experiment (209) found 35% yield increases with banking and 98% yield increases with banking and land leveling combined, and on a structurally stable, high-quality soil, contour banks were as effective at increasing yields as contour banks in conjunction with terracing or mulching on 9-12% slopes (5).
- (h) <u>Land leveling</u> and level pans have shown yield increases ranging from 0% to 180% in comparison to unleveled plots in semi-arid areas (88, 112, 126).
- (i) <u>Terracing</u> is a technology whose experimental effects on yield vary widely. On the negative side, terraces have been found to have anything from no effect on yield to a 32% decline in yield (17, 18, 35, 56, 68, 76, 104, 105, 182). Reported are impacts such as significant

increases in loss of major nutrients (excepting N) (182), yield reductions persisting for six years due to topsoil disturbance (17), topsoil disturbance resulting in the necessity of high levels of commercial fertilizer inputs (18), and poor drainage resulting in degradation of soil tilth from tillage operations and crop damage from excessive moisture (35, 68). As an agronomic practice, terracing alone may have no effect on yield (74, 76). On the positive side, terraces have been shown to increase yields from 16% to 100% (34, 56, 68, 75, 105, 111, 124). The important question is, what caused these differences? Soil disturbance is one causal factor--a study of five different terrace types, four structural and one vegetative, found that yield was 18-45% higher on the vegetative terrace due to lack of soil disturbance (42, 68); another study found that replacement of two inches of topsoil on bench terraces (to cover subsoil exposed by terracing) increased yields as much or more than the highest fertilizer applications (18). Terraces, and bench terraces especially, require deep fertile soils on moderate slopes to permit the topsoil removal that is necessary for leveling (17). Shallow droughty soils do not have the level of productivity required to justify the annual maintenance cost, let alone the initial cost (30). Construction of the wrong type of terrace is another problem. Level-absorption terraces and conservation-bench terraces are for use in climates where retention of moisture is important and will not be appropriate in humid climates or in areas with poorly drained soils. Outward-sloping terraces are useful in areas with well-distributed, low-intensity rainfall, and well-structured permeable soils. Inward sloping and level drainage terraces are useful in humid climates. All terraces require soils that have good engineering properties -silts and fine sands are unsuitable soils in which to terrace. Certain landscapes in Indonesia such as the upland marls are physically unsuited to classic bench terraces and can be severely destabilized by their construction (30). Depth of soil over parent material and the parent material itself are important. Shallow soils over slick parent materials (e.g., granites and shales) (23) that are not wellweathered can result in massive terrace failures. The proper terrace type may also be crop-specific; in Indonesia (135) rice yields were 18% higher on bench terraces compared to ridge terraces, but the more expensive bench terraces produced no greater yields for peanuts or cassava than did the ridge-terraced lands. Whether or not to choose terracing, and then, which type(s) to choose are site-specific questions.

NEED FOR STANDARDIZED RESEARCH METHODS

There is an urgent need for standardizing methodologies to increase the reliability and accuracy of data on soil erosion, soil moisture, productivity and yield. This is particularly important in determining magnitude on a global or regional basis. Despite the extensive literature, reliable quantitative data are limited, having been derived by survey and visual assessment and experiments lacking standardized methodologies. At the local level, sound results from well-designed and properly equipped experiments are required to enable scientists and policymakers to develop watershed management strategies. Further, as the review discovered, the types and range of experiments must be expanded to cover the extreme situations experienced by small farmers, particularly those farming the steep slopes of upper watersheds.

The International Society of Soil Science through a subcommittee on soil conservation and environment has published "Soil Erosion Research Methods"9/ which attempts to standardize methodologies. The book addresses the issues of evaluating erosion problems with nonstandard methods, data precision and reliability, and then deals with the methodologies involved in laboratory, field runoff plots, and large river basins; the design and use of rainfall simulators; modeling soil erosion processes; methods of monitoring erodibility and erosivity and of canopy cover; and assessing the impact of erosion on productivity.

For more effective physical monitoring of Bank-supported projects, a number of these techniques may be considered. Generally they are laborintensive but relatively inexpensive and their application in projects would add greatly to the understanding of the effectiveness and benefits of treatments.

^{9/} Soil Erosion Research Methods, 1988, R. Lal, ed., Soil and Water Conservation Society, Ankeny, Iowa.

SUMMARY OF WORLD BANK PROJECTS

REPORT #	COLNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
317-IN	INDIA	HIMALAYAN WATERSHED						
1983	MGNT UTTAR PRADESN	FUELWOOD & TIMBER PLANTATIONS - MIXED SPECIES FODOER TREE	59,000 ha 27,800 ha	US\$ 274/ha(Govt) US\$ 379/ha(Civ) US\$ 158/ha(Civ)	-GRASS FUELHOOD PLANTATION =.5-3 ton/ha @ yrs 1-8,11-18 FODDER PLANTATION = 2-4 ton/ha @ yrs 1-20 -fuELHOOD	23%	REPORTS REDUCTION OF SOIL LOSSES FROM 30-40 ton/ha/yr TO 1-3 ton/ha/y SHOLM IN INDIA FOLLOWING IMPLEMENTIN SOIL CONSERVATION MEASURES "SIMILAR" TO THOSE PROPOSED. MO CITATION GIVEN FOR THIS FIGURE.	
			PLANTATIONS		US\$ 12/ha(Priv)	FUELHOOD PLANTATION = 23-68 tony a yr 10 & 20		* - does not equal 6000 hs of terraces, rather 6000 hs of land will have terraces constructed on it.
			FUELWOOD & FODDER PLANTATIONS	81,000 ha	N/A	FODDER PLANTATION = 18 ton/ha @ yr 10 £ 20 FARM FORESTRY = 5 ton/ha @ yr		
		BRUSH & STONE CHECK DANS	1,650	US\$ 11 ea.	FODDER FUELWOOD PLANTATION=.15 ton/ha	•		
			CRATE WIRE DAMS	1,300	US\$ 316 ea.	9 yrs 3-20 FODDER PLANTATION = 1-5 tor/ha		
		DROP STRUCTURES	700	US\$ 1,053 ea.	a yrs 3-20 -Soil Conservation/sedimentation			
		TERRACES	6,000 ha *	US\$ 526/ha	BENEFITS			
			CATTLE EXCHANGE PROGRAM	10,500 ha	us \$ 368/ha			1 U 4
******** 561-1N	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	PILOT PROJECT FOR	**************	***********	*********	************************	*****	*************************************
983		MATERSHED DEVELOPMENT IN RAINFED AREAS	DRAINS AND WATERWAYS	300 km	US\$ 15-21/ha	-AT YEAR 13 FUELWOOD - 194,000 m3 FODDER - 130,000 tons	46X	REPORTS THAT WORK PERFORMED @ ICRISAT (6 YR. STUDY) PARTITIONED
			GRADED BUNDS/TERRACES	140,000 ha	us\$ 41-51/ha	-SOIL CONSERVATION/MOISTURE BENEFITS		RAINFALL : ON A FALLOW 25% - RUNOFF, 25% - EVAPORATION (SOI)
			LAND SHAPING	10,500 ha	US\$ 41-51/ha			9% - DEEP PERCOLATION 41% - HELD AS SOIL HOISTURE
			LAND SHOOTHING	60,000 ha	U\$\$ 15-26/ha	:	: 'ON CROPPED FIELD 15% - RUNOFF SOIL ORDER = VERTISOL (HIGH SHRINK/	
			REHAB. EXISTING SOIL CONSER. STRUCTURES	30,000 ha	N/A			SWELL HONTHORILLINITIC CLAY)
		BRUSHWOOD & STONE Check dams	10,000	N/A			SUNDS & FIELD BOUNDARIES LITTLE EFFECT NOVEMENT OR RETENTION OF	
			WIRE CRATE DAMS	400	N/A		MATER. CROPS M Stagnation, Bu	
		DROP STRUCTURES	100	N/A			FLOODING. SOLUTION = DRAINS TO WATERWAYS & GRADED BUNDS (DEPEND. O	
			SOWING FODDER LEGUMES	45,000 ha	U\$\$ 16/ha			SOIL TEXT. AND PERMEABILITY)
			DISTRIBUTE SEEDLINGS TO INDIVIDUALS	20,000,000	N/A			

le 2.1

.

•

SUMMARY OF WORLD BANK PROJECTS

•

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNET COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
•		•••••	FARM FORESTRY	30% OF FALLOWED	US\$ 115/ha			REPORT IS PRELIMINARY REPORT AND CONTAINS NO USEFUL GUANTITATIVE INFO
			REFORESTATION	30 % OF EXISTING FOREST RESERVE	US\$ 344/ha			ON IMPACTS OF PROPOSED TECHNOLOGIES
6443-CHA	CHINA	GANSU PROVINCIAL DEVELOPMENT PROJ.	******	********	***********	*******************************	*****	***************************************
		AGRI. COMPONENT	BENCH TERRACES	13,500 ha	U\$\$ 594/ha			REPORT CONTAINS NO GUANTITATIVE INFO
			TERRACES	21,000 ha	US\$ 216/ha			
			LAND SHOOTHING (man.)	40,000 ha	US\$ 27/ha		•	
			LAND SMOOTHING (mech.)	10,000 ha	US\$ 270/ha			
			PLANT GRASS/LEGUNES	40,000 ha	US\$ 54/ha ·			
			GULLY PLUGS	2,400 km	US\$ 810/km			
3316a-TUN	TUNISIA	NORTHWEST RURAL	***************	*******	************	**********	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1981		DEVELOPMENT - PHASE 1						APPRAISAL BASED ON PILOT PROJECT () (SEDJENAME RANGE NGHT.) AND SOIL ()
			REFORESTATION/WOODLOTS	22,080 ha	US\$ 1,857/ha	-FORESTRY PRODUCTION INCL. RURAL ENERGY SUPPLY - US\$ 5.9M/YR	L 16X	CONS./FORESTRY PROJECT (BLJA PROJECT ONLY INFO GIVEN IS THAT PROJECTS ARE
			PASTURE(IMPROVE./EST.) CONTOUR BUNDS CONTOUR GUIDELIMES GULLY STRUCTURES	72,648 ha 3.300 ha 21,580 ha 1,740 ha	US\$ 59,500,000 (TOTAL FOR ALL PASTURE & SOIL CONSERVATION)	B FULL DEVELOPMENT -SOIL CONSERVATION TO REDUCE OR ARREST EROSION & DECLINE IN AGRICULTURAL PRODUCTION		"SUCCESSFUL"
·			INTRO. NEW AG. TECH.	41,550 ha	N/A	-REDUCE SEDIMENTATION IN RESERVOIRS		++ - REPORT DOES NOT CONSIDER ROAD REMANJUNDER SOLL CONSERVATION.
			ROAD IMPROVEHENT ++	1,940 km	US\$ 7,216/km			SHOULD BE CONSIDERED AS BENEFIT IF
4831-BHU		FORESTRY DEVELOPMENT	***************	*******	************	********	*****	***********************************
1984			CONSERVATION WORKS : CHECK DAMS,GULLY PLUGS	WHERE NECESSARY	EST. EXPENDITURE US\$ 105,000			REPORT STATES THAT PROJECT AREA COMPRISES AREA OF : "EASILY ERODIBLE SOILS", "GENERALLY STEEP SLOPES", "HEAVY PRECIPITATION" (3,950 mm(13 fi
			PROTECTION PLANTATIONS ON SLOPES > 60%; ROTATION = 60 YEARS	700 ha	N/A			- 4,870 wm(16 ft) per year). SEVERE EROSION AND SEDIMENTATION MAZARD AS RESULT OF LAND CLEARING, LOGGING, AM PLANTATION ESTABLISHMENT AND MGMT. PRACTICES NOT CONSIDERED.
								REPORT CONTAINS NO QUANTITATIVE INFO
2336-1ND		YOGYAKARTA RURAL	******	************	********	*******************************	*****	*************************************
								•

SUMMARY OF WORLD BANK PROJECTS

and a second second

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNET COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
1979	•••••	DEVELOPMENT	GULLY PLUGGING, DRAINS, TERRACE INPROVEMENT (HOMEGARDENS)		US\$ 48/ha	-REDUCE SILTATION RATES IN DOWNSTREAM IRRIGATION WORKS -ARREST SOLL EROSION, DECLINE IN SOLL FERTILITY, AND CHANGES IN STREAMFLOWS	14X + 13X *	++ - COSTS BASED ON MEAN SLOPE OF 25% FOR DRVLAND AND 15% FOR LOWLAM TERRACES. COST FIGURE INCLUDES CONSTRUCTION AND/OR REMABILITATION OF TERRACE DRAINS AND WATERWAYS
			DRYLAND TERRACES : ++ (BENCH-TYPE,RAINFED) NEW TERRRACES REHAB. EXISTING	390 ha 740 ha	US\$ 355/ha US\$ 192/ha	-90% PER CAPITA INCOME INCREASE FOR PARTICIPANTS IN SILVIPASTURE -20% PER CAPITA INCOME INCREASE FOR PARTICIPANTS IN TERRACING		** - COSTS INCLUDE PLANTATION MAINTEMANCE TILL YEAR 5. PLANTATIO ESTABLISHMENT COST = Rp. 74,00G/h4
			LOWLAND TERRACES : NEW TERRACES	100 ha	US\$ 82/ha	-INCREASES IN AGRICULTURAL PRODUCTION DUE TO TERRACING : CASSAVA - 56% SWEET POTATO - 400%	•	^ - COSTS INCLUDE MAINTENANCE TIL YEAR 5. ESTABLISHMENT COST = Rp. 145,000/ha
			REFORESTATION	350 ha	US\$ 149/ha **	NAIZE - 200X DRYLAND RICE - 300X		PROJECT CONTAINED RESEARCH AND
			SILVI-PASTURE SYSTEMS	350 ha	US\$ 262/ha ^	GROUNDHUTS - 150X		DEMONSTRATION PLOT COMPONENT.
4773-PAK	PAKISTAN	INTEGRATED HILL	*******************	************	*************	********************************	*****	***********************
1984	FARLJIAR	FARMING DEVELOPMENT	AFFORESTATION	5,680 ha	++ - SEE REMARKS	-DOUBLE AGRICULTURAL PRODUCTION -FUELWOOD 50,000 m3 @ yr 10,	22%	++ - COSTS NOT ITENIZED. TOTAL
			FUELWOOD PLANTATION	3,800 ha		340,000 m3 a yr 15		COSTS FOR ALL PLANTATIONS AND SOI CONSERVATION WORK = US\$ 2,600,000
,			DISTRIBUTE SEEDLINGS TO FARMERS	12,000,000				REPORT GIVES NO QUANTITATIVE INF
			CHECK DANS	NOT SPECIFIED				
******** P-2139-	************	++++++++++++++++++++++++++++++++++++++	*************	******	**********	********	*****	*****
РАК 1977		VECHNICAL DEVELOPMENT	NO PARTICULAR TECHNOLOGIES PROPOSED FOR SOIL CONSERVATION			-"DEVELOPMENT OF BOTH AN IMPROVED TECHNOLOGY IN FORESTRY AND A SYSTEM OF USER PARTICIPATION IN ESTABLISHING SUSTAINED FUELWOOD SUPPLIES,VILL		PROJECT ACTIVITIES INCLUDED START OF 4 EXPERIMENTAL/DEMONSTRATION FARMS. RECOMMENDABLE TO CHECK FO RESULTS
						PROVIDE A BASIS FUR FUTURE LARGE-SCALE REFORESTATION PROG. TO PREVENT FURTHER DEGRAD. OF STATE'S FORESTS, SOIL, WATER*		REPORT CONTAINS NO QUANTITATIVE I
********* 2174a-11	1101A	KANDI WATERSHED AND	****************	*************	*************	****************************	*****	*************************
1980		AREA DEVELOPMENT	VEGETATIVE & STONE			-INCREASED PRODUCTION OF FODDER -INCREASED INFILTRATION THUS	12%	++ - COST IS DIRECT COST CALLY
			CHECK DAMS/CHANHEL GRADE STABILIZERS/ DROP STRUCTURES/CRATE	24,000 ha	US\$ 42/ha ++	INCREASED GROUNDWATER, DECREASED FLOOD ING, DECREASED SED IMENT -TIMBER 320,000 m3 @ FULL		REPORT CONTAINS NO QUANTITATIVE
			WIRE DAMS/DEBRIS BASIN			DEVELOPMENT		

.

•

SLIMMARY OF WORLD BANK PROJECTS

REPORT #	COLNERY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	LINIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
			LAND LEVELLING/ TERRACES/WATER NARVESTING STRUCTURES	3,700 he	US\$ 214/ha			
			BENCH TERRACES	500 ha	US\$ 536/ha			
			LAND LEVELLING	3,000 he	US\$ 262/ha			
			GULLY RECLANATION : CHECK DAMS/DEBRIS BASINS/CRATE WIRE DAMS/DROP STRUCTURES/ TREE & SIRUB PLANTING PROGRAM	1,100 ha	US\$ 357/ha		٠	
********			*********	***********	*********		*****	***********
2269-11 1979	THATLAND	NORTHERN AGRICULTURAL Development	VILLAGE WOODLOTS	7,150 ha	US\$ 252/ha	-RÉDUCE AREA USED FOR SNIFTING CULTIVATION BY 26,000 ha -PROTECT 138,000 ha OF WATERSNED	1 3X	REPORT CONTAINS NO QUANTITATIVE INFO
			BENCH TERRACES	2,600 ha	NOT SPECIFIED	FROM BURNING & DESTRUCTIVE		
			ROAD IMPROVEMENT	500 km	US\$ 12,350/km	CUTTING. -SLOW DEGRADATION OF SOIL, WATER, AND FOREST RESOURCES		
			FOREST PLANTATION	7,600 ha	US\$ 193/ha	AND FOREST RESOURCES -SDIL CONSERVATION -FUELWOOD112,000 m3/yr a yr 10 -POLES7,000 m3/yr a yr 10 -SAMLOGS6,100 m3/yr a yr 10		- 57 -
		*********	****************	********	***********	******************	*****	***************************************
6096-ET 1986	ETRIOPIA	FORESTRY	FOREST PLANTATION	11,000 ha	US\$ 1,909/ha ++	-INCREMENTAL PRODUCTION OF 881,000 m3 BIONASS MAX PROD.	16X	++ - INCLUDES COSTS OF CONSTRUCTING 210 KN OF ACCESS AND FEEDER ROADS
			UPGRADE EXISTING FOREST PLANTATION	13,000 ha	US\$ 1,107/ha **	© YR 12, NEAN ANNUAL PROD. OF 577,000 m3 BIOMASS IN YEARS FOLLOWING, FUELWOOD COMPONENT OF		** - INCLUDES COSTS OF CONSTRUCTING 90 KN OF ACCESS AND FEEDER ROADS
			CONNULTY FORESTRY PLANTATIONS	1,600 ha		BIONASS NARVEST = 16-24% OF FUELWOOD DEMAND OF PROJECT AREA, ALLEYIATING SOME PRESSURE FROM		REPORT CONTAINS NO GUANTITATIVE INFO
			UPGRADE EXISTING COMUNITY FORESTRY PLANTATIONS	1,000 ha		REMAINING FOREST LANDS. -SOIL CONSERVATION, SLOPE STABILIZATION, MICRO-CLIMATIC,		
			SELF-WELP FORESTRY PLANTATIONS	8,500 ha	US\$ 400/ha	RESTORATION OF SOIL FERTILITY, -PROTECTION FROM GRAZING & TRAMPLING WILL RESULT IN INCREASED INFILTRATION THUS		
			UPGRADE EXISTING SELF-NELP FORESTRY PLANTATIONS	2,700 ha	use 400/ns	INFROVING WATER SUPPLY & AGRICULTURAL PRODUCTION.		
			FARR/NOMESTEAD Plantings	210 ha				

SUMMARY OF WORLD BANK PROJECTS

.

				SUMMARY OF NO	RLD BANK PROJECTS			
				1. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
			••••••	1				
• •			INSTITUTIONAL	15 ha				
			PLANTINGS					•
********	*********	********	*******************	************	***********	************************	*****	****************
6072-CHA 1986	CHINA	RED SOILS AREA				-600.000 m3 TIMBER		REPORT CONTAINS NO GUANTITATIVE INFO
1900		DEVELOPMENT	TERRACING -)			-600,000 m3 TIMBER. -INPROVE ENVIROMENTAL CONDITIONS	29%	REPORT CONTAINS NO GOMMITIATIVE INFO
			BROAD & BENCH			-REDUCE SURFACE RUNOFF		
			CONTOUR PLANTING		,	-FUELVOOD SUPPLY -DEVELOP SOIL CONSERVATION		
			· []		•	APPROACHES		
		· ·	AFFORESTATION	27,000/ha	US\$ 804/ha	* * ***		
1. Tu			DROP STRUCTURES					
-			CHECK DANS					
			CHECK DAMS	1 3	• •			
			DRAINS					
********	********	**************	*****************	***********	************	**********************	*****	
P-4286- LSO	LESOTHO	LESOTHO HIGHLANDS	€.5 te					
1986		WATER ENGINEERING	SEE REMARKS			N/A	N/A	REPORT CONCERNED ONLY WITH DAM . CONSTRUCTION WORKS; DOES NOT
						•		CONTAIN SOIL CONSERVATION COMPONENT
			N					DESPITE OBVIOUS CAUSE/EFFECT HATURE I OF EROSION/SEDIMENTATION & RESERVOID
					5 <u>1</u> 1			LIFE, CHANNEL AGGRADATION & HEAVY
					•	1		CONSTRUCTION IN FLOOD PLAIN,
******	*********	************	***************	*************	**************	*********	*****	*****************
P-3106-CO 1981	COLOMBIA	UPPER MAGDALENA					H/A	
1701		PILOT WATERSHED MGNT.	SEE REMARKS			-PROJECT WILL SELECT AND REFINE TECHNICAL MEANS AND MANAGEMENT		REPORT CONCERNED WITH SETTING UP RESEARCH AND DEVELOPMENT PROGRAM TO
			OCC ALIVANO			SKILLS FOR FUTURE WATERSHED		IDENTIFY APPROPRIATE REFORESTATION
						PROTECTION PROGRAMS		SPECIES, SOIL CONSERVATION AND
								SUSTAINABLE AGRICULTURAL TECHNICULES FOR UPPER NAGDALENA RIVER BASHL
								PROJECT TO BE CARRIED OUT BY INDERENA
								OVER 4 YEARS. PROJECT SHOULD HAVE COMPLETED, CHECK FOR RESULTS.
*******	********	***************						
4501A:6/		UPLAND AGRICULTURE	******	***********	***********	****************	*****	*************
13/84 5291-110		AND CONSERVATION				-INCREASED PRODUCTION OF AG.	(1RR)	CILUTUNG WATERSHED, WEST JAVA -
1984			REMOVAL OF SILT FROM SEDIMENT TRAPS			FOREST AND GRASS DUE TO	12%	SEDIMENT LOSS INCREASED FRON 1000/91
			THAT BEUINENT INAPS		US\$ 1.40/m3 SILT	SOIL/WATER COSERVATION IMPACTS ON : 1. PREVENTING LOSS OF SOIL	11	IN 1911 > 2mm 1935 > 6mm 1980's (EL SWAIFY et al in "Nat. Sys, for
-						NUTRIENTS AND DEGRADATION OF		Develop., R. Carpenter, ed., 1983)
						SOIL, 2. PREVENTING LOSS OF SOIL MOISTURE NOLDING CAPACITY.		
						3. BETTER NGNT. PRACTICES		EST. OF SOIL LOSS ON 16 SITES (see table 4, pg.16 of report) RANGE FROM
								······································

-

SUMMARY OF WORLD BANK PROJECTS

REPORT #	COLIETRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
						(e.g. terraces). -REDUCED EXTERNAL COSTS OF DOLMSTREAM SEDIMENTATION & FLOOD ING.		0.24 - 10.6 mm/yr. SOIL FORMATION RATE EST. 0 2.4 mm/yr. (note : this is an exceedingly high rate).
						-PRESERVATION OF OPTIONS FOR AN UNCERTAIN FUTURE.		SEE TABLE 1,2,3 pg.4-5,ANNEX I FOR USLE FACTORS. REF = NAMER.W.I., SOIL CONSERVATION CONSULTANT REPORT, for the SOIL RESEARCH INST. OF INDO., 1980,1981,1982
							•	REPORT CONCERNED WITH SETTING UP RED PROGRAM. CHECK WITH USAID PROJECT OFFICER FOR RESULTS.
4353-MEP	######################################	SECOND FORESTRY	*************	***********	************	*******	*****	
1983	983		CONNUNITY REFOREST.	2,000 ha	US\$ 277/ha	-OVER 40 YEARS	27%	REPORT CONTAINS NO QUANTITATIVE INFO
			PRIVATE REFOREST.	12,500 ha	US\$ 104/ha	FUELWOOD - 6.4 H m3, POLES - 1 H m3, TINGER - 1.4 H m3,		
			STRIP PLANTATIONS - (roadcuts,river/canal banks)	2,550 ha	US\$ 250/hs	FODDER - 1.7 H mt, FRUIT - .3 H mt. -SAVE 6,900 m3/yr FUELWOOD WITH STOVES		
			DENONSTRATION MODILOTS	2,200 ha		-SOIL CONSERVATION, PROTECTION RURAL WATER SUPPLY, NICRO-		
			AGRO-FORESTRY PLOTS	5,900 ha	USS 954/ha	CLIMATIC, SOIL FERTILITY BENEFITS		1
			FUEL EFFICIENT MOOD BURNING STOVES	20,000	US\$ 12/stove			59
3628-MOR	NOROCCO	NIDDLE ATLAS/CENTRAL	*************	***********	************	*************	*****	1
1961		AIGULE AILAS/CENTRAL AREA AGRI, DEVELOP.	SYLVI-PASTURE (range mgmt,forage plantings, fertilization,tree thinnings)	45,100 ha	U3\$ 69/ha	-OVER 5 YR 300,000 m3 CEDAR SAMLOGS, 900,000 m3 FUELWOOD. -OVER 30 YR SAVE 77,000 m3 CEDAR, 18,000 m3 FUELWOOD. -YEARS 30-34 PRODUCE 56,000 m PINE TIMBER. -INCREASE FORAGE YIELDS FOREST/ RANGE THUS DECREASING LIVESTOCK DAMAGE	542	REPORT CONTAINS NO GUANTITATIVE INFO
3676-MCR		**************************************	*********	*************	*************	***********************	*****	*********
1982		FORESTRY	REHAB. EXISTING FOREST PLANTATIONS	20,000 ha			208	REPORT CONTAINS NO QUANTITATIVE INFO
		·	REFORESTATION	10,000 ha	US\$ 410/ha	FOR INDUSTRY - VALUE = USS 55 N SUPPLY 1% (72,000 m3) ANNUAL		
		PASTURE IMPROVEMENTS	2,600 ha	US\$ 339/he	FUELWOOD NEEEDS OF COUNTRY,			

•

SUBBARY OF WORLD BANK PROJECTS

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTETY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
	••••••••		****************		**********	********		***************************************
2871a-NOR NOROCCO 1980	NUNOCCO	LOUKKOS MIRAL Development	CONTOUR FAIMING	N/A	· · ·	-DOUBLE CROP PRODUCTION LEVELS -Pinus pinaster MAI = 5 m3/yr 0-35 yr rotation,	15%	FOREST DEPT. INITIATED A STUDY ON EFFECTS OF DIFFERENT SOIL CONSER. MEASURES ON EROSION & SEDIMENTATION -
			PASTURE ESTABLISHMENT	300 he		-Pinus canariensis NAI = 10 a3/yr 0 30 yr rotation.		LOCATED UPPER LOUKKOS. CHECK FOR RESULTS
			STONE TERRACES	1,500 ha		-PIT PROPS \$8,000 m3		
			CHECK DAMS	3,500	USS 330/ha	-SAMLOGS 960,000 m3 -NOVE 25% OF FAMMERS CURRENTLY	•	BREAKDOWN OF SOIL CONSERVATION WORKS
			FORAGE BANDS	1,850 he	· .	BELOW POVERTY LINE TO ABOVE POVERTY LINE.		REPORT CONTAINS NO GUANTITATIVE INFO
			REFORESTATION/ WOODLOTS/FORAGE TREES/ FRUIT TREES	7,750 ha				
		********	******	**********	*******	**********		***************************************
3860-1N 1982	INDIA	JANNU/KASIMIR SOCIAL FORESTRY			· · ·	-SUPPLY FUELWOOD MEEDS OF .45 N	27X	REPORT CONTAINS NO QUANTITATIVE INFO
		• • •	VILLAGE WOODLOTS	5,000 he	US\$ 447 - 471/ha	PEOPLE (1 m3/person/yr) AMMUALLY. PRODUCE 465,000 m3/yr		
•			REMAB./REFORESTATION	17,000 ha	USS 494 - 529/ha	-PRODUCE 465,000 m3/yr SMALL TIMBER & 2.0 M BANBOO POLES/yr,		
			FARM FORESTRY	19,000 ha	US\$ 71 - 106/ha			
			NETLAND PLANTINGS	2,000 ha	US\$ 471/ha	AND SOIL FERTILITY BENEFITS		•
		<u>.</u> *	STRIP PLANTINGS	1,000 he	US\$ 588/ha			60
		MARYANA SOCIAL FORESTRY			. ,	e e e e e	•	1
			VILLAGE MODDLOTS	12,000 he	uss 489 - 527/ha			
			AFFORESTATION : ALKALI LANDS SAND DUNES	500 ha 15,000 ha	US\$ 662/he US\$ 376/he			
			FARH FORESTRY	30,000 ha	US\$ 105 - 108/he			
			STRIP PLANTINGS	9,500 ha	US\$ 612 - 624/ha			t <u>e</u> 11
		***************	****************	*************	**************	*****	*****	***************************************
5916-18 1985		NATIONAL SOCIAL FORESTRY			ʻ.	-REDUCE SOIL EROSION	14 P	++ - COST DOES NOT INCLUDE MURSERY
			FARM FORESTRY	467,000 ha	US\$ 16/ha ++	-INCREASE TIMBER SUPPLY.	21%	DEVELOPMENT, AVERAGE COST/NECTARE
			TREE TENURE PLANTING	4,000 ha	US\$ 3,121/ha			WITHOUT NURSERY DEVELOPMENT COST = US\$ 186/ha; WITH NURSERY COST =
			COMMENTITY FOREST	95,000 ha	US\$ 515/he			US\$ 253/ha.
								** - TOTAL COST

SLIDIARY OF WORLD BANK PROJECTS

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
					••••••			REPORT CONTAINS NO QUANTITATIVE INFO
1			FUELWOOD EFFICIENT STOVES/CRENATORIA	N/A	US\$ 553,700 **			and the second sec
		***************	*******************	*********	**************	************	*****	***********************
6424 1986		REVIEW OF RURAL DEVELOPMENT	SEE REMARKS	N/A	M/A	N/A	N/A	REPORT IS A FINAL PROJECT PERFORMANCE REPORT. 3 PERTINENT PIECES OF INFO IN REPORT :
								1. EROSION CONTROL WORKS TOO 1W FACE OF NAGNITUDE OF PROBLEM 2. POORLY CONSTRUCTED PROJECT
							•	ROADS CREATED LANDSLIDES 3. LACK OF UNDERSTANDING OF
							•	FARMER'S DECISION-MAKING PROCESS RESULTED IN NO POSITIVE IMPACTS FROM EROSION CONTROL & FORESTRY DEVELOPMENT COMPONENT OF PROJECT
4662-YAR	TENEN	CENTRAL NIGHLANDS	**************	**************************************	**************************************	**************************************	***** #/A	***********************************
1984		AGRICULTURAL DEVELOP.	SEE REMARKS					REPORT HAS NO SOIL CONSERVATION COMPONENT. NOTE THAT PROJECT WISHES TO CHANGE TRADITIONAL AGRICULTURAL NETHODOLOGY W/O INCLUDING SOIL CONSERVATION EXTENSION COMPONENT. PROJECT IS AN UPLAND PROJECT.
********* 2920-P6			*************	********	************	***************************	*****	**********************
1980	****	MATERSHED MGMT. AND EROSION CONTROL	REFORESTATION (agro- forestry/timber crops)	32,100 ha	US\$ 729/ha	-LINITING UNCONTROLLED BURNING -NININIZE FLASH FLOODS	181	EROSJON CONTROL STUDY INCL. LOAN # 1227-PH, 1976 CHECK FOR RESULTS
			FOREST PROTECTION/ FIRE PREVENTION	• •		-ENHANCE PRODUCTIVITY -REDUCTION OF SEDIMENTATION -LEAFNEAL 15 tons/ha/yr		REPORT CONTAINS NO GUANTITATIVE INFO
			(veg. rehab.,soil erosion control)	155,000 ha	US\$ 28/ha	FRON YEAR 5 ON -FUELWOOD		
			FOREST ROAD MAINT.	410 km	US\$ 3,170/km	LEAUCAENA - 301 m3/ha YEAR 10 CH CASUARINA - 186 m3/ha YEAR 10 CH CASUARINA - 186 m3/ha YEAR 10 CH CHARCOAL - 100X INCREASE -PULP/TIMBER YEARANE - 687 m3/ha TOTAL FROM YEARS 7-15 BENGUET PIME - 1,132 m3/ha TOTAL FROM YEARS 13-25 MARRA & MANGGANY - 787 m3/ha TOTAL YEARS 20-40	·	
	-		***************	**********	**********	************************		*****
1983		PROJECT IN THE NORTH	-			-BENEFITS CONCEIVED OF IN TERMS	23%	TECHNOLOGIES UNDER "AG EXTENSION/SOIL

•

SUNNARY OF WORLD BANK PROJECTS

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
•	•	· · ·	AG. EXTENSION/SOIL CONSERVATION (contour strips,hedges,strip crops,contour bunds, mulching)	9,000 ha	US\$ 166/ha	OF INCREASED FANILY INCOME WITH INCREASE IN CROP YIELDS OF 33% TO 150%		CONSERVATION® ARE THOSE WHICH PREVIOUS EXPERIENCE FOUND TO BE HOST PALATABLE TO SMALL FAMMERS. SOIL CONSERVATION STRUCTURES (e.g. torraces) WERE THE LEAST ACCEPTABLE.
			ROAD MAINTENANCE	201 km	N/A			REPORT CONTAINS NO QUANTITATIVE INFO
********* 3590-pa	PARAGUAY	CAAZAPA AREA DEVELOP.	***********	************	***********	*****************	*****	**********
1962			SOIL CONSERVATION (contour tillage,grass strips/waterways, protection plantings)	6,750 ha	US\$ 89/ha	-BENEFITS CONCELVED OF IN TERMS OF INCREASED FAMILY/TAX INCOME TO STATE AND A 20% (tobacco) TO 60% (sugarcane)	20%	REPORT CONTAINS NO QUANTITATIVE INFO
			FOREST MANAGEMENT	130,000 ha	US\$ 15/he	INCREASE IN CROP VIELDS		
			ROADS/NA INTENANCE	270 km	US\$ 62,592/ha	۲		
	NAITI	FORESTRY	*******	**********	************	*********	*****	**********
1982			SPECIES TRIALS/PILOT FUELWOOD PLANTATIONS	200 ha	US\$ 2,775/ha	-VOOD 600,000 m3 = CHARCOAL, POLES,LUMBER DURING 4 YEAR	N/A	REPORT CONTAINS NO QUANTITATIVE INFO
			FOREST MANAGEMENT	32,000 ha	US\$ 30/ha	INPLEMENTATION PHASE, SUSTAINABLE TIMBER YIELD FROM		
			DEVELOP FUEL EFFICIENT COOK STOVES	N/A	458 117,000	YEAR 10 VALUED & US\$ 18.5 MILLION/YEAR. FUELWOOD VALUED & US\$ 250 OF KERDSENE/NA.		1
						-"SOIL CONSERVATION AND EROSION CONTROL WILL IMPROVE WITH THE PROJECT AND DETERIORATE SIGNIFICANTLY WITHOUT IT"		62 +
2475-80	BOLIVIA	ONASLIYOS-LOS ANDES	*******	**********	**************	******		*******
1979		RURAL DEVELOPMENT	FORESTRY	600 ha	US\$ 497/ha	-"REFORESTATION OF PUBLIC AND PRIVATE LANDS (VILL) CONTRIBUTE TO BETTER SOIL CONSERVATION AND	(ROR) 36X	REPORT CONTAINS NO GUANTITATIVE INFO
			ROADS : INPROVEMENT MAINTENANCE	50 km 50 km	US\$ 3,628 km US\$ 3,628 km	REDUCE THE PRACTICE OF MURNING DUNG THEREBY FACILITATING NATURAL WITROGEN FERTILIZATION"		
2663a-WEP	HEPAL	CONDRAITY FORESTRY	******	**********	**********	********	*****	**********
1980		DEVELOPMENT/TRAINING	VILLAGE FORESTRY : COMMUNITY FORESTS COMMUNITY PROTECTION	11,750 ha	US\$ 69/ha	-FUELMOOD PROVIDE REGUIREMENTS () m3/person/year) OF 190,000 PEOPLE (1/3 of target area).	16X	REPORT CONTAINS NO QUANTITATIVE INFO
			FORESTS PRIVATE PLANTINGS	39,100 ha 900,000 trees	US\$ 10/hs US\$ 0.01/tree	-FODDER FOR 132,000 CATTLE (330,000 tons/yesr), INCREASE		
				18 (1 - N)	•			

.

Table 2.1

SUMMARY OF WORLD BANK PROJECTS

REPORT #	COUNTRY	PROJECT	TECHNOLOGY	AREA \ QUANTETY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
			NURSERY/FORESTRY DEVELOPMENT		US\$ 3,280,000	FOOD PRODUCTION BY SUBSTITUTING FUELNOOD FOR DUNG/CROP RESIDUES (equivalent 156,000 tone mmize at peak year). SAVE 25,000		
			INPROVED STOVES	15,000	U5\$ 16/stove	SAVE 25,000 CONS/YEAR FUELWOOD WITH STOVES -SOIL AND MOISTURE CONSERVATION BENEFITS.		
*******	*******	*********	*********	********	**********	******************************	*****	**********************
2695-PN 1980	PNELIPPINES	RAINFED AGRICULTURAL DEVELOPMENT (110110)	SOIL CONSERVATION : ++			N/A	#/A	++ - SOIL CONSERVATION PORTION O PROJECT IS A PILOT PROGRAM
			REFORESTATION COVER CROPPING CONTOUR HEDGES DIVERSION DITCHES SODDING FIRELINES	400/ha	US\$ 135/ha	. v		REPORT CONTAINS NO QUANTITATIVE
******		******	******************	************	**********	******************************	*****	*****************************
6197 1986	KOREA	REVIEW OF THE NINO WATERSHED AREA DEVELOPMENT/YONG SAN GANG IARIGATION				N/A	M/A	++ - WORKS TO BE PRIMARILY BENCH TERRACES, WHAT OTHER TECHNOLOGIE WILL BE USED IS NOT SPECIFIED
		PROJECT STAGE 11	UPLAND RECLAMATION :++ BENCH TERRACES	1,200/ha	US\$ 2,417/ha **			•• - 1976 DOLLARS, REPORT IS A PROJECT COMPLETION REPORT. FUND: ALLOCATED 1976.
								UPLAND RECLAMATION COMPONENT WAS NOT CARRIED OUT.
								REPORT CONTAINS NO QUANTITATIVE
******		********	*************	**********	*****	*************************	*****	**********************
1982 1982	KOREA	REVIEW OF RURAL INFRASTRUCTURE	FUELNOOD	127,000 ha	US\$ 714/ha++	-NEAN ANNUAL FUELWOOD YIELD OF	16X ^	++ - COST INCLUDES : ESTABLISHM
			UPLAND RECLAMATION	4,400 ha	US\$ 3,233/ha	5 tons/ha/yr = 635,000 tons/yr FOR 10 - 15 YEARS. -REBUILDING SOIL FERTILITY	19% *	AND MAINTENANCE/HARVESTING UNTIL YEAR 21
						-REDUCED EROSION -REDUCED FLASH FLOODS THUS		16% = FUELWOOD, 19% = UPLAND REG
						GREATER AG. PRODUCTION -AMENITY VALUE OF FORESTLAND		REPORT CONTAINS NO QUANTITATIVE
 58a-WEP	**************************************	RURAL DEVELOPMENT	***************	********	*********	******	*****	********
1976	M. 17 ML	NUMPE DEVELOPTICAL	FODDER TREES	1,050 ha		-REDUCE EROSION/SEDIMENTATION	2 2% +	+ - FOR EROSION CONTROL
			REGENERATE VEGETATION	1,000 ha		-REDUCE PRESSURE ON EXISTING FOREST -REDUCE AGRICULTURAL USAGE OF		REPORT CONTAINS NO QUANTITATIVE

Table 2.1

SUMMARY OF WORLD BANK PROJECTS

REPORT #	COLINTRY PROJECT	TECHNOLOGY	AREA \ QUANTITY	UNIT COST	ASSUMED IMPACTS OF TECHNOLOGIES	ERR	REMARKS
		FOREST PROTECTION	5,000 ha	US\$ 49/ha	NARGINAL LANDS		
		FUELWOOD	1,050 ha		1. 1. 1		
		SLOPE STABILIZATION TREE PLANTINGS	450 ha		• • •		
		EROSION CONTROL	UNSPECIFIED	US\$ 846,000			
		TRACK/TRAIL DEVELOP & PROTECT	214 km	US\$ 5,140/km			
********* 7002-110	INDONESIA FORESTRY INSTITUTIONS	*************	*********	************	*************************	*****	*************
1987	AND CONSERVATION	SOIL CONSERVATION : RENABILITATION OF EXISTING TERRACES	22,000 he		-INCREASE CROPPING INTENSITY 27% -INCREASE YIELDS OF UPLAND RICE, MAYEE,& CASSAVA 70 - 80%; MAIZE/GROUNDNUT 90 - 130% -SILT ENTRAPMENT BY CHECK DANS	22% +	+ - WATERSHED CONSERVATION
		GULLY HEAD WORKS	250		WILL PROVIDE CULTIVATABLE TERRACE IN 3-7 YRS.		
		GULLY PLUGS (EARTHEN)	1,300		NPV = US\$ 1.3 N -REDUCED SILTATION OF RESERVOIR		
		CHECK DAMS	160		1. PRODUCTION OF ELECTRICITY FOR LONGER PERIOD, NPV=US\$.2 M		
		SLOPING/GRASSING GULLY SIDES	5 ha	US\$ 9,896,400	2. DOWNSTEAM IRRIGATION FOR LONGER PERIOD, NPV=US\$ 5.7 M -LINITED HARVESTING OF FORESTRY		۱ ۵
		STREAM BANK PROTECTION (GABIONS)	10 km		PLANTINGS, NPV = US\$.79 H		64 -
		ROADSIDE PROTECTION (RESHAPE EXISTING DRAINAGE CHANNELS, GRASSING BANKS,DROP STRUCTURES)	50 km				
		REFORESTAION : COMMUNITY FOREST CONSERVATION FOREST	5,500 ha 3,500 ha	us s 2,675,500			
		NANAGEMENT OF EXISTING CONSERVATION AREAS		US\$ 6,388,700			
********	**********	****************	******	**********	*************************	*****	***********

.

TECHNOLOGY	PROJECT	COST PER HA	EXPECTED BENEFITS	
	STRUCTURAL TE	CHNOLOGIES		
erraces	China - rural development (1987)	US\$ 216	None stated	
lench terraces	China - rural development (1987)	US\$ 594	None stated	
errace rehabilitation	Indonesia - soil conservation (1987)	not specified	Conserve soil, reduce sediment,	
lench and broad-base terraces	China - area development (1986)	not specified	increase crop productivity 100% Conserve soil, reduce surface runoff	
erraces	India – watershed management (1983)	US\$ 526	Conserve soil, reduce sediment	
erraces/graded bunds	India - watershed development (1983)	US\$ 41 - 51	Conserve soil and moisture	
contour bunds	Haiti - rural development (1983)	not specified	Increase crop productivity, increase farm family income	
ontour bunds	Tunisia - rural development (1981)	not specified	Conserve soil, reduce sediment, arrest decline in productivity	
ench terraces and	India - watershed development (1980)	US\$ 536 (bench)	Conserve soil and moisture, reduce	
lowland terraces	·	US\$ 214 (lowland)	sediment	
itone terraces	Morocco - rural development (1980)	not specified	Increase crop production, increase farm family income	
ench terraces and	Indonesia - rural development (1979)	US\$ 355 (bench)	Conserve soil, reduce sediment,	
lowland terraces		US\$ 82 (lowland)	increase crop productivity by > 200% increase income 20%	
ench terraces	Thailand - agri. development (1979)	not specified	Conserve soil, slow degradation of soil and water resource	
ench terraces	Korea - watershed development (1976)	US\$ 2,417	Upland reclamation	
and smoothing	China - rural development (1987)	US\$ 27 (manual)	None stated	
and abaning and	India unterstad doublement (1007)	US\$ 270 (mechanical)	even must and materia	
and shaping and smoothing	India - watershed development (1983)	US\$ 46 (shaping) US\$ 21 (smoothing)	Conserve soil and moisture	
and leveling	India - watershed development (1980)	US\$ 262	Conserve soil, reduce sediment,	
and tereting	that a water sited development (1900)		increase infiltration, increase	
			groundwater, increase productivity	
rains	China - area develoment (1986)	not specified	Conserve soil	
rains and waterways	India - watershed development (1983)	US\$ 15 - 21	Conserve soil	
aterways	Paraguay - area development (1982)	not specified	None stated	
iversion ditches	Phillipines - agri. development (1980)	not specified	None stated	
rains	Indonesia - rural development (1979)	not specified		

(Continued)

- 65 -

Table 2.2

On-farm soil conservation technologies, costs and expected benefits from selected World Bank Staff Appraisal Reports

Table 2.2

TECHNOLOGY	PROJECT	COST PER HA	EXPECTED BENEFITS	
	VEGETATIVE	CHNOLOGIES		
Contour planting Contour strips and hedges, strip crops	China - area development (1986) Haiti - rural development (1983)	not specified not specified	Conserve soil, reduce surface runoff Increase crop productivity, increase farm family income	
Contour tillage	Paraguay - area development (1982)	not specified	Increase crop productivity, increase family income, increase tax income	
Contour guidelines and contour farming	Tunisia - rural development (1981)	not specified	Conserve soil, reduce sediment, arrest decline in productivity	
contour farming	Morocco - rural development (1980)	not specified	Increase crop productivity, increase farm family income	
ontour hedges	Phillipines - agri. development (1980)	not specified	None stated	
lant grass and legumes	China - rural development (1987)	not specified	None stated	
ulching	Haiti - rural development (1983)	not specified	Increase crop productivity, increase farm family income	
rass strips, protection plantings	Paraguay - area development (1982)	not specified	Conserve soil	
egetative and crop	Tunisia - rural development (1981)	not specified	Conserve soil, reduce sediment,	
over cropping and sodding	Phillipines - agri. development (1980)	not specified	arrest decline in productivity None stated	

- 66 -

Off-farm soil conservation technologies, costs and expected benefits from selected World Bank Staff Appraisal Reports

TECHNOLOGY	PROJECT	COST PER HA	EXPECTED BENEFITS
·	STRUCTURAL TE	CHNOLOGIES	
Gully head works, gully plugs, check dams, gully shaping/planting, gabions, drop strucs.	Indonesia - soil conservation (1987)	not specified	Reduce sediment, increase reservoir life, increase life of irrigation works, increase life of electricity producing dams, silt entrapment providing arable land
Gully plugs Check dams/drop strucs. Check dams, gully plugs Check dams Brush/stone check dams, wire crate dams, drop structures	China - rural development (1987) China - area development (1986) Bhutan - forestry development (1984) Pakistan - hill farming develop. (1984) India - watershed management (1983)	US\$ 810/km of gullies not specified not specified US\$ 11/check dam US\$ 316/wire dam US\$ 1,053/drop struc.	
Brush/stone check dams, wire crate dams, drop structures	India - watershed development (1983)	not specified	Conserve soil
Gully structures Vegetative/stone check dams, wire crate dams, drop structures, debris basins, check dams	Tunisia - rural development (1981) India - watershed development (1980)	not specified US\$ 357	Conserve soil, reduce sediment Reduce sediment
Check dams Gully plugs	Morocco - rural development (1980) Indonesia - rural development (1979)	US\$ 330 not specified	None stated Conserve soil, reduce sediment
	FOREST	<u>IY</u>	

Community forest and conservation forest	Indonesia - forestry institution and conservation (1987)	US\$ 297	Reduce silt, provide wood products
Forest plantation,	Ethiopia - forestry (1986)	US\$ 1,909	Conserve soil, restore fertility,
Upgrade existing plantations,		US\$ 1,707	improve water supply, alleviate pressure on remaining forest lands
Community and farm forestry plantations		US\$ 400	provide fuelwood and sawlogs
Farm forestry,	India - social forestry (1985)	US\$ 16	Conserve soil, increase timber
Tree tenure planting,	······································	US\$ 3,121	supply
Community forest.		US\$ 515	
Wasteland plantations		US\$ 650	
Afforestation, Fuelwood plantation Distribute seedlings to farmers	Pakistan - hill farming development (1984)		Provide fuelwood

- 67 -

(Continued)

Off-farm soil conservation technologies, costs and expected benefits from selected World Bank Staff Appraisal Reports

TECHNOLOGY	PROJECT	COST	PER HA	EXPECTED BENEFITS
	FORESTR	Y		
Protection plantations on slopes > 60%	Bhutan - forestry development (1984)	not	specified	none stated
uelwood/timber plantation,	India - watershed management (1983)	US\$	274 (Govt.) 379 (Civil)	Conserve soil, reduce sediment,
odder tree plantation		US\$	158 (Civil)	provide fuelwood, timber, fodder
arm forestry, eforestation	India - watershed management (1983)	U\$\$	12 (Private) 115	Conserve soil, provide fuelwood
Dimunity reforestation.	Nepal - forestry (1983)		344 277	and fodder
ivate reforestation,			104	Conserve soil, protect rural water supply, improve soil fertility.
pro-forestry plots,			954	benefit microclimate, provide timber
trip plantings		US\$	250	sawlogs, and fuelwood, stabilize roadcuts, river and canal banks
ehabilitate existing forest plantations,	Morocco - forestry (1982)	USS	410	Provide pulpwood for industry and 1% of annual fuelwood needs
eforestation		not	specified	
illage woodlots,	India - social forestry (1982)	US\$	447 - 471	Conserve soil, stabilize hillsides,
forestation/plantation rehabilitation,		US\$	494 - 529	and sand dunes, improve soil fertility, benefit microclimate
arm forestry,			71 - 108	••
illage woodlots,			489 - 527	
trip plantings, and dune plantings			588 - 618	
prest management	Paraguay - area development (1982)	US\$		
Decies trials/pilot fuelwood plantations,	Haiti - forestry (1982)	US\$ US\$	2,775	Not stated Conserve soil, provide sustainable yield of wood products, offset cost
prest management		US\$	30	imported kerosene for fuel
welwood plantations	Korea - rural infrastructure (1982)	US\$		Conserve soil, improve soil fertility, reduce flash flooding,
ilvi-pesture	Morocco - agricultural development (1981)	US\$	69	amenity value of forest Increase forage yields, decrease livestock damage, provide timber and functional
eforestation/woodlots	Tunisia - rural development (1981)	US\$	331	fuelwood Conserve soil, reduce sediment,
forestation/woodlots/ forage trees/fruit trees	Morocco - rural development (1980)	not	specified	provide fuelwood and timber Provide wood products, forage, fruit
eforestation,	Phillipines - watershed management (1980)	· US\$	729	Conserve soil, limit forest fires;
prest protection/		US\$		minimize flash floods, reduce sediment, provide wood products
munity forests,	Nepal - community forestry (1980)	US\$	69	Conserve soil and moisture, increase
ommunity protection prests,		US\$		soil fertility by substituting fuelwood for dung, provide wood

(Continued)

- 68

ō0 1

Table 2.3

Off-farm soil conservation technologies, costs and expected benefits from selected World Bank Staff Appraisal Reports

TECHNOLOGY	PROJECT	COST	PER HA	EXPECTED BENEFITS
<u>,</u>	FORESTRY	<u>r</u>	-	
Private plantings, Nursery/forestry development	Nepal - community forestry (1980) (continued)		0.01/Tree 3,280,000 Total	products and fodder
Reforestation,	Phillipines - agri. development (1980)		specified	Not stated
Forest fire prevention Forest protection/ fire prevention	Phillipines - watershed management (1980)	USS :	specified 28	Conserve soil, reduce sediment, minimize flash flooding
Reforestation,	Indonesia - rural development (1979)	US\$	• • •	Conserve soil, reduce sediment,
Silvi-pesture Village woodlots,	Thailand - agricultural development (1979)	US\$: US\$:		regulate streamflow Conserve soil, watershed protection
Forest plantation		U5 \$	193	slow degradation of soil,water, and forest resource, provide poles,timber,fuelwood
Forestry	Bolivia - rural development (1979)	USS	497	Conserve soil, reduce burning of forests
Fodder/fuelwood trees, orest protection, slope stabilization tree plantings, regenerate vegetation	Nepal - rural development (1976)	US\$:	49	Conserve soil, reduce sediment, reduce preasure on existing forest, reduce agri. use of marginal lands
····				
	PASTURE	<u>E</u>		
Pasture improvements Pasture establishment	Norocco - forestry (1982) Tunisia - rural development (1981)	USS (Not stated Conserve soil, reduce sediment
Pasture establishment	Morocco - rural development (1980)	US\$		Increase farmer income

di se se

.

.

.

3. ECONOMIC ANALYSIS OF SOIL CONSERVATION TECHNOLOGIES

William B. Magrath

Comparing recent vegetative techniques for soil and water conservation using vetiver grass (Vetiveria zizanioides) and the standard practice of employing earthen bunds, this chapter explores the economic aspects of these alternative techniques. In addition to indicating the relative economic advantages of a conservation system based on vetiver grass, the exercise also helps set the agenda for the collection of additional physical and economic data. The paper consists of four parts: discussion of conceptual issues in the economics of soil conservation investments and the model used to implement this analysis; description of data used; discussion of the results of the basic analysis and, due to its speculative nature, modeling of a range of plausible combinations of parameters; and conclusions and recommendations for further research and development.

CONCEPTUAL ISSUES

It is widely accepted that erosion lowers agricultural productivity (see Chapter 2) and that soil conservation raises and preserves it. However, there is little agreement on exactly how productivity is related to erosion or on the quantitative impact of erosion on yields. In part, the uncertainty arises from the difficulty of defining fertility, as well as of conducting controlled experiments to identify and measure erosion-related yield changes. Erosion involves changes in soil structure that influence root growth and water availability and in the availability and relative concentration of plant nutrients. Soil conservation practices minimize the occurrence of these changes and often induce other reactions that directly improve conditions for crop growth, such as improved response to fertilizer or a delayed wilting point.

Nor is there widespread agreement on how erosion influences the economics of agricultural production. A decline in the underlying productivity of the resource base does, presumably, lower the profitability of farming but not necessarily in a simple or direct way. Erosion-induced losses involve declines in both current and future incomes, but their effects can be masked and at least partially overcome by the use of different or additional inputs. And, like all aspects of agricultural production, they interact with forces of nature largely or totally beyond farmers' control. Similarly, conservation measures often have hidden costs and may generate benefits only over long periods of time.

MODELING THE IMPACT OF EROSION AND SOIL CONSERVATION

Four Types of Data

In view of these difficulties, the most practical approach to developing an understanding of the potential role of soil conservation measures in a farming system is to employ an engineering economics approach: the impacts of erosion and conservation are applied to an economic model of crop production and the value of conservation is calculated on the basis of a withwithout comparison. The basic data required for the analysis are <u>crop production budgets</u>, an understanding of local <u>cropping patterns</u>, evidence on the <u>effects of erosion on yields</u>, and evidence of the <u>impact of specific soil</u> <u>conservation measures on crop yield</u>.

The model developed for this analysis consists of two series of linked crop budgets that represent the consequences of erosion, on the one hand, and conservation, on the other, over a 30-year horizon. Cost and revenue items included in the budgets are shown in Table 3.1 and include all purchased and farmer-supplied inputs which can be valued at market or economic prices. Provision is made for outputs of crops and by-products as well as output (if any) produced from soil conservation practices.

Assumptions

The case being developed assumes that erosion affects farm income by reducing yields and costs, directly in the case of those which are harvestrelated and less directly by making it unattractive for the farmer to add inputs such as the seed of improved varieties or to apply optimal amounts of fertilizer. Conservation treatment is assumed to change costs--by reducing cultivation costs and permitting cultivation and planting to be timely and by increasing costs related to harvesting a higher yield. Direct conservation costs are entered as separate items where applicable. Table 3.1 summarizes the structure of the crop budgets and the assumed impacts of erosion and conservation. These are restrictive assumptions and do not fully account for the range of impacts and cost-averting opportunities available to farmers. They do, however, probably account for the most direct impacts of erosion, at least in the early years of the planning horizon. The model makes provisions for two crops per year or the rotation of two crops.

Output

The basic outputs of the model are projections of the flow of net farm income (returns to land and management) without and with the project. The incremental flow can be cast in present value at any interest rate or summarized in an internal rate of return. A variety of extensions are possible, among them: evaluating the impact of cost and benefit sharing, alternative planning horizons and, in the case of vetiver grass, assessing the incentive to abandon soil conservation for oil-root harvesting.

There is considerable question as to the magnitude of the physical dimensions of the problem, and important parameters will vary from case to case. Therefore, results can be presented to show the impact of changes in key assumptions or the range or combination of parameters that favor one conclusion or another.

Item	Impact of Erosion	Impact of Conservation
Costs		
Seed	0	}
		}
		}
Fertilizer	0	}
Manure	0	}
Bullock Rental	0	<pre>} These inputs decrease in pro- } portion to land taken out of</pre>
	Ū	<pre>> portion to fand taken out of > production</pre>
Pesticides	0	}
Labor		}
Land Preparation	0	}
Fertilizing	0	}
Cultivating	0	}
Harvesting	Decrease in	Increase in proportion to pro-
	proportion to productivity loss	ductivity increase
Revenues		
Harvest		
(Product and By-Product)	Decrease in proportion to productivity loss	Increase in proportion to pro- ductivity; decrease in propor- tion to area taken out of production

Table 3.1: IMPACT OF EROSION AND CONSERVATION ON THE MODEL CROP BUDGET

DATA

Crop Budgets and Two Conservation Techniques

The model is used to compare the relative economics of the proposed vetiver grass-based technology with the more conventional approach of constructing earthen bunds. To the extent possible, data were assembled to reflect conditions on Alfisols in the semi-arid zones of India. Cost, yield and input data for the initial budgets are based on estimates provided by World Bank field staff, which in turn are based on research by state agricultural universities. The budget represents a rotation of sorghum intercropped with red gram (<u>Cajanus cajan</u>) and castor (<u>Ricinus communis</u>). Initial crop budgets are given in Annex 3.1. The principles behind the two conservation techniques considered here are similar.1/ By interrupting the length of the field, both techniques are intended to slow movement of water down the slope, which reduces the movement of soil particles and allows for greater absorption of moisture into the soil and hence increased yields. Vetiver grass hedges are said to be more effective in slowing water and eventually form terraces as soil accumulates along their upslope side.2/ Earthen bunds promote some additional absorption of water but are also designed to channel surplus water into drains and waterways. Loss of water from the root zone via waterways probably accounts for the smaller increases in yield obtained under bund technology. Inadequate provision for disposal of excess water can cause failure of bunds during intense storms and damage to crops in the downslope vicinity. Even so, farmers are reluctant to allocate scarce land for water disposal. Table 3.2 summarizes data on the impact of selected soil and moisture conservation technologies on soil loss and runoff.

Technology	Erosion or Sedimentation (% Reducti		Location	Reference
Contour Cultivation	10-50		USA	Wischmeier and Smith (1978)
Contour Cultivation	30-60	10-70	India	Gupta, <u>et al</u> . (1971)
		25	India	Dhruva Narayana (1986)
Grass Strips	93		Indonesia	Abujamin, <u>et al</u> . (1985)
Grass Strips	40-60		USA	Carter (1983)
Contour Bunds	43	-70 <u>/a</u>	Thailand	Sheng <u>et al</u> . (1981)
Contour Bunds	62	S	ierra Leone	Millington (1984)

Table 3.2:IMPACT OF SOIL AND MOISTURE CONSERVATION TECHNOLOGIES ON
EROSION AND RUNOFF

/a Runoff increased 70%.

^{1/} Data reported in this section on the effects of conservation technology are largely based on literature reviewed in Chapter 2 and Tejwani (1989).

^{2/} This effect has been noted with other grass used in soil conservation work in India. See Sud et al., 1975, as discussed by Tejwani (1989).

Erosion and Productivity Decline

Despite scientific uncertainty over the impact of erosion on productivity and crop yields, as noted, data from a variety of experiments provide some indication of the magnitude of productivity declines. Experiments on Alfisols in Africa showed that mechanical removal of the top 10 cm of soil resulted in yield declines of 73% for maize. Similar experiments at Dehra Dun, India showed more modest impacts (Table 3.3). Actual levels of erosion on cropland, as reported by El-Swaify, et al. (1984), which appear conservative, are only a fraction of the amounts experimentally removed. Results reported by Lal (1987, and personal communication) argue strongly that the damage from naturally occurring erosion is much more severe than that produced in artificial experiments, largely because natural erosion tends to remove preferentially the most productive constituents of the soil. In this analysis, data from Dehra Dun were used to represent the without-conservation case. These are highly conservative and almost certainly serve to understate both actual damage from erosion and benefits from conservation.

Depth of Soil Removal (cm)	Nigeria (% Decrea	India ase in Yield)	
5.0	30.5	12.5	
10.0 15.0	73.6	25.1 33.3	
22.5 30.0	93.5	39.1 45.0	

Table 3.3: EFFECT OF SOIL REMOVAL ON MAIZE YIELDS ON ALFISOLS

Source: Lal (1987) for Nigeria; Hegde (1988) for India.

El-Swaify, <u>et al</u>. (1984) estimate that Alfisols on relatively mild topographies at ICRISAT (Hyderabad, India) have a mean annual erosion hazard exceeding 40 tons/ha or approximately 5 mm. Applied to the data from Dehra Dun, India, this implies yield declines of 1.25%/year for five years, decreasing to 0.95%/year thereafter (see Figure 3.1). In all likelihood, yield declines would become more severe in the absence of soil conservation as sheet erosion gives way to rill erosion leading to larger soil losses. On actual farmers' fields, it could be expected that some effort would be devoted to soil conservation but, at this point, there are no data to indicate what adjustments might be made.

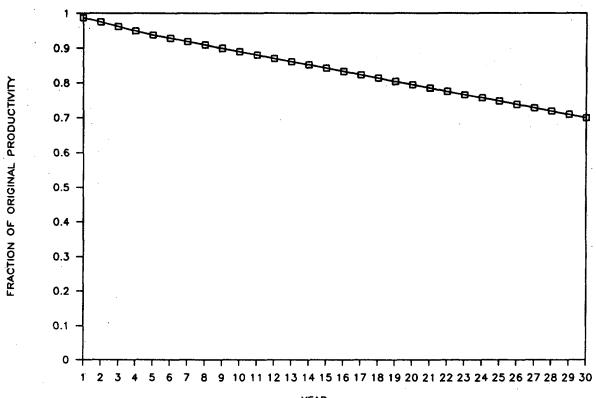


Figure 3.1 EFFECT OF EROSION ON PRODUCTIVITY

YEAR

Soil Conservation Treatment and Crop Yields

Vetiver Grass. The effects of alternative soil conservation technologies on crop yields have been studied in a number of experiments in India and elsewhere. Despite the apparent simplicity of the questions being asked, there are as yet no definitive answers. Experimental designs are weak and researchers have often focused on questions that are peripheral to impact on yields. Table 3.4 summarizes available data on the impact of alternative soil conservation technologies. In the case of soil and moisture conservation using vetiver grass hedges, the quality of the crop cutting experiments that have been conducted is questionable. There are, however, other data from trials with other grass barriers that provide some indication of likely benefits. In addition, it is likely that a significant proportion of the yield increase attributed to the vetiver grass system results from the accompanying practice of contour cultivation.3/ Using Greenfield (1987) as a base case, a 50% yield increase from vetiver grass technology has been assumed.

Technique Employed	Impact on Crop Yield (% increase)	Сгор	Location	Reference
Contour Cultivation	35	Sorghum	India	Dhruva Narayana (1986)
	12	Sugarcane	Taiwan	Liao (1972)
	60	Cotton	USA	Unger (1984)
•	6	Potatoes	India	T Contraction of the second seco
	46	Maize	India	•
	25	Sorghum	Kanpur, India	Bhatia and Chaudhary*
	15	Barley	Kanpur, India	
Sloping Agricultural				
Land Technology	107	Maize	Philippines	Watson and Laquihon (n.d.)
Earthen Bunds	10	Maize	Chandigarh, India	Sud, et al.*
	35	Maize	Uttar Pradesh, India	Khan+
	18	Setaria	Tamil Nadu, India	Kanitkar+
	11	Cotton	Tamil Nadu, India	•
	17	Sorghum	Tamil Nadu, India	•
	24.5	Sorghum	Maharastra, India	Tamhane*
	25.2	Pearl Millet		
	35.6	Sorghum	Tamil Nadu, India	•
	25.4	Pearl Millet	Tamil Nadu, India	•
	21.4	Wheat	Punjab, India	
	15	Grain	Punjab, India	•
	19.7	Maize	Punjab, India	•
	13.9	Pearl Millet	Punjab, India	

Table 3.4: IMPACT OF SELECTED SOIL AND MOISTURE CONSERVATION TECHNIQUES

* In Tejwani (1989).

<u>Constructing Bunds</u>. Similarly, experiments with bunding treatments provide only limited evidence of their efficacy. It is even possible that the standard practice of field bunding may have no positive impact on yields. However, in the calculations discussed, as a base case using Tejwani (1989), it has been assumed that bunds will increase yields 30% over the withoutproject case. For both bunding and vetiver grass treatments, the percentage

^{3/} Because the vetiver grass system essentially forces the adoption of contour cultivation, no effort has been made to separate these effects.

of yield increase has also been treated as a parameter and results have been presented for yield increases ranging from 0% to 140%.

Comparative Cost of Alternative Treatments

Investment costs for vetiver grass and bund treatments have been taken from estimates made by World Bank staff in preparing the Integrated Watershed Development Project--Plains (1989) in India. Costs for vetiver grass include labor in man-days (Md), bullock power (Bprs), fertilizer, and contingencies. Planting material is valued at full cost, including transportation, 25% contingencies, plus a 50% markup. Costs are detailed in Tables 3.5 and 3.6. These cost estimates are now considered generous. If vetiver grass technology is widely adapted, the cost of planting material will eventually fall to be only the labor cost associated with harvesting, and planting slips from existing hedges.

For the purposes of costing, a hectare of cropland is assumed to require 250 linear meters of contour hedge. At a width of 0.5 m, the hedge would occupy 125 sq m.5/ In addition to initial planting costs, allowance has been made for hedge maintenance in the second and third years, after which it is assumed that hedges would be fully established.

Costs for bunds are intended to reflect the same parameters. Costs are based on earth work on light soils and assume a bund cross-sectional area of 0.5 sq m, which appears to be the current standard. Land estimated to be taken out of cultivation by bunds consists of the width of the bund (1.7 m) and berm (0.3 m) plus one half of the borrow pit (1.7 m) and a provision for drains and waterways (0.3 m). These costs are detailed in Table 3.7, and total Rs 863/ha.

The cost of grassing and maintaining bunds has been excluded from the analysis. Poor maintenance is one of the main causes of bund failure and necessitates their frequent replacement; the base case assumption is that bunds require replacement every five years.

The use of vetiver grass strips as a source of fodder has been observed in southern India, but there are currently no data on its value as fodder or on sustainable yield. Fodder yields have not been incorporated into the benefit flows but this could easily be done as additional data become available.6/

- 5/ A square, one-hectare plot with a slope of 2.5%, would require approximately this much material.
- 6/ Potentially significant, especially regarding adoption, given the frequent importance of livestock to small farmers.

^{4/} There is considerable doubt as to whether these yield increases can actually be reached. Percentage of yield increases, of course, depends on the base, which in the case of the semi-arid zone, can be highly variable. It is clear that yield increase due to moisture conservation can, in percentage terms, be very high in drought years, but in good years that the same absolute increase would be small in percentage terms.

			Per Ha		
Cost items	Units	Cost/ Units (Rupees)	No. of Units	Total Costs (Rupees)	
Labor and Machinery					
Plowing	Bprs	45	10	450	
Breaking Clods	Md	12	50	600	
Spreading Manure	Md	12	10	120	
Forming Ridges & Furrows	Bprs	45	5	225	
Transport Planting Material	Md	12	10	120	
Treatment Dressings	Md	12	15	180	
Pruning and Sorting	Md	12	20	240	
Planting of Slips	Md	12	75	900	
Weeding	Bprs	45	15	675	
Weeding & Topping	Md	12	150	1,800	
Uprooting Clumps	Md	12	25	300	
Subtotal				5,610	
Inputs					
Planting Material	*000	10	62.5	625	
Manure	Ton	50	25	1,250	
Diammonium Phosphate (DAP)	Kg	3.5	250	875	
Urea	Kg	2.6	375	975	
Atrazine (ai)	Kg	167	1.5	250	
BHC (10%)	Kg	2	25	50	
Irrigation	Total			250	
Subtotal				4,275	
Base Costs		и 1		9,885	
Contingencies, Losses, etc.	Z	25		2,471	
<u>Total Costs</u>				<u>12,356</u>	
Outputs	slips*	000	1,875		
Average Cost per Slip*	Paisa			0.66	
Sales Price**	Paisa			1.00	

Table 3.5: COSTS OF PRODUCING VETIVER SLIPS IN A NURSERY

* Basis for costing purposes is 30 slips/clump.

****** Assumes 50% markup.

.

Bprs = bullock pair-days.
Md = labor in man-days.

	Unite	Unit Cost (Rs)	Yr	o. of Units 1 Yr 2 Yr 3	<u>Yr of</u> Yr 1	<u>Establi</u> Yr 2	<u>shment</u> Yr 3	Total Cost (Rs)
LABOR/INPUTS							· · · · · · · · · · · · · · · · · · ·	
Labor Opening Furrows <u>/a</u> Forming Bunds	Bpra Md	45 12	0. 5	5	22.5 60.0	0.0 0.0	0.0 0.0	22.5 60.0
Pruning, separating, loading & unloading Planting & dressing Weeding	Nd Nd Nd	12 12 12	2 4 2	0.4 0.8	24.0 48.0 24.0	4.8 9.6 0.0	0.0 0.0 0.0	28.8 57.6 24.0
Subtotal				•	178.5	14.4	0.0	192.9
Inputs Purchase Cost of Slipe /b Transport of Slips /c DAP Urea (3 split dressings) BHC (10%) Contingencies	*000 % Kg Kg %	10 8.5 2.5 2	40 10 20 60 40 10	8 4 10	400.0 40.0 70.0 150.0 80.0 74.0	80.0 0.0 0.0 8.0 8.8	0.0 0.0 0.0 0.0 0.0	480.0 40.0 70.0 150.0 88.0 82.8
Subtotal					814.0	96.8	<u>0.0</u>	<u>910.8</u>
TOTAL COST Rounded Cost					<u>992.5</u> 990	<u>111.2</u> 110	<u>0.0</u>	$\frac{1,103.7}{1,100}$
TREATMENT COST PER HECTARE /d Labor Inputs			•		44.6 203.5	8.6 24.2	0.0 0.0	48.2 227.7
TOTAL COST Rounded Cost					<u>248.1</u> 250	<u>27.8</u> 25	<u>0.0</u>	<u>275.9</u> 275
PROJECT COST PER HECTARE Labor Inputs	X of above X of above		100 100	100 100	44.6 203.5	8.6 24.2	0.0 0.0	48.2 227.7
TOTAL COST Rounded Cost					<u>248.1</u> 250	<u>27.8</u> 25	<u>0.0</u>	<u>275.9</u> 275

Table 8.6: COST OF ESTABLISHING VETIVER GRASS HEDGES (1989 COSTS)

.

/a Costs entered as bullock pair days. /b See nursery costs, Table 3.5. /c From nursery to field site. /d Based on 40 m horizontal interval, equivalent to 250 m per hectare (1 m vertical interval).

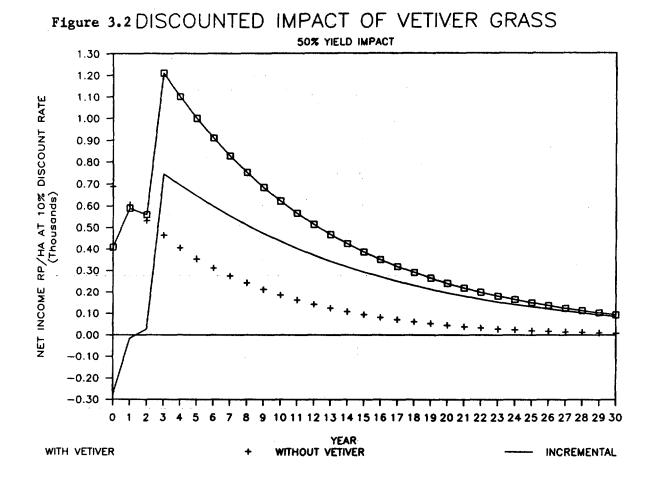
а. т.

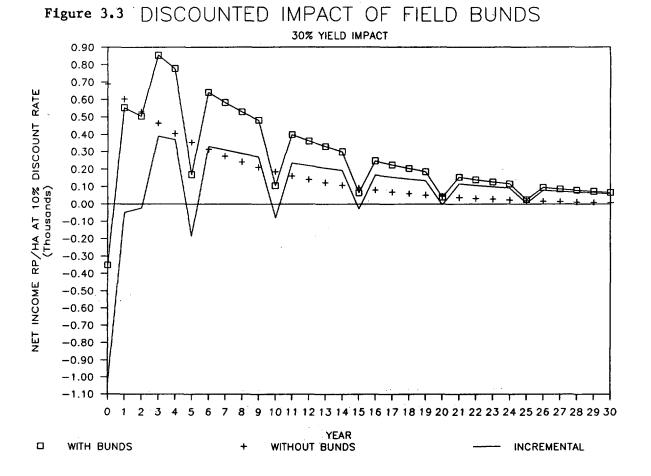
.

		Slope (Z)				
	Unit	1	2.5	. 4		
Construction Costs						
Average bund length	per ha	100	250	400		
Average earth works	sq m/ha	50	125	200		
Field bunding costs	Rs	300	750	1,200		
Associated Costs*	Rs	45	113	180		
Cost per gross hectare	Rs	345	863	1,380		
Loss of Arable Land			<i>4</i>			
Affected width	sq m of bund	4.00	4.00	4.00		
Adjusted width	sq m of bund	3.00	3.00	3.00		
Area affected	sq m	400	1,000	1,600		
Net loss	sqm	300	750	1,200		
Proportion affected	7	4.0	10.0	16.0		
Net Loss	Z	3.0	7.5	12.0		
Cost per net hectare	Rs	356	932	1,368		

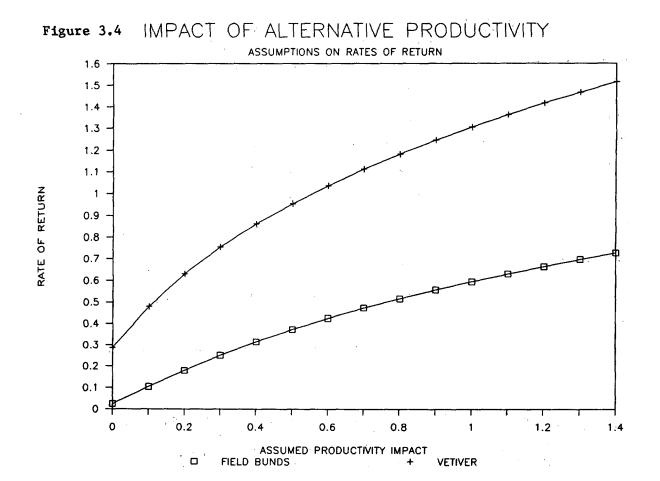
Table 3.7: COST OF CONSTRUCTING EARTHEN BUNDS (1989 COSTS)

* For associated diversion channels and waterways--15% of direct costs.


Assumptions: Bunds established at one meter vertical interval, bund crosssection equals 0.5 sq m and labor rate is equal to Rs 6/sq m for earth work.


RESULTS

Comparative Viability


The results of calculations are summarized in Table 3.8, and illustrated in Figures 3.2 and 3.3 for vetiver grass and earthen bunds, respectively. Using the base case assumptions, both systems appear economically viable. However, vetiver grass with a net present value (NPV) of Rs 8,543/ha (IRR=952) is clearly superior to bunding (NPV=Rs 3,436/ha, IRR=282).

The dominance of the vetiver grass technology, of course, is essentially complete for any plausible combination of parameters, mainly due to the cost advantage of vetiver grass. Figure 3.4 illustrates the impact of alternative productivity assumptions. Even if it is assumed that the impact of vetiver is only to prevent erosion, a yield increase from bunds of nearly 40% (higher than the optimistic base-case assumption) would be required before bunding would become the more desirable option.

- 83 -

Technology	Yield Increase (Z)	Erosion Loss Pre- vented (%)	NPV <u>/a</u> (Rs/ha)	ERR (Z)
Vetiver Grass	502	0.95-1.25	8,543	95 X
Earthen Bunds	35 Z	0.95-1.25	3,436	282
Vetiver Grass	50 2	0	6,765	87 2
Earthen Bunds	35 Z	0	1,659	222
Earthen Bunds (no replacement required)	352	0.95-1.25	4,719	347

Table 3.8:RESULTS OF ECONOMIC ANALYSIS OFALTERNATIVE SOIL CONSERVATION TECHNOLOGIES

<u>/a</u> At 107 discount rate.

If damage from erosion is ignored, the impact of a 50% yield increase from the vetiver grass treatment still shows a return of 87%. On the other hand, under the same assumption, a 35% yield benefit from bunding returns only 22%. Since, in fact, neither conservation technology will completely stop erosion, the actual rate of return would lie somewhere between these two estimates.

The assumption that field bunds need to be replaced every five years has relatively minor impact on the profitability of the technology. From the base-case rate of return of 28% with replacement, the rate of return rises only 6% to 34% if bunds are assumed to last the 30 years. The present value of future costs of replacement are so small as to have little impact at that high an implicit rate of discount. At a more modest discount rate of 10%, the impact and the present value rise from Rs 3,436/ha to Rs 4,719/ha. Nonetheless, even if bunds are maintenance-free, vetiver grass technology is more cost-effective.

Land Tenure Issues

Regarding land tenure issues in watershed development, two issues are relevant here: the importance of farmers' time horizon and the role of cost and benefit distribution as incentives for adoption of soil conservation (Chapter 6). Presumably, cultivators with less secure tenure will be more reluctant to invest in conservation techniques because of the longer time required to reap benefits from their investment. Conceptually, of course, this implies a high rate of time preference and can be expressed as a high discount rate. Alternatively, and perhaps more intuitively, this insecurity can be modeled by imposing a shorter time horizon. Figure 3.5 illustrates the rate of return to the two technologies as a function of planning horizon. For any planning horizon long enough to motivate adoption of either technology (>3 years), vetiver grass technology will yield higher returns.

Benefit and Cost Distribution

In addition, the impact of benefit and cost distribution on the incentive to adopt is relevant to government cost-sharing policies. From the point of view of land tenure, assuming that a small share of benefits accrues to the cultivator is comparable to assuming that profits from conservation are fully capitalized into land rent. Assuming that costs are shared between cultivator and landlord is conceptually the same as some form of government To illustrate these issues, the basic model was extended to cost-sharing. separate the costs and benefits of conservation in order to analyze alternative combinations of cost/benefit sharing. The internal rate of return for various combinations was calculated and "iso-return" curves (the locus of points representing equal rates of return) are plotted in Figure 3.6. Figure 3.6 can be used to distinguish the combinations that would lead a profitoriented cultivator to adopt from those combinations which would be considered most attractive. The lower curve represents the vetiver grass technology and a 40% rate of discount. It essentially implies that cultivators operating under a discount rate as high as 40% would be willing to adopt vetiver grass technology if they expect to receive only 20% of the benefit, even if they bore the entire cost. The higher curve attempts to represent the decision calculus of a more patient cultivator (discount rate = 20%) considering earthen bunds. The higher curve indicates more stringent requirements and the greater slope more sensitivity to cost/benefit sharing. In order to adopt bunds, a farmer would require 30% of the benefits before shouldering 50% of the costs and would require nearly 70% of benefits before investing the entire cost of bunding.7/

Concern about Vetiver Root Harvesting

One aspect of vetiver grass technology that raises concern is the occasional occurrence of a lucrative cash market for vetiver grass root (see Annex 3.2). The harvesting of vetiver grass lines that are intended for soil conservation purposes can have quite the opposite effect. Uprooting vetiver grass can create deep furrows that are especially subject to erosion. This has been observed in areas of commercial vetiver grass production in Indonesia, as well as in a soil conservation project in Haiti. A farmer's decision to pull out the soil conservation lines in this fashion would presumably be related to his failure to understand their purpose, special needs for cash that the family might have, or a host of other considerations. More generally, however, even with full knowledge about consequences, combinations of prices and discount rates do exist that would lead a profit-maximizing farmer to adopt such an environmentally harmful practice.

<u>7</u>/ The choice of different discount rates appears awkward but is due to the fact that at a 20% discount rate, vetiver grass technology is accepted at essentially any combination, while at the 40% discount rate earthern bunds are refused at all but the most generous combinations. The curves shown are relatively favorable to bund and unfavorable to vetiver grass technologies.

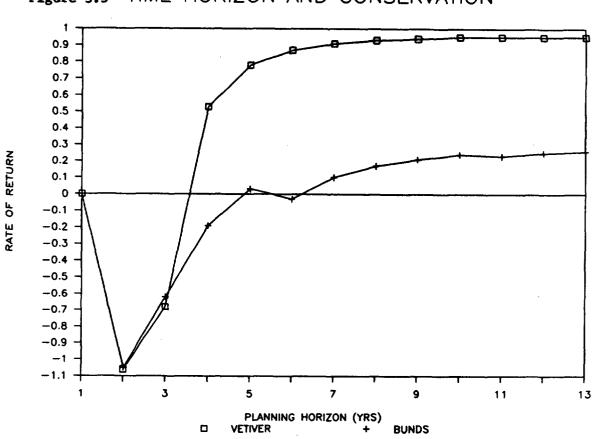
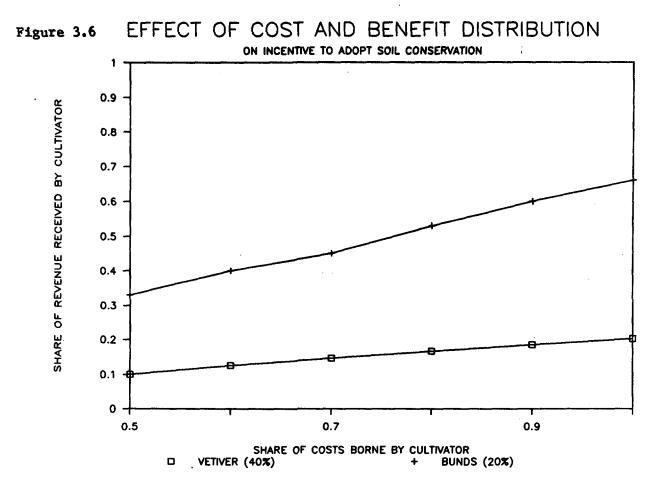



Figure 3.5 TIME HORIZON AND CONSERVATION

This problem can be modeled by defining the keeping of vetiver grass lines in the ground as the without-project situation and harvesting for oil production as the project. There are three key parameters that need to be estimated for this calculation--the cost of harvest, the value of the root and the impact of harvest on erosion and yield. Harvest cost and root price have been treated as parameters and solely for the purpose of calculation, it has been assumed that root harvest will lead to an erosion rate of approximately 2 cm/year, leading to productivity declines of 5% per year. The range for harvesting cost is suggested by the costs given in Table 3.4 for nursery operation but are expected to be higher for oil production because the roots will be larger and deeper. The range for root price is based on root prices reported in Indonesia (see Annex 3.2).

Figure 3.7 illustrates the results of this analysis showing the combinations of harvest cost and root price that will lead to either root harvest or conservation. The curves shown represent a discount rate of 10, 20 and 30%, respectively, and illustrate that results are quite insensitive to choice of discount rate. These results, together with experience in Haiti and Indonesia, suggest that the combination of parameters leading to abuse of vetiver grass is quite plausible and is an issue requiring attention during project preparation. It is important to realize that the model is severely limited in this respect and that harvesting vetiver grass roots will drastically alter the structure of the farm management problem in ways not envisioned here. Moreover, the world (let alone local) market for vetiver oil is presumably not perfectly elastic, and it is reasonable to think that appropriate measures could be designed to depress returns to oil production. Nevertheless this is one issue that seems to require additional consideration.

CONCLUSIONS

Value of Structured Economic Analysis

The foregoing discussion illustrates that despite obvious gaps in knowledge, a structured analysis of soil conservation investments can generate useful insights, and perhaps most usefully, can highlight specific issues on which additional research is necessary. Most notably, these are not questions of economic methodology. Rather they are largely technical questions about the impact of erosion and conservation on yields. In addition, there is the obvious need for more reliable cost data on crop production and a better understanding, both technical and economic, of farmers' responses to erosion. Economic analysis is not merely a device for project justification. Rather, it should be seen as a tool for decision-making and for understanding the resource allocation problems facing farmers and project planners. In this context, an important role of economic analysis is to identify and articulate areas of uncertainty and potential trade-offs. Consequently, an important aspect of this analysis is the manner in which uncertain results are presented.

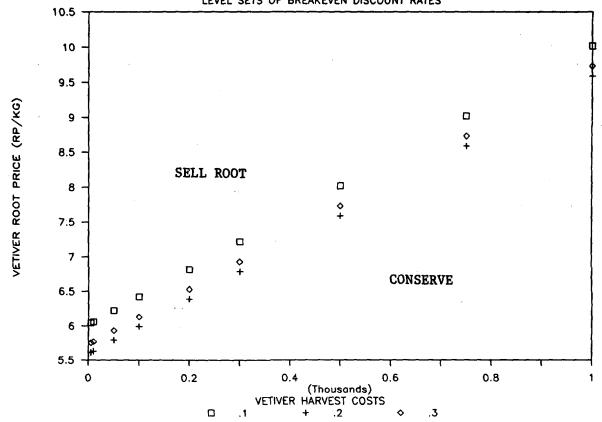


Figure 3.7TRADE-OFF OF CONSERVATION AND OIL SALES LEVEL SETS OF BREAKEVEN DISCOUNT RATES

Better Data Needed to Verify Assumptions

As a final point, the primary purpose of this analysis is normative: to assess whether a particular technology is profitable and should be promoted to farmers. The more positive issue, whether farmers will adopt a technology, depends on whether the assumptions on prices (including discount rates) and quantities are essentially correct and on the extent to which the assumption of present-value maximization holds true. The <u>ex ante</u> benefit/cost literature on soil conservation generally appears to have been overly optimistic about benefits and costs, has often failed to adequately address the subsidy component of conservation promotion schemes, seldom accounts for maintenance requirements and most importantly seems to be at odds with evidence on adoption rates. More careful attention to the dynamics of the adoption of soil conservation techniques is clearly needed.

.

		Red Gram		Castor			
			Unit	Total		Unit	Total
	Units	Qty.	cost	cost	Qty.	cost	cost
			(Rs)	(Rs)		(Rs)	(Rs)
Crop Expenses							
Seeds							
Main crop	kg	10	1.5	15	25	3	75
Intercrop	kg	1	6			•	
Fertilizer		-	•	•			
Urea	kg	20	3	60	0	3	0
Phosphorus	kg	20	4	80	ō	4	ō
Potash	kg		•	. 0	•	•	ŏ
Manure	ton	4	80	320	4	80	320
Bullock rental	Bpra	8	50	400	8	50	400
Pesticides	kg	Ŭ	30	0	Ŭ	50	400
	~8						Ŭ
Subtotal inputs				1,225			1,200
Labor				•			
Land preparation	Md	7	15	105	7	15	105
Fertilizing	Md	2	15	30	2	15	30
Cultivation	Md	. 5	15	75	5	15	75
Harvesting	Md	13	15	195	18	15	270
Threshing	Md	0	15	0	0	15	0
Subtotal labor	Md	<u>27</u>	<u>15</u>	405	<u>32</u>	<u>15</u>	480
Total Crop Expenses				1,660			1,680
Conservation Expenses							
Labor				0			Ó
Inputs				0			0
Total Conservation Expenses				<u>o</u>			<u>o</u>
Revenues							
Crop harvest							
Main product	kg	500	2	1,000	600	4	2,400
By-product	kg	2,000	0.16	320	300	0.16	48
Crop harvest	~0	-,		••••			• •
Main product	kg	150	6	900			0
By-product	kg	600		50			ō
Other harvest							•
Main product	kg			0			0
By-product	kg			Õ			0
Total Revenue				2,270			<u>2,448</u>
Returns							
Net revenue return to land and							_
management				<u>610</u>			<u>768</u>

DEVELOPMENT OF HECTARE CROP BUDGETS FOR TECHNOLOGY ANALYSIS

Cost and Returns for Vetiver Oil Production in Indonesia

<u>Background</u>. Until recently, the economic use of vetiver grass was for the extraction of aromatic oil, for use in perfume manufacture, from the plant's roots. Other, relatively minor, uses are the manufacture of hand fans, screens for evaporative coolers and aromatic sachets from the plant's root. Harvesting the root can be environmentally destructive. For example, in Indonesia harvesting is carried out up and down the slope to take advantage of erosion that naturally loosens the root from the soil. As harvesting proceeds, bare soil is exposed to accelerated erosion. Although it is conceivable that a sustainable cultivation system could be developed for commercial vetiver production, to date none is available.

Cost and Returns. In the vicinity of Garut, West Java, a large area of vetiver grass is cultivated for oil extraction. Harvested roots are macerated by hand and distilled 12 hours with water in two-ton batches, producing 6 kg of oil. Each of several stills at a site is used for 7-10 batches per week. Costs and revenue estimates for vetiver distillation are given in Table Al.

Item	Unit	Price (Rp)	Quantity	Total (Rp)
Root <u>/a</u>	kg	150	2,000	300,000
Kerosene Labor	liter Md	200 1,500	300 6	60,000 10,000
<u>Returns</u> 011	kg	79,000	6-10	474,000-790,000
Return on va	riable costs pe	er run		104,000-420,000
Return on va	riable costs pe	er still per yea	ur <u>/b</u>	41.6 - 168.0 million

Table A1: ESTIMATED COSTS AND RETURNS FOR VETIVER OIL DISTILLATION IN WEST JAVA

<u>/a</u> Cost to distillery based on yield of 20 tons/ha/yr and labor input of 60 man-days/ha. Vetiver is planted 80,000-100,000 slips/ha (spacing of 40-50 cm between rows.

<u>/b</u> Eight batches per week, 50 weeks.

<u>Markets and Prices</u>. Not much is known about the world market for vetiver oil. According to distillers, export markets have been growing rapidly. Prices rose in 1989 from Rp 46,000/kg to Rp 79,000/kg.

REFERENCES

- Abujamin, S., A. Abdurachman, and Suwardjo. 1985. "Contour Grass Strips as a Low Cost Conservation Practice," ASPAC Extension Bulletin No. 221.
- Carter, D.L. 1983. "Erosion and Sediment Losser In Furrow-Irrigated Land" in El-Swaify et al., ed., pp. 355-364.
- Dhruva Narayana, V.V. 1986. "Soil and Water Conservation Research in India," Indian Journal of Soil Conservation, 14(3), pp. 22-31.
- El-Swaify, S.A., T.S. Walker and S.M. Virmani. 1984. Dryland Management Alternatives and Research Needs for Alfisols in the Semi-Arid Tropics. International Corps Research Institute for the Semi-Arid Tropics: Patancheru, Andra Pradesh, India.
- El-Swaify, S.A., W.C. Moldenhauer, and A. Lo, eds. 1983. <u>Soil Erosion and</u> Conservation, Soil Conservation Society of America: Ankeny, Iowa.
- Greenfield, J.C. 1987. <u>Vetiver Grass</u> (Vetiveria Zizanioides) <u>A Method of</u> <u>Soil and Moisture Conservation</u>. World Bank: New Delhi.
- Gupta, S.K, D.C. Das, K.G. Tejwani, S. Chittaranjan and Srinivas. 1971. "Mechanical Measures of Erosion Control" in Tejwani <u>et al.</u>, eds.
- Hegde, B.R. 1988. "Concepts and Components of Watershed Development" in reading material proposed for the Workshop on Watershed Management for Rainfed Farming Systems in Hill States, December 2-4, National Centre for Management of Agricultural Extension, Rajendranger, Hyderabad.
- Lal, Rattan. 1987. "Effects of Soil Erosion on Crop Productivity" <u>CRC Criti-</u> <u>cal Reviews in Plant Sciences</u>, 5:4, pp. 303-367.
- Liao, M.C. 1972. "Study on Soil and Water Conservation in Sugarcane Land" TSES Report, vol. 55, pp. 75-90.
- Millington, A.C. 1984. "Indigenous Soil Conservation Studies in Sierra Leone" in <u>Challenges in African Hydrology and Water Resources</u>, IAHS Pub. No. 144. pp. 529-537.
- Rao, Y.S., M.W. Hoskins, R.T. Vergara, C.P. Castro. n.d. <u>Community Forestry:</u> <u>Lessons from Case Studies in the Asia and the Pacific Region. Regional</u> Office for Asia and the Pacific of the FAO and Environment and Policy Institute, East-West Center: Bangkok and Honolulu.
- Sheng, T.C., J.K. Jackson, J. Kraayenhagen, J. Nakasthin, P. Watnaprateep. 1981. "The Effects of Different Structures on Erosion and Runoff" in South-East Asia Regional Symposium on Problems of Soil Erosion and Sedimentation, pp. 301-310.

- Tejwani, K.G. 1989. "Consultant's Report on Benefits of Soil and Water Conservation Technologies," unpublished report prepared for the World Bank, New Dehli.
- Tejwani, K.G., S.K. Gupta and H.N. Mathur. 1971. Soil and Water Conservation Research 1956-1971, Indian Council of Agricultural Research: New Dehli.
- Unger, P.W. 1984. <u>Tillage Systems for Soil and Water Conservation</u>, FAO Soils Bulletin 54. FAO: Rome.
- Watson, H.R. and W.A. Laquihon. n.d. "Sloping Agricultural Land Technology (SALT): A Social Forestry Model in the Philippines" in Rao, Y.S. <u>et al</u>. (eds.) pp. 21-44.
- Wischmeier, W.H. and D.D. Smith. 1978. "Predicting Rainfall Erosion Losses -A Guide to Conservation and Planning," <u>USDA Agricultural Handbook</u>.

4. ECONOMIC ANALYSIS OF OFF-FARM SOIL CONSERVATION STRUCTURES

William B. Magrath

Although off-farm structures such as checkdams and waterharvesting structures are often a substantial portion of costs in watershed projects, they are seldom subjected to benefit-cost analysis, due to their typically small size and dual objective of providing environmental and productive benefit. The benefit-cost analysis in this chapter, based on data collected in Indonesia, demonstrates that a rudimentary analysis can help distinguish viable investments from unprofitable ones, even when values for environmental benefits are uncertain. Furthermore, the effort required for benefit-cost analysis is minimal, compared to the engineering and construction input. Also noted are some strategic considerations involved in evaluating offfarm structures for watershed projects.

CONCEPTUAL ISSUES

Investment Objective

In most respects, checkdams and water-harvesting structures can be approached as conventional minor irrigation reservoirs. They are distinct in that one of their significant functions is to capture sediment, and consequently their life span is often quite short. While siltation is frequently considered cause for alarm, it is important to note that these structures are often built solely or primarily for the purpose of capturing silt and that if they were not eventually silted, the investment could be considered a failure.

In addition to determining the life span of a structure, siltation also influences the stream of irrigation benefits during the structure's life. In large reservoirs the ratio of capacity to sediment deposition is so large that, for practical purposes, reductions in service due to siltation can be ignored. In small structures, often associated with highly degraded catchments, benefit streams are more likely to be critically affected by sedimentation.

Dynamics of a Reservoir

This can be reflected in an economic analysis by explicitly relating benefit flow to the current status of the reservoir which needs in turn to be related to sediment delivery. The dynamics of the reservoir can be represented by the following difference equation:

 $C_{T+1} = C_T - S_T$ (eq. 1)

where C_{T+1} = Reservoir capacity at time T + 1 C_T = Reservoir capacity at time T S_T = Sedimentation during period T Initial storage capacity (C_0) is known from engineering and site studies. Current sedimentation can be estimated for small catchments through a variety of techniques. These include use of empirical soil loss equations (e.g., the universal soil loss equation (USLE), construction of sediment budgets, or monitoring data on stream-suspended sediment and bedloads.

Sediment Rates. Sediment rates are highly variable and dependent on both climatic variables and land use. In most cases, it will be necessary to use estimates of long-term average sedimentation rates. These, however, must be used with caution because there is seldom a sufficiently long time-series of data on which to calculate highly reliable estimates. If land-use changes or improvements are expected in the catchment, sedimentation can be treated as a variable dependent on other investments.1/ Projections of reductions in sedimentation need to be viewed skeptically. Significant improvements can probably only be reasonably expected in relatively small catchments and after some lag time.

<u>Reservoir Capacity</u>. The relationship between current reservoir capacity and benefit flows is dependent on a number of variables, including type of structure and operating rules. This can often be clarified by analysis of engineering studies. More typically, economic analysis of explicitly examined reservoir sedimentation has treated benefits as proportional to capacity. For example, an XZ reduction in reservoir capacity can be assumed to produce an XZ reduction in irrigated area. Provided that irrigation water is efficiently used in the first place and that there are limited opportunities for substituting less water-demanding crops, this is probably not an unreasonable first approximation.2/

Valuing Sediment Capture. Explicitly valuing sediment capture is another issue raised in the analysis of off-farm structures. This is often not strictly necessary when irrigation benefits can be shown to justify construction, but is relevant where irrigation benefits are insufficient or where the purpose of the analysis is to aid in project design.

The value of sediment capture is site-specific and dependent on the nature and value of the receiving downstream area. Deposition of silt in reservoirs and irrigation systems can, for example, raise operation and maintenance costs and/or reduce operating efficiencies. Deposition of gravelly and sandy material on agricultural land can reduce the value of this land or even take it entirely out of production. Yet, sediment deposit can be beneficial where sediment has desirable properties as a building material or for other uses.<u>3</u>/

- 2/ See, for example, Southgate (1986).
- 3/ In the Kali Progo Irrigation Project, Indonesia, removal of 32,000 m³ of sediment from silt traps costs Rp 23 million (Rp 718/m³) per year. However, this material has a ready market and can be sold for Rp 2,000/m³, yielding a net return of Rp 44 million/year.

^{1/} In which case the cost of land-use changes, including both direct costs and opportunity costs, need to be included in the analysis.

Reasonable approaches to shadow prices for sediment capture can be based on costs of dredging (or other ameliorative measures), where practiced, or on the value of service reductions. It is useful to note that the costs of service reductions should not exceed the costs of dredging; otherwise, it would be in the interests of the downstream authority to institute such a program.

An alternative approach to shadow pricing, especially in the case of reservoirs, is to note that what is actually being valued is water storage. Reservoir capacity, once constructed, is a depletable resource. It is well established in the literature on depletable resources that their shadow price will rise at the rate of discount until reaching a backstop price.4/ The backstop price, in the case of reservoirs, could either be dredging (seldom practiced in developing countries) or the construction of additional storage by raising dam height or new dam construction.

A CASE STUDY: INDONESIAN REGREENING PROGRAM

Appraising Economic Efficiency of Checkdams

Checkdam construction is a major element of the Indonesian Regreening Program, accounting for as much as 60% of total annual expenditure (World Bank, 1989). The economic questions posed by this investment program are typical of those discussed in this chapter. The checkdams are intended to serve multiple functions, including provision of irrigation water, silt capture and land preservation and reclamation. To illustrate an approach to appraising the economic efficiency of these investments, data were collected on 23 checkdams constructed under the program in Central Java between 1983 and 1988.

Data. Costs and initial storage capacity data were available for all 23 dams.5/ Information on catchment size, erosion rate and command area were available for only seven dams planned for FY88/89. These data are summarized in Table 4.1.

5/ All costs were converted to 1988 Rupiah using the IMF wholesale price deflator.

^{4/} The classic treatment is Hotelling (1931); the ratio of a backstop price was popularized, in the context of energy resources, by Nordhaus (1969). For discussions of the application of this approach to reservoirs and watershed management, see Magrath and Grosh (1985) and Southgate (1986).

	Units	Average	Minimum	Maximum
Catchment area	ha	140.5	70.5	285
Ponding area	ha	1.2	0.75	2.725
Storage	.m ³	26,970	7,860	125,200
Erosion rate	mm/year	4.6	2.43	5.53
Expected life	year	3.6	1	7
Calculated life	year	4.2		
Dam length	m	74		
Dam height	m	8		
Dam base	. m	4		
Command area	ha	. 3		
Cost	Rp million	33	19.7	49.2
Cost/m ³	Rp	1,668	392.7	3,539.0

Table 4.1: DESCRIPTIVE DATA ON 23 INDONESIAN CHECKDAMS

Assumptions. Results presented here are based on an analysis of a representative checkdam, using average values and construction cost derived from a regression equation relating costs with initial storage capacity. The equation was of the form:

 $\frac{[B]}{[Storage Capacity m^3]}$ (eq. 2)

where B is a parameter to be estimated. A relationship between storage capacity and command area was estimated based on the sample of seven dams. This relationship was assumed to be of the form:

Command Area = $A \times [Storage]$ (eq. 3)

where A is another parameter to be estimated.

The form of equation 3 was chosen to reflect the economics of scale in dam construction. Equation 2 reflects the assumption that command area (irrigation benefit) is linearly related to capacity. Both equations are restricted to have a zero intercept on the basis that a reservoir of zero capacity has neither cost nor command area.

The results of ordinary least-squares estimation are shown in Table 4.2. In both cases, the estimates are statistically significant and of good fit.

· · · ·		B ,
Coefficient	0.000227	28484004
t-statistic	8.93	19.45
R ²	0.594	0.690

Table 4.2: REGRESSION ESTIMATES

It is further assumed that after complete siltation the surface of the reservoir is salvaged as arable land.

Physical Benefits

Based on these assumptions it is possible to trace, using the logic of equation 1, the evolution of physical benefits from the representative checkdam, using the laws of motion given in Figure 4.1.

Figure 4.1: CHECKDAM SYSTEM EVOLUTION

Command area = 0.000227 * Current storage (ha) (m³)

Sediment capture = Erosion rate * catchment area * 10 (m³) (mm) (ha)

Current storage = Lagged storage - (Erosion rate * catchment area * 10) (m³) (m³) (mm) (ha)

Together these assumptions generate projections of physical benefit flows from the representative dam. A base-case scenario is given in Table 4.3.

	Table 4.8:	PHYSICAL	BENEFIT	STREAMS	FOR	REPRESENTATIVE	CHECKDAM
--	------------	----------	---------	---------	-----	----------------	----------

	-	Year								
· · · · · · · · · · · · · · · · · · ·	0	1	2	8	4	5	8	7	8	
Command area (ha) Sediment trapped (m ⁸) Land reclaimed (ha)		6.1 6,463.0 0.0	4.7 6,463.0 0.0	8.2 6,463.0 0.0	1.7 6,463.0 0.0	0.8 1,118.2 1.2	0.0	0.0	0.0	
Current storage (m ⁸)	26,970.178	20,507.2	14,044.2	7,581.2	1,118.2	0.0	0.0	0.0	0.0	

Irrigation is valued at Rp 1,200 per hectare, based on calculations presented in the appraisal of the Forestry Institutions and Conservation Project (World Bank, 1988). Sediment capture is initially valued at Rp 60/m³. based on the cost of constructing water storage in large reservoirs on Central Java.6/ Based on the assumption that reservoir storage is a nonrenewable resource, it is further assumed that this value will rise over time at the rate of interest. This is a low value of storage compared to the average cost of storage in checkdams (Rp 1,056). However, it reflects the fact that the cost of storage is subject to large economies of scale. Prevention of siltation in other applications, especially the protection of irrigation systems, can have considerably higher value. Mechanical silt removal from silt traps in Central Java costs roughly Rp 600/m³. Accordingly, although the primary purpose of the sampled checkdams is to protect reservoirs, higher values were also tried to examine the viability of using dams to protect high-value installations. Lastly, land reclaimed is valued at an annual rental rate of Rp 2,225,000 per hectare, based on estimated returns to land and management.

Economic Benefits

Applying these values to the physical benefit flows in Table 4.3 yields the following profile of value flows: 7/

		Year									
	0	1	2	3	4	5	8	7	8		
Costs (Rp'000) Construction	28,484				<u></u>						
<u>Benefits</u> Command area (ha) Sediment trapped (m ³) Land reclaimed (ha)		7 428 0	5 474 0	4 523 0	2 578 0	0 110 2,225	0 0 2,225	0 0 2,225	0 0 22,248		
Total	-28,484	435	479	<u>527</u>	580	2,335	2,225	2,225	22,248		

Toble 4.4: ECONOMIC COST AND BENEFIT FLOWS FOR REPRESENTATIVE CHECKDAM (Rp'000)

Under these conditions the investment has a net present value 8/ of Rp 12,672,000 and an internal rate of return of 1%. These results stem primarily from the high costs of storage and the low value of outputs. To explore the sensitivity of these results to alternative assumptions, several sensitivity analyses were conducted. In Table 4.5, the implications of higher sediment capture values and various values for irrigation services are shown.

- 6/ The Kedung Ombo Dam, Indonesia, was constructed at an average cost of Rp 55.8/m³ of storage.
- 7/ Land returns accruing after the eighth year are capitalized at a 10% discount rate.

8/ All present values are based on a 10% discount rate.

	Value of Irrigation (Rp'000/ha)								
Value of gilt capture (Rp'000/m ³)	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40	$\begin{array}{r} 0.0 \\ -14,326 \\ -12,961 \\ -11,596 \\ -10,231 \\ -8,866 \\ -7,501 \\ -6,136 \\ -3,405 \end{array}$	1.0 -14,313 -12,948 -11,593 -10,218 -8,853 -7,488 -6,122 -3,392	2.0 -14,300 -12,936 -11,570 -10,205 -8,840 -7,474 -6,109 -3,379	3.0 -14,287 -12,922 -11,557 -10,191 -8,826 -7,461 -6,096 -3,366	4.0 -14,274 -12,909 -11,543 -10,178 -8,813 -7,448 -6,083 -3,353	5.0 -14,260 -12,895 -11,530 -10,165 -8,800 -7,435 -6,070 -3,340		
	0.50 0.60 0.70 1.00	-675 2,055 4,785 12,976	-662 2,068 4,798 12,989	-649 2,081 4,811 13,002	-636 2,094 4,825 13,015	-623 2,108 4,838 13,028	-609 2,121 4,851 13,041		

TALTERNATIVE IRRIGATION AND SILT CAPTURE PRICES

These show that considerably higher values for sediment capture, close to those associated with dredging of irrigation systems, are required to make the representative checkdam economically viable. This result is highly insensitive to irrigation values.

Table 4.6 gives net present values for alternative combinations of construction cost and silt capture. The sensitivity of NPV to construction cost illustrates its role in producing the negative estimate of profitability.

	Cost of Construction (Rp'000)						
	0.00	15,000	20,000	25,000	30,000	35,000	40,000
	0.00	-826	-5,828	-10,826	-15,826	-20,826	-25,826
	0.05	539	-4,461	-9,461	-14,461	-19,461	-24,461
	0.10	1,904	-3,098	-8,098	-13,098	-18,096	-23,096
	0.15	3,269	-1,731	-8,731	-11,731	-16,731	-21,731
	0.20	4,634	-366	-5,366	-10,366	-15,366	-20,368
Value of silt capture	0.25	5,999	999	-4,001	-9,001	-14,001	-19,001
(Rp'000/m ³)	0.30	7,364	2,364	-2,636	-7,636	-12,636	-17,638
	0.40	10,094	5,094	94	-4,908	-9,906	-14,908
	0.50	12,825	7,825	2,825	-2,175	-7,175	-12,175
	0.60	15,555	10,555	5,656	555	-4,445	-9,445
	0.70	18,285	13,285	8,285	3,285	-1,715	-6,715
	1.00	26,478	21,478	16,478	11,476	8,478	1,478

Table 4.6: NET PRESENT VALUE OF CHECKDAM UNDER ALTERNATIVE CONSTRUCTION COSTS AND SILT CAPTURE PRICES

An interesting aspect of the checkdam investment is its built-in obsolescence. Tables 4.7-4.9 show the results of different catchment erosion rates (and implicitly different reservoir life span), sediment capture and irrigation values. For all combinations, higher erosion rates (or shorter life spans) yield higher returns. This is due to the earlier onset of land reclamation benefits. This result is particularly interesting in that concern is often raised about the short life of these structures. Moreover, a standard recommendation is to require catchment stabilization prior to construction--a practice which, if followed, reduces the value of the representative checkdam.

	8	4	5	6	7
0.00	-16,943	-14,809	-12,792	-12,793	-11,128
0.05	-15,571	-12,942	-11,428	-11,431	-9,762
0.10	-14,199	-11,575	-10,084	-10,089	-8,402
0.15	-12,827	-10,208	-8,700	-8,707	-7,041
0.20	-11,454	-8,840	-7,836	-7,845	-5,681
0.25		-7,478	-5,972	-5,988	-4,320
		-6,106			-2,959
0.40			-1,879	-1,897	-238
0.50		-638	849	827	2,483
	-478	2,096	8,677	8,651	5,204
	2.268	4,831	6,805	6,275	7,926
1.00	10,502	18,033	14,489	14,447	16,089
			(Reservoir Li (year)	10)	
	6.4	4.8	8.8	8.2	2.7
	0.10 0.15 0.20 0.25 0.80 0.40 0.50 0.60 0.70	$\begin{array}{ccccccc} 0.00 & -16,943 \\ 0.05 & -15,571 \\ 0.10 & -14,199 \\ 0.15 & -12,827 \\ 0.20 & -11,454 \\ 0.25 & -10,082 \\ 0.80 & -8,710 \\ 0.40 & -5,965 \\ 0.50 & -8,221 \\ 0.60 & -476 \\ 0.70 & 2,268 \\ 1.00 & 10,502 \\ \end{array}$	0.00 -16,943 -14,809 0.05 -15,571 -12,942 0.10 -14,199 -11,575 0.15 -12,827 -10,208 0.20 -11,454 -8,840 0.25 -10,082 -7,473 0.80 -8,710 -6,106 0.40 -5,965 -3,372 0.50 -8,221 -638 0.60 -476 2,096 0.70 2,266 4,831 1.00 10,502 13,033	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4.7: EROSION RATE (mm/yr)

Table 4.8: EROSION RATE (mm/yr) Silt Capture Valued at Rp 60/m⁸

		8	4	б	6	7
Value of irrigation	0.0	-15,816.7	-12,685.6	-11,169.8	-11,172.2	-9,502.38
	1.0	-15,800.0	-12,671.2	-11,157.8	-11,161.1	-9,492.32
	2.0	-15,283.4	-12,656.7	-11,144.9	-11,150.1	-9,482.29
(Rp'000/ha)	8.0	-15,268.7	-12,642.2	-11,132.5	-11,139.0	-9,462.23
	4.0	-15,250.1	-12,627.8	-11,120.0	-11,128.0	-9,462.23
	5.0	-15,233.4	-12,613.3	-11,107.8	-11,117.0	-9,452.20

Table 4.9: EROSION RATE (mm/yr) Silt Capture Valued at Rp 800/m³

		3	4	5	6	7
	0.0	-496.103	2,079.077	8,561.702	8,537.664	5,192.401
	1.0	-479.449	2,093.541	8,574.136	3,548.700	5,202.433
Value of irrigation	2.0	-462.795	2,108.005	3,586.569	3,559.736	5,212.486
(Rp'000/ha)	8.0	-448,141	2,122.489	8,599.003	3,570.778	5,222.498
••••	4.0	-429.487	2,136.934	3,611.437	3,581.809	5,232.530
	5.0	-412.833	2,151.398	3,623.870	3,592.845	5,242.582
				(Reservoir Li (year)	fe)	
		6.4	4.8	3.8	8.2	2.7

STRATEGIC CONSIDERATIONS

The inclusion of off-farm structural works in watershed projects raises issues that are not solely economic and which need to be considered in the context of an overall approach. It may lead to either inclusion of works that are strictly speaking not economically viable or exclusion of viable ones. This chapter discusses approaches to valuing environmental benefits that are usually not considered. In many countries, off-farm structures have become ingrained in watershed investment and they offer costs and benefits of quite a different sort. For example, the ability of soil conservation agencies to provide upland areas with irrigation benefits, even on a costly and probably inequitable basis, may be of value in gaining the cooperation of local communities for the introduction of other conservation techniques (see, for example, Society for Promotion of Wastelands Development, 1990). On the other hand, structural works often provide an opportunity for rapid expenditure of project funds with little meaningful local participation. Further, the inclusion of off-farm works, even if economically desirable, may also serve to bias agency efforts away from on-farm and forestry measures.

Thus, while it is feasible to conduct benefit-cost analyses of checkdams and other small structures, there may be good reasons for overriding the results. At a minimum, however, it is reasonable for donors and planning agencies to require implementing agencies to include simple economic analysis in the planning of such structural works and to document the justification for proceeding with structures that do not appear viable. This requirement could be imposed on structures greater than a certain size or that require more than a minimum level of site surveying and engineering.

In general, it is clear that checkdams and other small structures are an expensive adjunct to downstream water/sediment storage capacity. Because of the considerable economies of scale present in reservoir construction, small structures need to offer significant directly productive benefits or be sited to provide protection to highly valued infrastructure which would otherwise require expensive maintenance.

Other off-farm conservation works, for example, gully plugs which are primarily intended to stabilize channels and prevent loss of adjacent land, can be analyzed in similar fashion. It would be imprudent here to consider detailed analysis of all the small, scattered structures typically included in a watershed management project. The practice of benefit-cost analysis is itself an exercise in benefit-cost analysis and judgments as to the value of incremental information to the decision-making process is an essential element.

REFERENCES

- Dixon, John A., Daniel E. James and Paul B. Sherman. 1990. Dryland Management: Economic Case Studies. Earthscan Publications: London.
- Hotelling, Harold. 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, Vol. 39, pp. 137-175.
- Magrath, W.B. and M. Grosh. 1985. "A Dynamic Approach to Watershed Management with Emphasis on Soil Erosion," paper presented at the Ninth World Forestry Congress, Mexico City, Mexico. July.
- Nordhaus, W.D. 1973. "The Allocation of Energy Resources," Brookings Papers 3, pp. 529-70.
- Sfeir-Younis, A. 1985. "Soil Conservation in Developing Countries: A Background Report", draft manuscript. The World Bank: Washington, D.C.
- Society for Promotion of Wasteland Development. 1990. "Economic and Social Changes in a Small Rural Community in the Degraded Lower Shivalik Hill Range in North India" in Dixon, James and Sherman.
- Southgate, Douglas. 1986. "The Off-Farm Benefits of Soil Conservation in a Hydroelectric Watershed", paper presented at the Annual Meetings of the American Agricultural Economics Association, Reno, Nevada, July.
- World Bank. 1988. Indonesia Forestry Institutions and Conservation Project, Staff Appraisal Report, Report No. 7002, Washington, D.C.

ł

_____. 1989. Indonesia: Forest, Land and Water: Issues in Sustainable Development, Report No. 7822, Washington, D.C.

5. <u>REVEGETATION TECHNOLOGIES</u>

Ajit K. Banerjee

Revegetation is a significant technology employed in the rehabilitation of upper watersheds in the Asia region. It traditionally encompasses both enrichment planting and forestation of bare areas. This chapter recognizes that much plantation work has been less successful than hoped and discusses the reasons, both technical and nontechnical, for the lack of success. Technical components covered are: local need-based planning, choice of species, nurseries, ground preparation, planting methods, planting designs, protection and management. For each topic, the issues and options are presented. Poor success rates are attributed, variously, to these components, but also to social factors, such as the critical need for active participation by local inhabitants in revegetation programs, which is now often lacking.

INTRODUCTION

The relationship between the upper watershed and the forest is important to appreciate. Prior to settlement, most watersheds, both lower and upper, were covered with mixed species forest. In a pristine state, the upland forest comprised multilayered vegetation with a fully covered forest floor that held erosion to a minimum. Now mostly cleared to accommodate agriculture, forests have become restricted to the steeper, higher-elevation shallow soils or droughtier regions less suited to agricultural production, and even so, are being degraded by fuel-gathering and grazing. The degradation has reduced the vegetative cover and litter to various extents, often down to bare surface, inducing runoff and erosion and changing soil moisture status. With some exceptions, forests today provide marginal economic returns to government; yet, they are of considerable importance to villagers who exploit them for timber, firewood, minor forest products, food, and sometimes game and feed for their animals.

Revegetation, a significant technology in the rehabilitation of upper watersheds in the Asia region, encompasses enrichment planting (supplementing standing forest crops) and forestation (planting on bare land). Given the effect of degradation on soil and moisture loss, on-site soil and moisture conservation is an integral part of revegetation. Engineering structures for soil and moisture conservation are expensive to construct and maintain and are short-lived; therefore, they are not considered here, although it is acknowledged that under uncertain circumstances, especially in gully rehabilitation, such structures may be required to allow vegetation to establish. Rather, the focus is on vegetative conservation measures.

TECHNICAL COMPONENTS OF REVEGETATION

Local Need-Based Planning

While technical factors (such as species, spacing, soil moisture) are vital, the success of revegetation programs is also dependent on benefits accruing in the short and long run to local users who have traditionally depended on vegetative resources on adjacent common or public property for fuel, fodder or income. Population pressure and the consequent rising demand for fuel and fodder from the same land resources cause upland degradation. For various reasons, including poverty and lack of fuel alternatives, rural families cannot forsake biomass fuel (Leach, 1987) and this dependence will persist for some time to come. Similarly, stall-feeding of animals to relieve pressure on forest vegetation, although feasible, is unlikely to be widely adopted in the near future because of the need to grow fodder and the investments needed. Also, in India for example, poorer villagers often subsist by illicitly collecting and selling fuelwood in towns (Fernandes, 1987). Generation of employment through revegetation programs could possibly break this ongoing poverty-land degradation-poverty cycle. Revegetation planning that does not take into account local needs is inadvisable, because new plantations cannot survive the pressure of fuel collection for consumption and commerce, nor can they survive unrestricted grazing. The correct approach to revegetative technology, therefore, would consider both the site and needs of the local population.

All common land is tied in some way to users, who may be individuals, groups, communities or villages, and although usage may not be recorded, it is traditionally accepted by all concerned. For practical reasons, the identity and size of the planning unit for revegetation are important. Furthermore, needs of subunits may differ and identifying those that can be addressed requires care: marginal farmers may own few cattle and need little fodder, while the intermediate-size farmers may need more; the landless may require employment from the program, while farmers would not. Discussion with representatives from various economic groups within the planning unit is therefore necessary to provide a full-bodied and accurate depiction of needs, and in this discussion, women as a social unit should be involved.

Once needs are assessed and land and financial resources of the unit analyzed, technology suitable for the site and aimed at meeting these needs can be developed. Continuous consultation within the client community and adaptation from one site to another regarding planning, execution and mechanisms for distributing benefits should, therefore, be major elements of revegetation programs (Banerjee, 1987). Forestation projects by nongovernmental organizations (NGOs) have succeeded in many countries (though on a small scale) due to project planning, execution and protection by local inhabitants (see Chipko in Garhwal Himalayas and Appiko in the Western Ghat mountains in Hegde, 1987). In contrast, many government projects, without local involvement and enthusiasm, have failed in spite of suitable technology.

Issues of Participatory Planning. Given the fact that local participation is essential for successful revegetation programs, some important questions emerge:

- (a) What should be the <u>geographical unit</u> whose inhabitants relate to the project site: village, a cluster of villages, district or some other unit such as a users' group?
- (b) Should an <u>institution</u> represent the people? If an institution is necessary, should it tap into an existing one or be newly formed or should a spontaneously created group be promoted?

(c) What should be the mechanism of participation?

Recent experience shows that the smaller the unit in relation to the revegetation site the more likely people will take a cooperative interest in the project and the more likely it is to succeed. A village, often encompassing a users' group, is usually a reasonable unit for participatory planning. Existing institutions, if genuinely representative, are sound choices. The mechanism for consultation may involve complexities best sorted out by specific circumstances. The point to keep in mind is that the views of a crosssection of a village, usually made up of heterogeneous elements, should be incorporated in the technical plan, designed to satisfy plural objectives. With any choice, coordination of local interests is necessary--whether it involves a community movement spawned by local initiative in ecological restoration; a community association, such as the village forestry associations in the Indo-German Dhaulader project in Himachal Pradesh, India, that assist in planning, protection and management of revegetation of degraded hills; or existing institutions such as the panchayat in India.

Choice of Species

<u>Monoculture and Exotics</u>. Over the past three decades of forestation programs, monoculture has become an regular practice. Only a few species have been used and often they are exotics: <u>Eucalyptus tereticornis</u>, <u>Casuarina</u> <u>equisetifolia</u>, <u>Prosopis juliflora</u>, <u>Cryptomeria japonica</u>, and <u>Pinus patula</u> in India; <u>Acacia mangium and Paraserianthes falcataria</u> (prev. <u>Albizzia</u> <u>falcataria</u>) in Bangladesh; <u>Pinus caribaea</u> in Malaysia; <u>Leucaena leucocephala</u> in the Philippines and Thailand; <u>Eucalyptus camaldulensis</u> and <u>Eucalyptus</u> <u>citriodora</u> in many of the South Asian and insular Southeast Asian countries.

Two important reasons for selecting exotics and monoculture are fast growth and easy management, which characteristics have obvious advantages in areas suffering from biomass shortage and a lack of technical manpower. However, the adverse effects of monoculture could outweigh its advantages. То ensure adequate stocking, close espacements are used, resulting in early canopy closure which discourages undergrowth, for example, in plantations of Cryptomeria japonica, Eucalyptus tereticornis, Pinus roxburghii and Tectona grandis. Some species, particularly Eucalyptus, are said to tap too much groundwater and nutrients. Fast-growing species must use these essential elements in absolute quantities, but often utilize each molecule of water and nutrient to produce more biomass than slower-growing species can. Some species may allocate more energy towards wood production at the expense of crown development, for example, Casuarina equisetifolia. This benefits fuel productivity but limits the supply of twigs and leaves for local people and reduces recycling of nutrients. Exotics may provide a new food source for pathogens

and could be vulnerable to pests and diseases due to growth stresses related to poor site conditions. <u>Corticium salmonicolor</u> is a serious pest of <u>Eucalyptus grandis</u> in Kerala, India and <u>Agrilus opulensis</u>, a wood borer, severely attacks <u>Eucalyptus</u> <u>deglupta</u> in the Philippines (Evans, 1982).

Impact on Erosion. Lack of undergrowth in hill conditions is a serious deficiency which results in soil erosion. Care is needed to select species with relatively light crowns in order to encourage ground cover. Since fast-growing species require more water, special efforts are needed during planting to ensure maximum percolation of rainfall into the soil. When excessive nutrients are likely to be lost due to disproportionate wood/leaf production, green manure plants should be introduced. Rao (1967) reports a decline in yield of <u>C</u>. <u>equisetifolia</u> from 185 tons at the end of the first rotation to 140 tons at the end of the third, in Nellore, Andhra Pradesh, India. Since the <u>C</u>. <u>equisetifolia</u> had to be replanted, the seed source may have been the cause of yield decline, but possibly different crops should be used in alternate rotations.

Quite often exotic species are mistakenly introduced in enrichment planting also. Planting of <u>Acacia auriculiformis</u> in degraded forests of <u>Shorea robusta</u> in Bihar, <u>Eucalyptus tereticornis</u> in moist deciduous forests of West Bengal and <u>Kydia calycina</u> in tropical rain forests of Arunachal Pradesh, India, have been unrewarding.

<u>Response to Site Conditions</u>. Several issues need to be considered in selecting species for Asian uplands which are fragile ecosystems that deteriorate quickly. The process of deterioration is progressive: reduced protection of the soil surface by removal of cover permits increased runoff with a concomitant reduction in percolation and loss of soil, leading to a sequential reduction in available soil moisture and nutrients. Therefore, choice of species has to take into account, not only site and local needs, but also the degree of deterioration. Three categories of degeneration can be recognized. If the site is <u>bare</u>, degraded to the point that it cannot support trees, then grasses, legumes and local shrubs may be the only alternatives. On a <u>partially degraded</u> site with some scrub vegetation left, enrichment planting of aggressive indigenous shrubs and management by protection may be appropriate. But, if the site is just <u>beginning to deteriorate</u> so far as canopy cover is concerned, a mixture of trees and shrubs to establish a two- or three-tier forest should be introduced.

Bare sites are characterized by thin soil cover, low moisture-holding capacity, low fertility, and ongoing erosion. These areas may also be subjected to overgrazing and periodic burning of whatever surviving weeds or grasses remain. Attempting to revegetate them with tree species, even if indigenous, is bound to fail, based on experience in the western Himalayas of India, where <u>Pinus roxburghii</u> and <u>Quercus incana</u>, both indigenous, have been planted without adequate success. Both these species, which were respectively the pioneer and climax tree species, now stand as "relicts".<u>1</u>/ Due to biotic disturbance, the sites have retrograded ecologically and the appropriate vegetation required to reverse the situation has to be more akin to that found in newly

1/ Persistent remnant of otherwise extinct flora.

exposed sites. Grasses, herbaceous weeds, hardy shrubs, and legumes are the early harbingers in natural succession and should be planted to begin revegetating such sites.

On degraded sites with scrub vegetation, the situation is quite different. Often they are occupied by unwanted shrubs such as Lantana spp. and Eupatorium spp. in Nepal and India, by single-stemmed bamboo Melocanna bambusioides in Burma, and Imperata cylindrica grass in many of the South Asian countries. While these species appear to stabilize the site and prevent erosion, they seldom allow other planted species to grow and are mostly unwanted by local people. However, their removal in order to replant with desirable species can induce erosion. In such cases, enrichment planting of desired species that will gradually suppress the weeds is the appropriate measure. The choice of species is difficult, because they have to be aggressive with the capability of competing with the shallow, matty root system of weeds which use soil moisture rapidly and, at the same time, withstand fire, cutting and grazing. Not many trees, except some belonging to the Leguminoseae family such as Acacia mangium and Robinia pseudoacacia, can satisfy these demands. On the other hand, many shrubs have the desired properties and are at the same time useful to local people.

On sites beginning to deteriorate -- with poor tree stocking but reasonable soil depth--selected species should include all forms of vegetation: trees, shrubs, herbaceous legumes and grasses. They will be able to establish a multitier plantation crop. The tree species can be either local or proven exotics, while the shrubs preferably should be local ones. Some examples of indigenous tree species used in forestation programs are Pinus roxburghii in Indonesia, Eucalyptus deglupta in the Philippines and Papua New Guinea, Araucaria huntsteinii and A. cunninghamii, Tectona grandis, Dalbergia sissoo, P. roxburghii and Cedrus deodara in India. Exotic species used include Pinus caribaea in Malaysia, P. patula and Pseudotsuga menziesii in New Zealand, and Eucalyptus spp. in most countries. There have been very few attempts to combine tree and shrub species in plantations, which has led to a number of drawbacks. Unless the tree is a multipurpose species, the plantation cannot supply more than one category of need to local people. Secondly, tree species usually take a few years to produce a useful product unlike the shrubs which mature faster. Thirdly, the tree canopy generally fails to prevent erosion to the extent a multitiered forest can. The correct choice of species to establish multistoried plantations, however, can meet most of these deficiencies.

Issues Concerning Choice of Species. Species selection is related to the type of site being revegetated and preferences of the local population. On degraded sites with shallow soils, useful grasses, legumes and indigenous shrubs are likely to be better adapted than tree species. They will develop a root mat and surface cover to minimize runoff and soil moisture losses. When the site already has a cover of aggressive, nonusable species, locally available hardy shrub and tree species, particularly tree legumes like <u>Acacia</u> <u>mangium</u> and <u>Robinia pseudoacacia</u>, should be introduced to develop a multilevel canopy. On poorly stocked sites with adequate soil depth, exotic trees with indigenous shrubs are suggested, aimed again at a multistoried canopy. The propagation technology of indigenous shrub species is poorly understood and will require field research.

Nurseries

Seed Quality. Currently, the weakest aspect of nursery operations is the use of poor-quality seeds. Seedlings raised from them produce trees of poor form and growth rate. Such trees are found in large numbers in plantations of many afforestation projects in Asia. Since most countries are increasing their planting activities with inadequate attention to seed selection, unsatisfactory results are likely; in other words, the biomass potential of the ecotype will remain unrealized.

A few short-term measures can substantially improve seed quality. Most countries plant a large number of tree species, but only a few in large numbers. Initially, the most commonly used species in forestation programs should be selected for quality improvement. The first step would be to select a number of phenotype (candidate plus trees) of these species; the selected trees should be mature and have characteristics considered by their planters to be desirable when ready for harvesting. The number of trees to be selected would depend on the quantity of seeds produced by a tree, seed germination percentage and the total quantity of seed required for the program. The second step would be to mark, protect and maintain the selected trees to obtain the maximum yield of seeds. The third step would be to engage trained personnel for seed collection and to eliminate seeds from any other source. These selected seeds then should be supplied to all nurseries assigned to the project. Records of seed origin, at least by provenance, should be maintained.

Long-term measures also need to be taken. These measures would include provenance trials, selection of the best provenances, identification of their outstanding trees, etc. In addition, establishment of a seed and testing certification department that would act as the core department to control quality of seeds distributed would be necessary.

<u>Root-Shoot Ratio</u>. Another important aspect of nursery operations is the root-shoot ratio of the seedlings raised for planting. A commonly held notion among foresters is that larger seedlings have a better chance of survival and establish themselves faster than smaller ones. This is erroneous and needs to be strongly countered. Smaller seedlings with a bushy root system and a woody erect shoot should be the preferred product for planting. The ratio of root to shoot varies across species, but in all cases the root system should be sufficient to provide the seedling with required water and nutrients in the initial period of its life. Modern nurseries raise containerized plants in root trainers which prevent root coiling and ensure that growth commences quickly after transplanting.

Ground Preparation

Ground preparation consists of one or more of the following operations: removal of ground vegetation, windrowing, burning and soil cultivation. Depending on the objectives of the revegetation program, nature of the site and availability of resources, these operations are carried out in varying degrees. Each measure has the potential for increased erosion and must be carried out carefully if required. Removal of Ground Vegetation. Ground vegetation on degrading uplands prevents soil erosion and conserves moisture but also competes for moisture, nutrients and light with planted species. It is a controversial matter as to whether the existing vegetation should be removed or left undisturbed. All sloping areas are vulnerable to erosion under certain circumstances.

There are few species which compete with undisturbed ground vegetation. Most <u>Eucalyptus</u> spp. prefer a completely cultivated and weed-free site for rapid early growth. In Papua New Guinea, a trial of eucalyptus failed completely because of competition from <u>Imperata cylindrica</u>. Similarly, growth of <u>Araucaria cunninghamii</u> and <u>A. hunsteinii</u> in Papua New Guinea is poor when there is lack of weed control (Evans, 1982). In contrast, many species of acacia such as <u>Acacia auriculiformis</u>, <u>A. mangium</u> and <u>Faidherbia albida</u> (prev. <u>A. albida</u>) grow well, albeit at a reduced growth rate, in competition with ground vegetation.

When deciding on the degree of ground clearance to be undertaken, the objectives need to be clear. If the objectives are mainly soil conservation and rehabilitation of the site, existing vegetation should not be disturbed and loss of growth of planted seedlings should be considered as a trade-off for the achievement of the objectives at hand. On the other hand, if increasing the cash value of the crop with marketable species is the intention, removal of existing vegetation becomes imperative, while soil and moisture conservation measures have to be undertaken as a part of the plantation operation. A compromise of the above two extremes is removal of alternate strips of vegetation at specified intervals and stacking them up against the undisturbed vegetation (Cassels, 1983).

Clearance of vegetation can be accomplished mechanically or manually. Removal of ground vegetation is a capital-intensive task if heavy tractors, bulldozers and other attachments are used. Manual operation is preferred on steep hills, as it disturbs the soil less, but is time-consuming and expensive. Sixty-five man-days were necessary to clear a light savannah area in Nigeria with 9-sq m basal area of wood, whereas two 180-hp tractors did a similar job in about 18 minutes. Bulldozers cannot operate beyond a certain slope, and in these situations, manual operation remains the only available option.

<u>Windrowing and Burning</u>. The cleared vegetation is heaped and should be windrowed across slopes by machines. However, as harvesting is usually done up and down slope, windrowing across slope is inconvenient. On most forestation sites, there is hardly any valuable harvestable product and windrowing on the contour is then possible, which reduces soil erosion. The heaped or windrowed vegetation is burned when dry and the ash provides a good nutrient-rich seedbed for seedlings. Several studies have shown that seedlings grow well in these ashbeds.

Soil Preparation. Soil preparation is one of the most important operations in the plantation operation as it affects soil erosion, moisture conservation, plant growth and plantation cost. Soil manipulation can range from no-till to intensive bulldozing, plowing and harrowing operations. The most common soil preparation methods now in practice in the uplands are:

- (a) no-till;
- (b) pitting;
- (c) patch or strip soil working;
- (d) herringbone or fish-scale plantations;
- (e) tie ridging;
- (f) contour stone walls;
- (g) gradoni or banquettes;
- (h) broken contour line ditches; and
- (i) V-ditch and contour banks;

<u>No-till</u>. There is now a considerable body of opinion that soil should not be manipulated on any slope beyond 20% if the soils are loose. Vulnerability of such sites to erosion is most visible in Kandi Siwaliks, India. The rocks in this upland chain consist of fragile sandstone and siltstone which disintegrate to sand or silt on minimum disturbance. They then roll down the hills as slides or wash down with rain water to silt-up downstream agricultural land. Therefore, no-till is generally appropriate in such areas.

<u>Pitting</u>. Pits are usually cubes, each side being 30-45 cm, dug at 2-4 m intervals. The soil is heaped on the side of the pit for 1-3 months before being put back in the pit for planting. Pitting is a common practice all over India. In Fiji, small seedlings of <u>Pinus</u> <u>caribaea</u> are inserted in holes dug only with a crowbar (Evans, 1982). A popular misconception exists that a pit planting design on the contour is beneficial as an anti-erosion measure. In fact, except for initial assistance to the seedling by providing loose soil, pits whether on contour or not have little impact in reducing erosion, nor do they conserve any significant moisture.

<u>Patch or Strip Soil Working</u>. Sometimes small square patches, each side being 1-2 m, at a certain spacing are loosened by hand to prepare for sowing and planting. The main reason for such a simple soil operation is to reduce cost. This method does not significantly assist seedling growth. Some species, however, need shade initially to grow and patch sowing under the shade of other trees can be a successful practice. <u>Azadirachta indica</u> in semi-arid Vertisol soils in submontane and low hills of central India are sown successfully in this manner. <u>Eucalyptus pilularis</u> and <u>E. grandis</u> are grown by patch sowing in Australia. Strip working is more intensive; strips are plowed at intervals. In the hills, the method is not recommended on bare slopes as it accelerates erosion significantly. On slopes with some vegetation, however, the uprooted shrubs and tree stumps are often stacked along the lower edge (Chapman and Allan, 1978). Any dislodged soil is to a large extent trapped both by stacked material and the undisturbed strip.

<u>Tie Ridging</u>. This method covers the entire surface with basin-like furrows scooped out along the contour with special plows, and the soil is thus ridged. The contour ridges are then interconnected to create a number of basins for water accumulation. The method is very expensive and not suitable for areas with moderate to steep slopes.

<u>Contour Stone Walls</u>. Chapman and Allan (1978) describe contour stone walls with bases of 30-40 cm and height of 20 cm and cross ties every 5 m along the contour wall. Whatever soil is available is dragged back to seal gaps in the wall to make a reverse slope. Seedlings are planted on either side of the cross tie, thus using the low point of water concentration. This method is inexpensive if sufficient stone is available at the site and useful in arid and semi-arid uplands with shallow soil.

Herringbone or Fish-Scale Method. These methods direct water from a small surrounding area to the planted seedling. With the herringbone pattern (Dalwaulle, 1977), a crescent-shaped low ridge is raised on the downslope side of the tree and small channels are dug into the upslope side leading to the tree. In the fish-scale method, a low dike is raised on the downslope by soil collected from about 2-4 sq m from the upslope side to provide a depression for water collection against the dike where the seedling is planted. The method is an inexpensive moisture conservation method, but in the course of a few years, the depression is filled up by soil moving in from outside and the advantage of pooling is lost.

<u>Gradoni or Banquettes</u>. These are narrow terraces built along the contour on the hillside with the outside rim higher than the inner edge. The terraces are generally discontinuous and are staggered between rows. The runoff water not only loses velocity at the terrace, but also is collected in the terrace because of the negative slope. Erosion is thus reduced and seedlings planted in the gradoni receive additional water. In Morocco, <u>Eucalyptus gomphocephala</u> and <u>Pinus halepensis</u> are successfully raised on gradoni terraces (Chapman and Allan, 1978). In Gujarat, India, gradoni soil working is the standard practice to forest degraded stony areas of low hills.

Broken Contour Line Ditches. This method is practiced in arid and semi-arid hill slopes of parts of India. The ditches dug on the contour are of different sizes (usually 30 cm x 30 cm x 60 cm), done either by hand or by heavy tractor-bulldozers, spaced 3 m apart center to center in the row and 3-6 m between rows, in a staggered fashion. The soil dug out from the ditches is heaped on the downslope side of the ditch. The trenches collect the water which benefits the seedlings planted either in the ditch or on the mound. Unless the ditches are at close intervals, which is expensive, this method is inadequate as the ditch fills quickly with soil washing down from the upslope side. The seedling bed in the trench is also not a suitable microsite for root development, because on degraded hill slopes the subsoil is rocky. Broken contour line ditches, however, are better for soil and moisture conservation than simple patch soil working or pitting, the two most commonly practiced methods.

V-Ditch and Contour Banks. This is a totally mechanized operation executed by heavy crawler tractors provided with rippers and angle dozer-blades. Contour subsoiling is possible on up to 30% slope but is most satisfactory on slopes below 22-25% (Shepherd, 1986). The latest available machines with new ripper designs shatter a total width of 3 m to a depth of 50 cm. In order for the subsoiling to be effective, it is carried out when the soil is dry. The rip lines are usually 5-6 m apart. After subsoiling is complete, the tractor's angle blade makes a V-ditch in the ripped line and simultaneously forms a ridge on the downhill side of the ditch. Seedlings are planted in the ditch 1-2 m apart in holes dug with a spade. This pattern of earthwork is most suitable where the soil is shallow and is underlain by hard pan. The ripper, by shattering the pan, improves water percolation and enhances root development. The V-ditch on the contour combined with subsoiling is an effective way to conserve moisture in-situ and to reduce soil erosion. In the Pilot Project for Watershed Development in Andhra Pradesh, India, this method has been used to obtain uniform and significantly better growth of <u>Eucalyptus</u> tereticornis, <u>Dalbergia sissoo</u> and several other tree species planted in degraded Alfisols.

Issues Concerning Ground Preparation. Several issues relate to preparation methods:

- (a) ground vegetation removal may contribute to erosion, but nonremoval leads to competition with the planted species for light, moisture and nutrients, so careful site reconnaissance is needed before vegetation removal;
- (b) burning releases nutrients locked up in waste biomass. This may have a beneficial "ashbed" effect, but also may kill harmful pathogens and beneficial symbiotic bacteria, insects, etc.; may seal the soil pores on the surface leading to faster runoff; and boost weed growth, thus affecting planted seedlings. On the other hand, controlled early burning, having a cooler burn and being easier to supervise, may be beneficial. The pros and cons of burning during site preparation need to be evaluated;
- (c) manual soil manipulation is labor-intensive, while machines are capital-intensive, have adverse effects on soil by compaction and are difficult to operate in steep rocky sites. However, tractors equipped with rippers can shatter rocks, makes trenches, terraces, and ditches economically which assists moisture infiltration and insitu moisture retention. In some instances, soil manipulation increases land productivity, while in others it may contribute to accelerated erosion; hence, the situation on each site needs review.

Decisions regarding the above questions require an understanding of context: (a) these operations are generally in hills and vulnerable to erosion; (b) highly degraded lands are frequently in areas with acute shortages of fuelwood and fodder; and (c) where there is a high level of unemployment and poverty. Technologies which promote soil and moisture conservation, increase productivity of biomass, provide conditions for reducing poverty and generate employment are obviously more appropriate. However, there cannot be one model to cater for the plurality of requirements. Each site, with its individual micro- and macro-environment comprising geographic, historical, social, political and ecological aspects, needs a customized model.

Planting Methods

Alternative planting methods involve direct sowing of seed, planting of bare root or containerized seedlings. Other methods such as stumping, grafting, and root suckering are rarely used in large-scale plantation operations and are not discussed.

Direct Sowing. Sowing of seeds has not been used to its maximum potential in enrichment planting and forestation. The high mortality of seedlings emerging from direct sown seeds compared to those raised by planting seedlings have made it unpopular. The mortality is caused principally by a combination of post-emergence drought and weed competition. Many of the commonly planted exotics have tiny seeds (for example, Eucalyptus spp.) and emergent seedlings are small, needing special care and attention which are seldom provided. The unpopularity of direct sowing is unfortunate, because it is a low-cost method of regenerating indigenous species, seeds of which are seasonally plentiful and locally available. Extensive areas can be vegetated by direct sowing with less manpower and infrastructure than formalized transplanting if some special precautions are taken. Firstly, selection of species is important. Seeds should have low dormancy and high germination percentage, and the emerging seedlings should have the capability to survive weed competition. Secondly, more attention than hitherto should be given to breaking dormancy and reducing germinating time by proper seed treatment. Thirdly, where insect or fungal damage, erratic rain, or low soil fertility are expected, seeds should be pelletted with a poly-layered coating which may contain pesticides, anti-drying chemicals and fertilizers. In addition, seed should be coated with mycorrhizae or bacteria, as may be necessary if the species belong to the families Pinaceae, Casuarinaceae or Leguminoseae.

Broadcast sowing, patch and line sowing or aerial seeding may be used. Planting <u>Eucalyptus</u> spp. by direct seed sowing has been successful in Australia. <u>Acacia auriculiformis</u> is successfully grown by line sowing in plantations in West Bengal, India, as is <u>Dipterocarpus turbinatus</u> in Bangladesh. <u>Aesculus indica</u> and <u>Juglans</u> spp. are grown by direct sowing in the Kashmir Himalayas, India. <u>Shorea robusta and Dipterocarpus macrocarpus</u> also grow well from direct sowing. <u>Prosopis juliflora</u> has been grown very successfully by direct sowing in some arid states of India. All these examples show the potential of sowing as a method of plantation establishment. Aerial sowing of pelletted seed is an interesting option, which has been successfully utilized in New Zealand, Canada and Indonesia. The technique may be valuable in arid and semi-arid wastes and is a possibility that should be explored. <u>Bare-Root Planting</u>. Bare-root planting is less expensive than container seedling planting, due to lower nursery and transporting costs, and should be adapted wherever possible. While some species are very sensitive and cannot stand bare root transplanting (e.g. <u>Acacia catechu</u>, <u>A. nilotica</u>), others are amenable, provided the seedlings are carefully handled. <u>Eucalyptus</u> <u>tereticornis</u>, <u>E. camaldulensis</u>, <u>Casuarina equisetifolia</u>, <u>Pinus roxburghii</u> are some of the species which have been successfully raised with bare-root stock.

<u>Container Seedlings</u>. The use of container seedlings is the most common planting system used today in revegetation programs. Two types of containers are used: semipervious and impervious containers, with the latter used more extensively. Semipervious (and pervious) containers were extensively used before polyethylene bags were introduced. These were made up of leaves (<u>Shorea robusta</u>, <u>Butea frondosa</u>, <u>Bauhinia villosa</u> in India), waste veneers (by Picop in the Philippines), or bamboo pots (by Nalco in the Philippines), all locally available and low-cost. One of the disadvantages of semipervious containers is that roots penetrate the container and form a mat with the roots of adjacent containers, making it difficult to separate them during transplanting. This type of planting stock has less mortality than bare-root stock. The semipervious containers are not used widely anymore, but renewed attention to this method and evaluation of its potential would be useful.

Two types of impervious container, the flexible polyethylene bag or sleeve and the more rigid root-trainers, have been developed over the past decade. In tropical countries, flexible polybags or tubes are most commonly used: they are frequently 4-mm thick black or transparent polyethylene and of varying diameter and length. Disadvantages are that they are not biodegradable, add to seedling production costs and may constrict root development. However, advantages are many: seedlings have a better chance of survival, planting stock size can be controlled and there is little damage during transportation. To prevent root-constriction, root-trainers have been developed. They are normally hung slightly above the ground, causing air pruning of roots and have the additional benefit that seedlings do not significantly deteriorate if held back in the nursery due to erratic rains or other delays in planting schedules.

<u>Issues Concerning Planting Methods</u>. The following issues are important regarding planting methods:

- (a) direct sowing as a method of revegetation is unpopular. As the method is low-cost and has a lot of potential, provided the seeds are pretested and pelletted, a fresh look at this method for extensive use is recommended;
- (b) bare-root seedling planting is successful for many species, provided seedlings are planted during good climatic conditions. Containerizing them to ensure success is not necessary under such circumstances. It would be worthwhile to list species that do well by this method of propagation and standardize the procedure of growing bare-root seedlings in nurseries;

- (c) semipervious containers, particularly of leaves, once popular have been practically discarded. Yet the method has potential. Not only are they low-cost but also biodegradable. Species which can withstand some root disturbances during transfer can be successfully grown in these containers; and
- (d) containerized seedlings often have abnormal shoot/root ratios and coiled root systems. Controlling size of shoot and shoot/root ratio through the use of the best container size needs to be introduced as a standard nursery practice. For species requiring containerization, root trainers should be used where possible.

Planting Design

Planting design involves the pattern and spacing between trees. The pattern commonly used is the square or rectangular. In the square pattern, the distances between plants in the row and between rows are the same. In the rectangular pattern, distances between rows exceed those in the row. Examples are: Eucalyptus deglupta is spaced at 4 m x 4 m, Paraserianthes falcataria at 4 m x 2 m in the Philippines and <u>Araucaria cunninghamii</u> 3 m x 2.50 m in Papua New Guinea.

Planting pattern and spacing are determined by the silvicultural requirements of the species, the objectives for which the trees are being raised, plantation management methods and cost considerations. Species with spherical crown shape (for example, <u>Mangifera indica</u>) are appropriate for the square pattern, but those with a cylindrical form are better suited for rectangular planting. Some species are raised very close in a square pattern for self-pruning in the early period of life to obtain knot-free timber. Larger rectangular spacing, on the other hand, can provide open space between rows for agroforestry. If management aims at getting intermediate yield, closer planting initially allows mechanical thinning at a young stage. This allows for recovering some of the higher investment cost due to the greater number planted.

These planting patterns and spacing are suitable for industrial plantations but inappropriate for revegetation where soil and moisture conservation and production of fuel and fodder are more important. In this latter case, planting on the contour in V-ditches or the equivalent, with contour barriers of suitable shrubs or vetiver grass is the preferred option. The pattern and spacing of trees would be approximately 1 m apart in the rows and about 3.5 m between rows, depending on the slope. The steeper the slope, the lesser the distance with contour hedges of grass or shrub grown between tree rows.

Issues Concerning Planting Methods. Planting design for watershed revegetation should avoid the usual square or rectangular pattern and spacing followed in plantation forestry. The dual objective of providing benefits to people and of soil and moisture conservation is best served if trees are planted close in rows in contour V-ditches, or in pits, and between rows a contour hedge of useful shrubs or grass. The hedge will assist in soil and moisture conservation, provide twigs and leaves for low-quality fuel, and the trees can supply most of the other products needed by people, including fodder, poles, small timber, etc.

Protection

Protection of revegetated sites during the establishment period may be done by fencing, watch and ward, social consent or by a combination of these methods. Fencing types used include cattle-proof ditches, stone walls, barbed wire fences, electric fences and hedges. Watch and ward employs persons to guard the plantation. Social consent infers that the people voluntarily desist from using the plantations for a certain period. Protection by social consent is the most appropriate and inexpensive method but also the most difficult to execute. A minority group or even one person in a village may damage the plantation. An unconcerned man may accidentally burn the young crop. Stray cattle, by browsing among the seedlings, may put back the growth of trees by several months. Fencing becomes ineffective if local people do not accept it. Protection by watch and ward is effective if people cooperate with the guard. Hence, low-cost fencing, such as a vegetative hedge, and watch and ward with community cooperation perhaps would be the ideal combination.

<u>Fencing</u>. Several options in terms of efficacy, cost, material, and level of technology and maintenance pertain to the use of barriers to protect plantations in upland Asia.

> <u>Cattle-proof ditch</u> is a common method of fencing in many parts of India. They are dug around the plantation, having vertical side walls, variable sizes (generally 60-90 cm wide, 100 cm deep) with the soil heaped as a ridge on the plantation side. The trenches are interrupted by half-cut transverse walls at intervals to ensure that the trench does not form a running gully. The trenches are not desirable for a number of reasons. They are expensive, costing about 25% of the total plantation cost, hard to dig where there are rock outcrops on the surface or at shallow depths, promote severe erosion where ditches run along the slope, and are ineffective if any part is breached or filled with soil washing down the ridge or collapsed side walls.

> <u>Stone walls</u> are convenient if sufficient stone is available on site. The walls should be at least 1.5 m high and 0.3 m wide. Often in the hills, irregular shape and hence lengthy boundaries make walls very expensive.

> <u>Barbed wire fencing</u> is very effective against men and animals and can be recommended, even if expensive. Wire is often stolen as it has resale value and continuous repair makes it even more costly.

Electric fences have been introduced recently in parts of India and Southeast Asia, particularly to protect crops from cattle and wild animals. Their use can be totally negated by human interference as damage to one portion makes a large part inoperative. In addition, forest workers in many developing countries are not trained to keep them under repair. <u>Live hedge</u> is the least-cost and most appropriate form of fencing. Selection of species for the hedge can be made from a large number of shrubs in each site. In India, some common hedge plants are <u>Agave</u> spp., <u>Ipomea</u> spp., <u>Euphorbia</u> spp., <u>Duranta</u> spp., <u>Cactus</u> spp., <u>Vitex</u> spp., <u>Barberis</u> spp. Such hedges not only protect the plantation, but can provide fuelwood and other products if properly managed. The difficulty with the hedge as a fence is that it has to be raised at least two years in advance of plantation planting, unlike other fences which can be built in the year of plantation.

<u>Watch and ward</u> is the most common method of protection in Bangladesh, Burma, India, Nepal, Pakistan, and Sri Lanka. Guards selected from the local village are effective if villagers cooperate. A guard can look after an area of 10 hectares in the plains and about 6 hectares in the hills. Employment is a recurrent cost and can be prohibitively expensive if a guard has to be employed beyond the first 1-2 years.

Social Consent. People will normally agree to protect the plantation voluntarily if they are involved in planning, execution, management and are recipients of the benefits that may accrue from it. But rarely in the past have villagers been consulted in revegetation projects in the uplands. Aguilar (1982) reports indifferent success of four forestry projects in upland Philippines due to noninvolvement of people. Many community woodlands raised under social forestry projects in India have been destroyed by the people themselves. On the other hand, there are examples of forest protection by social consent. Villagers of Chamoli district in the Western Himalayas of India, who initiated the Chipko movement to ban Government tree felling in 1972/73, have now focused their attention on raising plantations and protecting forests (Agarwal, 1986). In West Bengal, villagers on their own initiative protected about 120,000 ha of Shorea robusta forest by 1973 (Banerjee, 1978) and 150,000 ha by 1988. Eckholm (1979) reports successful planting of over 643,000 ha of village woodlot by village forestry associations in South Korea.

Issues Concerning Protection. Protection by social consent is the most inexpensive and desirable method of protection. But a minority of one uncooperative person may damage the revegetation effort. Hence, social consent combined with some form of fencing or watch and ward is necessary for protective fencing. Among fencing options, the live hedge seems to be the ideal method. Not only does it protect the area from stray cattle, but the hedge can be managed to provide fuelwood and other useful products for distribution to people. The difficulty with the hedge method is that it should be established at least two years in advance to be effective by the year of plantation. Other forms of fencing using materials such as barbed wire or stones, though commonly used, are generally ineffective, expensive, and should be discontinued wherever feasible. Cattle-proof trenches, as used in India, are a source of erosion and should be discontinued.

Management

For this discussion, the term management refers, narrowly, to only silvicultural practices that exploit a revegetated area for sustained yield. As mentioned earlier, soil and moisture conservation and meeting local needs for fuel, fodder and food are the primary objectives of revegetation. Management practices, therefore, have to be oriented towards these objectives, yet few examples of managing upland revegetation can be cited that have attempted to attain these objectives simultaneously.

Current management practices can be broadly divided into two categories: protection and fixed-rotation harvesting. The first involves a handsoff approach that uses vegetation as a protective cover and induces indirect yields through water and soil conservation. Such areas are fenced and looked after by intensive watch and ward for a few years to keep local people and cattle out. Hardly any silvicultural treatments are carried out, except for weeding, fire protection and climber cutting in the initial 2-3 years. The second involves exploitation in short rotations. Usually such areas are coppiced (5-15 year rotation) if the species are suitable, or they are clearfelled and the area replanted. Eucalyptus spp., Leucaena leucocephala, Prosopis juliflora are examples of species having coppicing ability. Those clearfelled include Acacia nilotica, A. auriculiformis, Cassia siamea, Faidherbia albida and Pinus roxburghii. Before harvest by coppicing or clearfelling, there is no other operation except grass cutting or weeding. Both are, to a large extent, adversely affected by local disturbance through illicit grazing, hacking and intentional burning.

The objectives of soil and moisture conservation, on one hand, and fixed-rotation harvesting for supply of products to upland villagers, on the other, can be in conflict unless management methods are substantially changed. Disturbance of the understory and forest floor (litter, humus layer, root mat) during the removal of trees in upland areas exposes the soil and accelerates erosion. At the same time, harvesting trees is essential to provide round wood for people. The supply of forestry products only at the rotation age (say at 5th, 10th, 15th, 20th years if the rotation age is 5 years) is unsatisfactory, as the community needs small amounts of products such as fuelwood and fodder regularly.

Silvicultural operations such as annual brashing, low and high pruning, pollarding, coppicing, selective thinning every year are some of the management methods most applicable for arranging regular supply. For example, on a plantation of <u>Prosopis juliflora</u> and <u>Acacia nilotica</u> in Karnataka, India, the rotation of <u>A</u>. <u>nilotica</u> is fixed at 15 years, while <u>P</u>. <u>juliflora</u> is regularly lopped and the harvest supplied to people after it has reached the age of three years. <u>P</u>. <u>juliflora</u> continues to develop leafy shoots which act as a soil cover in spite of annual lopping. Another interesting example of dualpurpose management is that of <u>Leucaena leucocephala</u> regenerating profusely under its own shade in Haryana, India. The overhead canopy is retained with a long rotation, while cattle are allowed to graze the vegetation daily.

Annual silvicultural operations such as brashing, pruning, thinning and coppicing are expensive and ought not to be done by regular employees. Under the technical guidance of the responsible line department, beneficiaries should take over the management and benefit distribution of such plantations. Social forestry projects in India have community land and roadside plantation components that aim at local management. Dani and Campbell (1986) report that one third of the villages in Nepal have at least one local forest under local management and the number is increasing.

Issues Concerning Management. Very few examples are available in upland revegetation programs of successful management to attain soil and moisture conservation and regular production of goods for local people. Either they are managed as protection forests, or else they are cut at fixed-rotation intervals to produce fuel and other products. The dual-purpose technology for soil and moisture conservation and production of goods in the same area has to be designed. Raising of shrubs and grasses, such as vetiver grass, on contours as hedges under the overhead tree canopy is an appropriate design for this dual purpose. The hedge can act as the soil and moisture trap and supplier of twigs and branches for fuel, and the tree the major supplier of other products. Regular supply can be arranged only if annual silvicultural operations such as brashing, low and high pruning, topping of the hedge and thinning the top canopy when possible are introduced. The hedge should be a species that can withstand annual cutting and topping and yet develop enough shoots to protect against soil loss and continue as a hedge. All these operations are expensive and cannot be repeated unless the management is carried out by local beneficiaries who voluntarily execute the job for their own consumption.

CONCLUSION

Upland revegetation efforts in Asia have seldom been successful. Although failure is generally attributed to techniques, in many instances biotic factors such as cutting, unrestricted grazing, and intentional burning by the local population have dominated. The introduction of technology without the active participation of local inhabitants in the revegetative program is ineffective. Their participation can be assured only if they are involved in different stages of the revegetation program including benefit-sharing. The technology should aim not only at producing fuelwood, fodder, and employment opportunities and at promoting soil and moisture conservation, but also at involving them in its adaptation and use. A review of available technology reveals a number of shortcomings. Choice of species has overemphasized trees, exotics and monoculture. It is argued that the introduction of shrubs, indigenous legumes and grasses, on the contour as a hedge, should find a place in land stabilization and the regeneration of vegetation.

Ground preparation includes removal of ground vegetation, windrowing, burning, and soil manipulation. Removal of ground vegetation, an established practice, may have serious erosion implications, although planted seedlings cannot compete otherwise with existing vegetation. Burning supposedly releases nutrients from biomass waste, but may also increase erosion. In soil manipulation, pitting is the common practice in Asia, often done manually and rarely by machines. In planting methods, reintroduction of direct sowing and more use of bare-root planting and biodegradable containers to reduce cost are proposed. In planting design, it is suggested that planting with a shrub hedge on the contour in between the tree rows should replace the present method of square planting. Regarding protection, social consent with watch and ward or with a live hedge raised at least two years in advance is preferable to other forms of fencing. Management of revegetated areas presently comprises two methods: complete protection without any harvesting and regular harvesting at the rotation age. Both methods fail to consider the needs of local villagers for a continuous supply of products. This can be satisfied by introducing silvicultural practices such as annual brashing, low and high pruning and topping of the hedge and thinning of the top canopy of trees.

Genus	Species	Common Name
Acacia	auriculiformis	Northern black wattle, ear podwattle
Acacia	catechu	Khair (Nepal)
Acacia	mangium	Mangium, brownalwood, hickory wattle
Acacia	nilotica	Egyptian thorn; red-heat, kudupod, "sweet smell," babul (India); kiker, babar (Pakistan); sunt, ruikperul (Arabic)
Aesculus	indica	Lekh-pangar, Nark (Nepal)
Araucaria	cunninghamii	Hoop pine
Araucaria	huntsteinii	Klinki pine
Azadirachta	indica	Neem, nim
Bauhinia	villosa	Orchid tree
Butea	frondosa	Flame-of-the-Forest, dhak (India), Palans (Nepal)
Cassia	siamoa	Yellow cassia, minjri, moung, angkanh, kasof- tree, Bombay blackwood, cassia (French)
Castanea	spp.	Chestnut
Casuarina	equisetifolia	Casuarina, Australian pine, agoho (Philippines), ru, aru (Malaysia), nokonoko (Fiji)
Cedrus	deodara	Deodar; Diar, Devadaru (Nepal)
Cryptomeria	japonica	Sugi (Japan); Dhupi salla (Nepat)
Dalbergia	sissoo	Sisso, sarsou, shisham, neikar, karra, tanach, tali, yette
Dipterocarpus	macrocarpus	Hollong (Índia)
Dipterocarpus	turbinatus	Garjan
Eucalyptus	camaldulensis	Red gum, river gum
Eucalyptus	citriodora	Spotted gum, lemon-scented gum
Eucalyptus	deglupta	Kamarere (Papua New Guinea), bagras (Philippines), leda (Indonesia)
Eucalyptus	gomphocephala	Tuart
Eucalyptus	grandis	Flooded gum, rose gum
Eucalyptus	pilularis	Blackbutt
Eucalyptus	tereticornis	Blue gum, mountain gum, red gum; Mysore gum (India)
Faidherbia	albida (Acacia albida)	Apple ring acacia, Haraz
Juglans	spp.	Walnut
Kydia	calycina	Kubindeh (Nepal)
Leucaena	leucocephala	Leucaena, ipil-ipil (Philippines), subabul (India)
Mangifera	indica	Mango, amp (Nepal)
Paraserianthes	falcataria (Albizzia falcataria)	Batai, Molucca aibizzia, sengon, falcata, vaivai, puah, white albizzia, tamalini, marfa, placata, djeungjing
Pinus	caribaea	Caribbean pine, putch pine, pino de la costa, pino clorado
Pinus	halepensis	Aleppo pine, pino carrasco, sanaoubar halabi
Pinus	patula	Patula, Mexican weeping pine
Pinus	roxburghii	Chir pine
Prosopsis	juliflora	Mesquite, algarroba
Pseudotsuga	menziesii	Douglas fir
Quercus	incana	Bluejsck osk, sano banjh (Nepal)
Robinia	pseudoacacia	Black locust, robinia
Shorea	robusta	Sal

Teak, sagwan, sengon,

Tectona

grandis

REFERENCES

- Agarwal, Bina. 1986. <u>Cold Hearths and Barren Slopes</u>. Riverdale Co. Publishers: Maryland, USA.
- Aguilar, Filomeno V., Jr. 1982. "Social Forestry for Upland Development: Lessons from Four Case Studies." Institute of Philippine Culture: Quezon City, the Philippines.
- Banerjee, A.K. 1987. <u>Microplanning-A Tool for Social Forestry Implementa-</u> <u>tion</u>. National Wasteland Development Board: New Delhi.

_____. 1978. "Local Needs of Small Timber and Fuelwood in India," in K.R. Shepherd and H.V. Richter (eds.), <u>Forestry in National Development</u>. The Australian National University Development Studies Center, No. 7.

- Cassells, D.S. 1983. "Reducing the Impact of Plantation Establishment on Soil and Water Resources--Some Research Requirements," in K.R. Shepherd and R.O. Squire, <u>Establishment of Coniferous Plantations</u>. Australia.
- Chapman, G.W. and T.A. Allan. 1978. "Establishment Techniques for Forest Plantations," FAO Forestry Paper #8. Rome.
- Dalwaulle, J.C. 1977. "Species, Techniques and Problems of Semi-arid Zones (the Sahel)" in <u>Savannah Afforestation in Africa</u>. FAO: Rome.
- Dani, Anis and J. Gabriel Campbell. 1986. "Sustaining Upland Resources: People's Participation in Watershed Mangement," ICIMOD Occasional Paper No. 3. International Centre for Integrated Mountain Development and FAO: Kathmandu.
- Eckholm, Erik P. 1979. "Planting for the Future: Forestry for Human Needs," World Watch Paper #26. World Watch Institute: USA.
- Evans, J. 1982. <u>Plantation Forestry in the Tropics</u>, Clarenden Press: Oxford.
- Fernandes, Walters. 1987. "Voluntary Organization in Afforestation and Energy Savings Project." in <u>India Papers</u>. International Tree Project Clearinghouse: NGLS/New York.
- Hegde Pondurang. 1987. "Appiko (Chipko) Movements Lessons of Grassroot Action," in <u>India Papers</u>. NGLS/New York.

Leach, Gerald. 1987. "Household Energy in South Asia," Biomass 12.

- Rao, E.V. 1967. "Economics of Plantation particularly of <u>Casuarina and Euca-lyptus</u> with special reference to the sandy soil of Nellore, south division of Andhra Pradesh," Proc. Eleventh Silvi. Conf. FRI, Dehra Dun.
- Rockwood, W.G. and R. Lal. 1974. "Mulch Tillage--A Technique for Soil and Water Conservation in the Tropics," <u>Span</u> 17.
- Shepherd, Kenneth R. 1986. <u>Plantation Silviculture</u>. Martinus Nijhoff Publishers: Boston.

6. LAND TENURE ISSUES IN WATERSHED DEVELOPMENT

Augusta Molnar

Intended to document why tenure is relevant to watershed projects and to provide a conceptual framework for making decisions related to tenurial issues during project design, this chapter is grounded in a review of the literature on land tenure and conservation and a review of relevant projects in China, India, Indonesia, Nepal, the Philippines, and Thailand. It begins with an overview of the importance of land tenure in watershed projects, describes some general principles of land tenure and categories of tenure systems found in the Asian uplands, discusses why the relationship between conservation and tenure has not been clearly understood, presents a conceptual framework for analyzing that relationship based on case studies, identifies measures for addressing tenurial issues in watershed projects, and, finally, suggests studies that should be undertaken to further the World Bank's operational understanding of this issue.

INTRODUCTION

Basic Objectives of Watershed Projects

Watershed development projects aim at improving the overall productivity, sustainability and equity of land use in fragile, arable and nonarable lands. Land tenure can be an important factor in achieving these goals. Productivity is linked to tenure because tenurial arrangements can affect both the profitability of present and improved farming systems and the ability of the cultivator to make the transition to an improved technology. Sustainability is linked to tenure because tenure affects both the initial decision to adopt practices to slow land degradation and the ability to maintain land improvements over the longer term. Finally, equity concerns are linked to tenure because project investments can reduce people's access to resources, including land; and new technologies may induce changes in land tenure, displacing people from their land and their employment base without providing viable alternatives.

It is generally difficult to identify strategies that optimize all three of the above objectives. Choosing a strategy for addressing tenure issues will inevitably require some trade-offs in project goals. For example, in the Amazon region, titling programs to induce squatters to adopt a longterm view of their holdings also resulted in increased land speculation and the opening up of new areas for agriculture, ultimately leading to further land degradation (Cullins and Painter, 1986). In the Southeast Asian uplands, private agriculture on steep slopes is not the ideal use of the land, but because of population pressure, improving local agricultural practices is more sustainable and equitable than trying to eliminate such land use (World Bank FFARM Study, 1989). Thirdly, closing lands to open grazing in South Asia and inducing graziers to adopt stall-feeding may lead to more sustainable or productive land use, but land-poor herders without pasture who cannot afford to stall-feed may be forced out of animal husbandry. Each case involves difficult choices.

Tenurial Issues in Watershed Projects

Land tenure includes the formal (state-recognized) and informal (customary) rights of access to different kinds of land, the rights to control products of that land, obligations to maintain the land, the rights of transfer, and rights to determine changes in use of that land. Formally and informally held rights in land may be in harmony or there may be conflicting rules within the system. Land tenure is not unchanging, but responds to new economic, social, political, and cultural factors on a continuous basis. Often, changes occur in the system when different interpretations of rights--by other farmers, the village council, the state, the forestry bureaucracy, or the courts--gain precedence in the resolution of a tenure conflict.

There are several reasons why it is important to be concerned with land tenure issues in watershed projects, all of which can be illustrated by examples from recent, World Bank-assisted upland projects.

- (a) the type of tenure may affect the profitability, adoption rates, and the impact of proposed measures;
- (b) efforts to change land tenure patterns to provide land-users with better incentives for sound management may have unintended, negative consequences;
- (c) introduction of specific soil and water conservation technologies may affect land tenure patterns and have an unanticipated impact on local smallholders; and
- (d) the failure to understand existing tenure patterns may lead planners to overlook promising opportunities to develop lands under particular tenure arrangements, especially informal systems or systems of groupmanagement.

Land Tenure Systems in the Asian Uplands

There are many systems of land tenure in the Asian uplands adapted to specific ecological/economic conditions, cultural/historical traditions, and population densities. A summary of the range of tenure types is presented in Table 6.1. Some of the most familiar systems in Asia are:

(a) watersheds with relatively stable land tenure systems, such as the island of Java or Taiwan. These have few communal lands, more or less clearly demarcated state-owned lands, and complex owner-cultivator and tenant-cultivated arrangements, many of which are not clearly reflected in the official land registers;

- (b) watersheds with relatively ancient, state-recognized land tenure systems, such as Burma, China, India and Nepal, where collectivelymanaged resources, usually called common property resources (CPR), are an important part of the formal and customary (informal and <u>de</u> <u>facto</u>) tenure rights; and
- (c) watersheds in "frontier" areas, such as the Philippines, north Thailand, Malaysia, or the Outer Islands of Indonesia, where a limited proportion of cultivators has state-recognized tenure rights, and a large portion of forested and unforested land is usually designated as state forest. Cultivators in such areas include indigenous ethnic minorities (including tribal groups) who have a long-standing landuse traditions and informal tenure based on ancestral rights; settlers, often belonging to majority ethnic groups whose actual tenurial arrangements tend to emulate those elsewhere in the country; and recent migrants on newly-cleared lands.

These tenurial differences are important because each system may lend itself to different forms of technical and social intervention.

Tenure category	Guaranteed long-term access to land (security)	Access to credit/ capital	Ability of user to make development decisions	Ability to protect land from others	Percentage of returns to user of land	Ability to transfer rights of ownership
Privately-owned with title	High	High	High	High	High	High
Privately-owned without title	Medlum	Medium	Hìgh	Hìgh	High	Medium
Lessed from relative	Low	Medium	Medium	Hìgh	Medium	Low
Fixed renter from unre- lated owner	Low	High if owner contributes	Low	Medium/high	Medium	Low
Sharecropper from real- dent owner	Low	Low (medium if owner contributes)	Low	High	Low to medium	Low
Sharecropper from abaentee owner	Low	Low in gen- eral	Low	High	Low	Low
Private cultivator on public lands	Low	Low	Hìgh	Dependa on management system	High if not paying rent to pasudo- landowner	Low
Perum Perhutani model of longer taungya leases (Java)	Medium	Hìgh	Medium/high	Low/medium	High	Low at present
Forest associations (FOSAs) (Philippines)	Medium	High	Low	Med i um	High	Low at present
Local grazier on vil- lage common land	High	Low	Low	Depends on management ayatem	Depends on management system	Depends on management
Local grazier on state revenue lands	Low	Low	Low	Low	Depends on management system	Dependa on management
Tree tenure/leases on state revenue land (India)	Medium	Low	High	Low	Hìgh	Low
Cost-sharing of forests giving user protec- tion duties (West Bengal, India)	High	High	Low	High	High (could be higher if products expanded)	High within village
Recognizing customary rights over forests	High	Low	Depends on Forestry Department/ village relations	Hìgh	Can be high	High within village

Table 6.1: CHARACTERISTICS OF DIFFERENT TYPES OF TENURE ARRANGEMENTS IN THE ASIA REGION RELEVANT TO THE ADOPTION OF SOIL AND MOISTURE CONSERVATION

Population Pressure and Land Tenure

One characteristic that makes land tenure systems so distinctive in most of the Asian uplands is the high population pressure on scarce resources. While population densities in the lowlands are widely recognized as affecting socioeconomic conditions in Asian countries, their effect has not been as apparent for the uplands, because the high proportion of nonarable lands tends to make densities seem low. Statistics comparing lowland and upland population densities are misleading, because they do not usually factor in the limited amount of cultivable land in the upland areas. In Thailand, Cohen (1983) calculated the number of persons per km² of cultivated land and found that pressure exceeds 500 persons/km² in 58 out of 64 districts of seven northern provinces. Comparable figures for other upland areas are 560-1,000 persons/ km² for upland Java, 530 persons/km² for upland Nepal and 215 persons/km² in the Philippines' uplands. If the lower productivity of upland soils is factored in, this is a striking picture.

Given the importance of population density in determining land use in much of Asia, this review has focused on case studies of tenure systems and projects in relatively populated watersheds; examples are also included from the relatively underpopulated Outer Islands of Indonesia, parts of Malaysia, Bhutan, and Papua New Guinea, where the tenure issues and trade-offs are less constrained by competing demands on scarce resources.

Factors Obscuring the Impact of Tenure in Watershed Projects

The data are ambiguous regarding the effect of tenure on adoption rates in ongoing or completed watershed projects and the analysis has been confused by a number of factors, such as quality of the technology packages, subsidies, and lack of knowledge about the land tenure situation in project areas.

- (a) Many of the technologies promoted (gully plugs, bench terracing, vegetative contouring or afforestation) have not been as economically attractive as anticipated. Either they have been too expensive (in terms of labor and capital) for the cultivator to adopt, given the long time before benefits start to flow, or they have not led to the projected increases in yields and cash returns, with the result that neither owner-cultivators nor tenants had an incentive to adopt. Projects have also ignored variations in the availability of house-hold labor and assumed profitability would be the same in differing households. In such cases, land tenure has often been cited as a problem, whereas the issue is related to poor choice of technology.
- (b) Because of the high, initial cost of adoption, many technologies have been heavily subsidized. In such cases, it is impossible to separate the effects of land tenure on adoption rates from the incentives provided by the subsidy. In some projects, in sites with considerable differences between recorded tenure rights and actual tenurial arrangements, project staff have no idea whether subsidies were paid to owners or cultivators/ land managers, so separating their effects becomes doubly difficult.

(c) There has been little monitoring of the effect of tenure on adoption rates. Where data have been collected, project staff have often failed to understand the tenure system and either lumped a number of distinct tenurial types into one analytical category or failed to recognize the existence of a range of customary land tenure arrangements. In India or Nepal, common property resources (CPRs) have been falsely perceived either as open access or private lands, when in fact there were effective, informal systems for their management. Alternatively, truly open access lands have been lumped together with collectively-managed lands for purposes of analysis, leading to an overly pessimistic picture of the scope for CPR management. In both South and Southeast Asia, corporate-owned private lands have been mixed with individually-owned lands, with negative results when development programs attempt to interact only with individual landowners.

Improving Analysis of Land Tenure Factors

A significant problem with attempts to evaluate the effects of land tenure is that studies have been too simplistic. The commonly studied, predetermined sets of tenure categories--owner-operator versus tenant-operator on private lands and private land tenure versus public land tenure for the system as a whole--are largely meaningless for analyzing the relationship between tenure and adoption rates in most Asian settings. A sound study would first identify the full range of tenure types in the project area, the characteristics of tenure that affect the adoption of proposed technologies, and then select the tenure types that should be evaluated. In a dynamic tenure system, there are multiple rights and obligations, not just the rights of long-term access to the land commonly associated with the word "title." These other rights will affect adoption rates.

Another important point is that distinct tenure types represent points on a continuum in any tenure system and may not fall squarely in a preset category such as "privately-owned," "corporately-owned," "communallyowned," or "publicly-owned." This is not to say that the rights and obligations pertaining to a tenure type are ambiguous, but that these groupings obscure important tenure dynamics. For example, village grazing lands in northwest India include shamlat i deh, a tenure type which allocates a legally specified set of landowning households primary rights to that grazing land in proportion to the size of their private holdings in the village. Resident landless families have only secondary rights to grazing that land at the behest of village landowners. In addition, any trees planted in this "common" or "corporate" land belong to the person who planted them. This "tree right" is not found in village lands in other regions of the country. Shamlat i deh thus functions as a place to plant privately-owned trees, a corporately-owned grazing land, and through the concessional rights to landless, as communal land (Stewart, 1989). In addition, since anyone is entitled to right of way for this land, it functions as a public land. In the conceptual framework presented in Table 6.1, there has been no line drawn between public and private land tenure types. Some of the tenure types on the public end of the continuum have as many characteristics which support adoption of improved land practices as tenure systems on the private end of the continuum.

CHANGES IN LAND TENURE AND THEIR IMPACTS

Impact of Tenure on Adoption of New Technologies

In the current World Bank-assisted watershed development projects in the Asia region, a number of soil and moisture conservation technologies are being promoted, including:

- (a) structural works, such as bench terraces, contour banks, gully plugs and water diversion channels and drainage channels, to manage surface runoff and sedimentation;
- (b) vegetative barriers on the contour, such as vetiver grass, fodder grasses, or mixed conservation hedges of shrubs, grass, and trees to keep moisture and silt on the site;
- (c) cultural treatments and improved cropping systems to improve farm production in a manner that protects soil and moisture status;
- (d) agroforestry technologies that provide a long-rotation crop for steep, fragile soils; and
- (e) silvipastoral or pastoral technologies that provide ground cover, fodder, and forest products.

A pertinent question in the Asian watersheds concerns the extent to which tenurial arrangements affect the adoption rates of these technologies. A logical assumption has been that cultivators will be less likely or unlikely to adopt technologies which have a long time-lag before they begin to generate benefits, or stated in a another way, which require a high level of investment without a commensurately high, short-term return. Following from this assumption, where tenure status is weak, the most appropriate technologies to promote should be those with quick returns and minimum levels of investment. These include the vegetative barriers and mixed silvipastoral models mentioned above.

Tenure has a significant impact on the profitability, adoption rates, equity, and long-term sustainability of interventions. The farmer's sense of long-term tenure security will affect his willingness to undertake land improvements. Private cultivators with secure title rights, tenants who are relatives of the owners, or corporate groups with secure land-use rights are more likely to take a long-range view of land productivity. Sharecroppers with short-term or indeterminate contracts, nonresident landowners who are more concerned with land as an investment than in its annual productivity, and village graziers with only concessionary rights to forest or grasslands are all unlikely to take a long-range view of the resource. Tenure may also affect a farmer's access to credit for land improvements where written title is a prerequisite of creditworthiness.

Effect of Tenancy on Improved Practices

Tenancy arrangements affect the profitability of an intervention differently, depending on the rent paid out, the terms of produce-sharing and the length of the contract. There is a wide range of tenancy arrangements in the Asian uplands, and when targeting technologies, it is useful to understand the particular range found in the project area. The case-study data from India and Java document many informal produce-sharing and rental arrangements that do not conform to the legal code, which makes it difficult to collect accurate data on their extensiveness (Mackie, 1989; Khasnabis and Chakravarty, 1982; Cohen, 1983). Arrangements differ depending upon the productivity of the land, the reason the owner is leasing out the land, the market orientation, and the relationship between owner and tenant. Studies indicate that as many as 50% of the cultivators who rent or sharecrop land may be friends or relatives of the owner, and that these tenants receive more favorable terms and more latitude in decision-making than other tenants. In Thailand, relatives avoid "key money" (right-to-lease payments made to the owner distinct from the regular terms of the actual contract) and in Java, produce shares are greater (Mackie, 1989; Cohen, 1983).

Different categories of landlords also respond differently to such technologies. Some poorer farmers temporarily rent out parcels of land to get short-term capital or to deal with scarce labor problems. They will not contribute to inputs or encourage tenants to develop the land. lest they lose claim upon it. Another consideration in adopting new practices is whether the tenant or owner is expected to provide the inputs. A disadvantage for tenants who have secure tenancy contracts is their lack of access to credit for inputs. Case studies from South India indicate situations in which owners provide sharecroppers with inputs, either when tenants are destitute and cannot even afford seed or when the owner's investments can clearly increase profitability to both owner and tenant. In this latter situation, there may be considerable scope to encourage landowners to help tenants invest in highreturn, soil and moisture conservation measures. Absentee landowners are, however, a category of owners who are unlikely to encourage land improvement. As nonresidents of the village, they tend not to concern themselves as much with long-term land productivity and tend to discourage tenants from undertaking improvements lest they weaken the owner's claim to the land. One exception to this rule is in regions where land reform legislation is enforced, as in parts of South India, where tenants are often the main decisionmakers on the estate and absentee owners are afraid to set terms.

Impact of Land Titling

Recognizing the linkage between tenure and the incentives to undertake land improvements, a number of upland projects have included components to strengthen tenurial status. By far, the most common of these is land titling. Watershed projects have included titling components to provide incentives for farmer participation in programs, to enhance the farmer's tenure security, and to provide the farmer with access to formal sources of credit. A mixed picture emerges on the relationship between titling and land improvements. The only in-depth study for Asia was undertaken in northeast Thailand (Feder <u>et al</u>., 1988). It compared the productivity of farmers with titles and those with certificates of occupancy and concluded that titles had a significant impact, mainly because of their value for obtaining loans with land as collateral. Since farmers had been resident in the area for some time, security did not seem to affect the decision to invest in the land. The Thailand study argues strongly for titling components in projects that promote soil and water conservation and other land improvements in order to give farmers access to capital and enable them to transfer title and improvements to their heirs.

Unfortunately, there are few comparative data to generalize to other regions or countries. The ongoing titling project in Thailand has been very successful, but no new data have been collected from it on the relationship of titling to agricultural productivity. In India, where rural credit is provided at subsidy, it has usually been monopolized by larger farmers and few marginal and small farmers have gotten formal credit, regardless of whether they had titles to the land they cultivated. Some analysts of the Thai case argue that once titling programs increase the number of farmers seeking credit, a similar problem of credit rationing will occur. Where technologies require formal credit, however, as in the case of fruit tree schemes in Java, providing certificate of title may be an important inducement for participation in the scheme.

Lack of tenure security seems to be more important where customary rights are not strong and farmers without title are worried about eviction. Unfortunately, the lack of data makes it difficult to evaluate perceptions of security. Titling has been carried out as part of the Yogyakarta Rural Development Project in Java where customary rights are recognized, but land records still pertain to surveys carried out when the province was a princely state. No formal study has been made of its effect on productivity, though a consultant's report indicates that some farmers with newly titled home gardens have used their new access to credit to invest in still-untitled drylands (Mackie, 1989).

Land Certificates or Land Leasing

In the "frontier" areas of Southeast Asia (Malaysia, Thailand, the Philippines, Outer Islands of Indonesia, Papua New Guinea), large tracts of steep land designated as state forest land have been converted (sometimes prior to their designation as state land) to shifting or permanent cultivation. As governments become more interested in preserving natural resources, there is an increasing controversy over whether to move such people out of designated forest areas or legitimize their land rights. In most areas, it has proven counterproductive to evict already-settled inhabitants of lands designated as forest. Programs to increase tenure security in such areas include formal titling of holdings, granting of limited-use certificates in state forest lands, and/or formalizing customary land rights.

In Thailand, limited-use certificates have not been very effective (Feder <u>et al.</u>, 1988), because farmers already have customary security of tenure and would only change their agricultural strategy if they have more access to formal credit channels through titling. In contrast, in the Philippines or parts of the Outer Islands of Indonesia, where residents may not have the clout to protect their holdings from outsiders, certificates may serve an important function as an intermediate tenure step to prevent transfer of land (World Bank, FFARM, 1989). It is, therefore, important that limited⁹³ used certificates be carefully evaluated as to the rights they are intended to provide. In some areas, limited-use certificates have been used to ensure that the farmers plant only specified crops, such as trees, on steeper slopes. However, this has not been very effective. The certificates of use issued in the Philippines for state forest lands specify that farmers must put 10% of their land under trees for conservation reasons. This rule is not complied with unless the farmer finds an economic as well as conservation reason for adopting such a practice. Programs encouraging tribal farmers in Thailand to change their swidden cultivation practices to more intensive agriculture have also had limited success due to the poor returns from recommended technologies (Hoare and Larchrojna, 1986). Unless an intervention is perceived as economic, no farmer will adopt it, regardless of tenure.

Land Consolidation and Land Redistribution

Other tenure changes have been promoted through land redistribution or land consolidation programs. In both instances, there is little evaluative information and what exists does not indicate a strong relationship between implementing these programs and increasing levels of productivity and sustainability. Two positive examples exist of land consolidation measures. One is a World Bank-assisted Moroccan project (Meknes Rural Development Project) in which land consolidation was carried out to create more viable holding sizes for agricultural development and land stabilization (World Bank, Meknes PCR, 1987; Adams and Seddon, 1983). The success of this initiative was linked to the identification of enough different soil types so that farmers could maintain a diverse farming strategy. The second example comes from Gujarat state in India, where the soil and water conservation service has reallocated some field boundaries along the contour in consultation with farmers to make adoption of conservation measures less cumbersome.

In general, land redistribution and land consolidation programs are tricky to implement and require political will and an efficient bureaucracy. The evidence collected so far (Herring, 1983) is that such programs are best implemented for their equity objectives, rather than to increase productivity. There are numerous instances in which reforms were not accompanied by adequate technological packages or support services, and many of the cultivators who were allocated land did not stay on that land over the long term or rented out the land due to economic need.

Special Issue: Tribal Land-Use Rights in Forest Areas

To date, inadequate attention has been paid to the scope for introducing improved agricultural practices that are based upon traditional systems in forest areas. Bank guidelines on indigenous peoples and development expressly state that "the Bank will not assist development projects that knowingly involve encroachment on traditional territories being used or occupied by tribal people unless adequate safeguards are being provided." Government and Bank policy on this point has been confused by the general lack of understanding of the dynamics of tenure and the resultant attempt to fit a variety of indigenous systems into tight categories of "private farms" and "public forest." Despite some progress, the issues of what land-use rights should be recognized is largely unresolved in traditional swidden cultivation areas and in those areas where indigenous people may have moved in response to pressure from more powerful migrants. A case in point is the situation in the Outer Islands of Indonesia where tree crop schemes have provided outsiders with title over lands that indigenous groups perceive as theirs.

Where governments have been willing to recognize the rights of local people to forest lands, such as in Thailand under the Highland Agriculture Development Project, a mistake has been to try to adjust customary land rights to fit preexisting legal categories, rather than to adjust legal categories to traditionally viable systems. In the Thai case, applying the statutory land ceiling in the uplands resulted in uneconomic holding sizes. given the productivity of the land and potential household economic strategies. Even with the intensification of agriculture proposed in the project, farmers did not think they could support themselves and most farmers refused to participate in the land titling program. With a more flexible body of land legislation, ceilings could have been adjusted in the tribal area and made to conform more closely to customary systems. The same problem has been recognized in the Philippines. There, a proposal has been made to the government to formalize ancestral, communal rights to lands in areas with tribal residents, rather than titling these lands to individuals, and preserve the more sustainable. traditional system (World Bank FFARM Study, 1989; Lynch and Talbot, 1988).

THE SCOPE FOR COMMON PROPERTY RESOURCE (CPR) MANAGEMENT

Emerging Principles

In those Asian countries with long-standing tenure traditions, including lands designated as common property resources (Bangladesh, Burma, China, India, Nepal), watershed development has emphasized individual, ownercultivated lands to the neglect of noncultivable lands held by corporate groups or public lands managed as a common property resource (CPR). This is an important issue for watershed stabilization, since nonagricultural lands make up a large proportion of land in the watershed and can be important sources of products within a farming system.

Under high population pressure, it is almost impossible to manage state lands by excluding local people. Projects are therefore exploring systems for management of public lands by corporate groups or surrounding communities. However, early evaluations of the World Bank's experience in South Asia in promoting common property resource management on village lands, state revenue lands, and forest lands were generally pessimistic (Naronha, 1985; World Bank, India National Social Forestry Project, 1985, Uttar Pradesh and Gujarat Social Forestry Projects, 1988; Blaikie, <u>et al</u>., 1985; Ljungman, McGuire, and Molnar, 1987). The conclusion has been that such strategies fail due to the heterogeneity of most communities and their control by a small group of elites, the breakdown of indigenous systems in the face of population pressure and market orientations, the privatization of many CPRs by industries and encroaching farmers, and the lack of equity in distribution systems established for products.

Recently, however, more positive experiences with CPR management are being documented on both communal and state-owned lands, and projects are becoming more sophisticated in their understanding and approach to the dynamics of CPRs (Stewart, 1989; Dani and Campbell, 1985; Arnold and Campbell, 1986; Guhathakurta, 1989; Brara, 1987). What is striking about the recent literature, however, is that the principles for effective common property resource management that are being discussed directly contradict the strategies promoted in earlier forestry and watershed development projects.

Addressing Problems in CPR Management

Under the World Bank-assisted social forestry project, which started in 1982, farmers in West Bengal were encouraged to plant trees on marginal lands that had been allocated to them on 99-year, unlimited-use leases as part of a land redistribution scheme. These lands had been considered too degraded to support crops, but tree planting proved to be a profitable, alternative land-use strategy. This program, locally dubbed "group farm forestry" because of the joint responsibility taken by blocks of farmers for protecting the trees, was successful (World Bank, 1985; Molnar, 1986; Shah, 1987). However, this system did not work in states which did not have active land reform programs, but tried to emulate the scheme in a more restrictive manner by giving landless cultivators plots of government land to be used solely for tree-planting. Unlike the West Bengal leases, which allowed individuals to do anything they wished with the land, in other states the lease was limited to tree planting and the lease period confined to the life of the plantation. These schemes failed to reach their targets, due to recipients' lack of capital and labor, lack of confidence in their long-term use rights, the power of local elites to co-opt some lands, and the fact that communities believed the government to be alienating lands for which they had informal rights. The schemes also created a legal precedent for further undermining common property rights.

More recent interventions in India and Nepal have found models for generating sustainable land management of common property resources; each shares the following characteristics:

- (a) management resting with a locally constituted users' group, building on both customary and formal institutional arrangements (regulating long-term access, use and protection of the resource);
- (b) publicly-acknowledged rights and duties of the users regarding the resources in question, and the ability of users to make decisions about development or utilization;
- (c) a regular flow of outputs valued by the users, i.e., at least an annual flow of produce, not merely a one-time harvest;
- (d) a distribution system that reaches diverse elements in the population without excluding the interests of power brokers in the community;
- (e) a protection system that has clear, easily enforced rules of compliance; and
- (f) a public authority (such as the forest department or district council) at a higher level that supports the local-level authority over the resource against outsiders.

These characteristics were missing from earlier social forestry models. Shortcomings were that management was given to an artificial, political body with no customary management responsibilities; rights and duties were not known to the majority of users (that is, formal agreements with the forest department were only shared among a few key village leaders); distribution was skewed away from local power brokers; and the protection system was alien to local customs and difficult to enforce by local people.

While the problems of sustained management of state lands in upper catchments are not solved, the basic principles and how to apply them are beginning to be clarified. Lessons learned from South Asia are, first, that traditional systems of CPR management rarely provide equal returns to all users, that is, distribution of benefits tends to be skewed toward the elite and vested power brokers. Effective systems are those that provide substantial benefits to both resource-rich and resource-poor individuals, not necessarily equal benefits to both. Second, approaches must be tailored to the sociopolitical context of the project location, rather than fit an ideal type of CPR management.

Legal Issues in CPR Management

In devising an effective intervention, three aspects of CPR management are essential: consideration of the resource's potential productivity including the range and kinds of products that can be generated for local or national needs; review of the formal and informal institutions that govern use, access, management, and development of that resource; and knowledge of the formal, legal status of rights in a particular resource and how the legal rights relate to customary rights or to the actual use of the resource. A common mistake in project planning for nonagricultural lands has been <u>not</u> to investigate the legal as well as customary tenure status of lands designated as common or public.

Few countries have a consistent set of rights and obligations for different users of common-property resources. There can be conflicting rights over a CPR that may each be valid from a different legal standpoint. Where customary rights pertain to a piece of land, these may be equal to or have precedence over the formal rights prescribed in written law. When designing measures to encourage CPR management, it is important to analyze correctly the interrelationship of conflicting tenurial claims to a piece of land. Where the desired intervention to strengthen management by a community of users is a legal one, the correct point of legal intervention must be well understood.

Tenurial rights governing the use of a piece of land can be legally present at any of five distinct levels (C. Singh, 1989). These include: (a) customary or traditional rights (e.g., village grazing rights, tribal forest rights); (b) administrative orders regarding use of lands (e.g., forest department rules concerning collection of headload fees or forest closure orders); (c) court rulings regarding existing legislation; (d) state and national legislative statutes regarding the rights over lands (e.g., the Indian Forest Conservation Act); and (e) constitutional law regarding citizens rights in land. Conflicts over use rights occur because there is a discrepancy in the rights at two or more different levels. (See Table 6.2.) To identify the proper measure to strengthen CPR management, it is often necessary to identify conflicting claims and take legal or policy steps to alleviate the conflict. At each level outlined above, the solution will be different. The solution to weak CPR management may rest upon the formal recognition of existing customary rights (<u>local, level 1</u>), or may require changing forest department regulations (<u>administrative, level 2</u>), or there may be need for a formal change in the state forest legislation (state law, level 4).

Le	vel		• == •
1.	vel People	Customary Law	
2.	Administration	Govt. Orders	
3.	Courts	Legal Cases	
4.	Legislative Bodies	Statutes	
5.	Legislative Body - Nat	onal Constitution	

Table 6.2: A LEGAL TYPOLOGY OF TENURIAL RIGHTS

For example, a study of village grazing patterns in central Rajasthan, India revealed conflict resulting from the claims of (a) traditional village users of the grazing lands, (b) <u>panchayat</u> (village government) officials entrusted with responsibility for these lands as the smallest unit of state administration, and (c) private individuals who had encroached upon these lands over time. When these disputes led to court cases, their resolution varied. While the common ruling was to give decision-making power to the <u>panchayat</u>, more recent rulings have upheld the traditional rights of villagers to retain control of these lands for grazing. Thus, villagers today may be gradually losing control of grazing lands to <u>panchayats</u> and private individuals, due to their lack of awareness that the courts might rule in their favor if they sued the panchayat.

The dilemma of community woodlots in the Indian social forestry programs stem in part from the differing perspectives of the government implementing the program and the local population regarding tenurial rights over the woodlot and the responsibilities stemming from those. When a <u>panchayat</u> gave permission to the forest department to establish a woodlot on village grazing land, with an agreement that the forest department would recover its costs at the time of harvesting, everyone saw the agreement differently. To the <u>panchayat</u>, it was much like renting the land out to the forest department on a 50/50 share basis, since cost recovery usually led to this division of profits. To the local village, it meant a loss of grazing land to the <u>panchayat</u> and forest department, with no assured returns to the village. To the villager admonished by the forester for grazing his cattle inside the enclosure, it was evidence of the forest department's assumption of tenure over the land, even if on behalf of the environmental needs of the villager. To the forester, it was panchayat and village land, and the people were responsible for protection. Thus, no local sense of responsibility for protection or plantation maintenance developed in the intended direction of sustained CPR management. Rather than reinforcing local village conceptions of common grazing land management, which had been undermined by population pressure, the woodlot model introduced a new arrangement for which no one had clear responsibility.

LAND USE MANAGEMENT IN STATE-OWNED FOREST LANDS

Forest lands subject to claims of state ownership and traditional common property resource rights fall into several different, state-created categories:

- (a) undemarcated forest lands to which people often have traditional use rights for subsistence products;
- (b) production forests, which are lands allocated for timber production, and generally more restricted to local people;
- (c) reserve forests, including parks and reserves, which are closed to local people (although indigenous peoples may have customary and conflicting claims to these areas);
- (d) forest lands of all categories which have been put under shifting or permanent agriculture; and
- (e) forest lands allocated on concession or lease to industries, cooperatives, associations, etc. (pulp industries in India, forestry associations granted stewardship contracts in the Philippines, village resource societies with grass leases in Haryana, India).

For the ex-colonial countries, it is important to note that forest land demarcation tends to follow patterns set up during the colonial administration (Java, the Philippines, and India), with the result that many customary rights have been revoked in law and others remain ambiguous. The situation is complicated in India by the fact that some areas of India remained princely states up to independence and in these areas, customary rights were never legally overridden at independence.

In general, recommended measures to encourage sustained resource management on public lands include: (a) formally recognizing local people's rights of access to public lands, sometimes with written agreements (woodlot agreements in the Indian National Social Forestry Project, forestry management plans in the Hills Community Forestry Project in Nepal); (b) transferring control over resources to local groups of users or political authorities; (c) instituting systems of joint management and cost-sharing of final product between local users and government agencies; and (d) extending leases to cooperatives or associations for forest or pasture development (Forestry Stewardship Associations in the Philippines). These are also critical ingredients in the management of forested lands.

Transferring Control to Local Communities

In Nepal, where few forests have been demarcated or reserved, the policy for improved forest management in the hills, and more recently in the Terai, is to transfer control for local protection and management to communities over two categories of government forest lands: those rehabilitated through plantation and those already-forested lands near villages. In many areas of Nepal, this policy is simply legalizing an already existing, traditional system of common property management, and thereby providing more encouragement for its sustained continuance. The present policy reverses an earlier one (1957), which had transferred control over all forest areas to the state in an attempt to arrest deforestation resulting from rapid population growth. The first step in the change transferred management to the local administrative council, the panchayat, with a forest committee organized to handle the management of the forest area. It is now proposed to transfer management to a more natural unit, namely the village or villages with traditional rights of access to the forest for their subsistence needs. With this change the role of the forest department would shift from manager to advisor, assisting the local community to develop a sustainable management plan and providing technical guidance on silvicultural matters.

Cost-Sharing Model of Community/Forest Department Management

Transfer of resource control has been successfully implemented on a broad scale in West Bengal, India. The forest department on its own initiative has been experimenting with a cost-sharing model for producing timber in natural but degraded <u>sal</u> (<u>Shorea robusta</u>) forests. Villagers agree contractually that in exchange for protecting growing timber, they will be employed in operations to cut all but the main shoot from degraded <u>sal</u> stands, receiving concessional prices for the discarded stems. They are assured a fixed share (25%) of the final harvest, distributed in cash individually to each villager, and have access to the forest for fallen wood, grass, and <u>sal</u> leaves (which can be a major source of income when sold in local markets). This model has been so successful that about 150,000 hectares of regenerating <u>sal</u> forest is being managed in this fashion. Several other state forest departments, including Haryana, are planning to implement a similar model.

Increased Rights Over Produce from Forest Lands

Cost-sharing is matched by a general trend to increase substantially local rights over produce from forests established under social forestry. In all Indian states with these programs, government orders regarding the concessionary rights of local communities have been revised to provide increasing amounts of produce to surrounding areas--either through the panchayat on auction or by allowing more collection of intermediate produce. In addition, there is experimentation with new technologies that are directed toward improving the environment rather than timber production, and which also provide a range of forest products needed by the poor and marginal villagers. Emphasis is on silvipastoral plantation models that generate grass for stallfeeding of animals as well as trees. More use is being made of shrubs and hedges that stabilize the soil as well as provide a regular source of mediumquality, but continually accessible supply of household fuel (World Bank, 1988b).

In response to a very low success rate with afforestation of production forest lands in Java (under the jurisdiction of the forest corporation), the government in cooperation with the Ford Foundation has been experimenting with increasing tenure rights of laborers working in afforestation schemes under a <u>taungya</u> system. Individuals are allocated plots for a longer time period than the original three years and are allowed to plant intercrops of grasses and fruit-bearing trees between rows of timber and pulp species for their own profit, in addition to seasonal crops planted before closure of canopy (Peluso, 1988; Ford Foundation, 1988). From the cultivator's perspective, the model is somewhere between a stewardship contract and the West Bengal cost-sharing model.

This revised scheme is emulating principles emerging for successful CPR management in South Asia. There is a sustained flow of benefits from the initial planting of seasonal crops, rows of fodder grass, and eventual harvesting of fruit. On a pilot basis, the plots have been targeted to marginal villagers, but on a broad scale, considerable opposition from better-off villagers is likely if they are, de facto, excluded from access to plots. Rights and responsibilities are clearly defined for the plotholder and foresters. In some areas, foresters have stopped enforcing restrictions on the gathering of minor forest produce in villages where the new scheme is in effect (Sri Palupi, 1988); this appears to be a conscious effort to change the relationship between village and forest department and has strengthened villager faith in the program. The scheme raises the issue of what the villagers' rights of access should be to other forest lands. Should the government consider the income-generating potential of other forest lands, except for parks and reserves, or continue its present policy of exclusion, except under the limited taungya plots? Wells (1989) argues for rights of access in forest areas adjacent to parks and reserves, so that these areas can realistically serve as buffer zones. This is also a contention of the Dutch-assisted Kalikonto watershed project staff in East Java, which is tackling similar forest landuse issues (Jacques Beerns, personal communication).

Leases to Cooperatives and Associations

There are two models for extending leases to cooperatives and associations in the case studies examined. One is in the Central Visayas Regional Project in the Philippines, in which groups of upland residents who had been illegally exploiting forest lands for timber in areas of extensive in-migration have been given legal stewardship over these lands for forestation purposes. The residents of the area are organized into associations (FOSAs) under the project by the forestry extension staff and project staff. They establish nurseries for forestation and plant forest lands with timber and fuel species, over which they have exclusive rights of harvest within the terms of a 25-year, renewable lease. Initially, the associations are allowed to harvest the remaining timber on these lands in a controlled manner to generate income in the early stages. Since most FOSA members have some land under agriculture as well, the project also provides tree crop seedlings to members to encourage more sustainable agricultural practices, along with slopy area land (SALT) technologies promoted in less slopy agricultural sites.

Since FOSAs are quite new, there is not enough information to judge their viability. This model merits careful study, particularly of inputs and returns, as an alternative to private or village management of resources.

The second model comes from the state of Haryana in India. A Ford Foundation-assisted program for the degraded watershed catchment near the capital city, Chandighar, developed small-scale water-harvesting structures for irrigation and created village resource management societies to protect the upper catchment and the flow of water into the harvesting structure. The lands in the upper catchment are state forest lands that were formerly given on lease to contractors for grass harvesting. In some villages in the new model, these societies have purchased lease rights from the forest department for the grasses. These are used for rope-making and as fodder for local dairy cattle. Given the proximity of these watersheds to the capital city, there is a good market for milk and dairy products, and villagers have a strong incentive to protect the catchment for grass production. Analysis has shown that in many sites, the water-harvesting benefits are quite small, because of limited potential, and that the benefits from grass are more promising. Irrigation structures provide an initial, strong incentive for village participation and mobilization, while it is the grass management that offers the most sustained returns to the village population as a whole (Stewart, 1989; Arnold and Stewart, 1989).

Interestingly, even though the irrigation facilities created are limited and do not reach the majority of villagers, they serve as a strong incentive for protection of the catchment by all villagers, including those without irrigation facilities. This is the case even where the returns from grasses and resulting fodder production are actually greater than from the water. It would seem that small irrigation structures in hilly areas may provide a good reward for catchment protection in state watershed programs.

Potential for Small-Scale Forest-Based Enterprises

Recently, a growing interest has developed in the potential to increase the income-generating potential and thereby the sustainability of forest lands through support for small-scale, forest-based enterprises. In areas of natural forest, which traditionally supply a range of nontimber forest products, more attention to the income-generating potential of these forests for local people is recommended. Potential encompasses income from collection and sale of products and from better access to markets and greater participation in value-adding processing activities. In the villages participating in the cost-sharing model in West Bengal for <u>sal</u> forest rehabilitation, women earn substantial income from such nontimber products. Not yet recognizing this benefit, foresters have neither tried to increase nontimber productivity nor assisted villagers with processing for higher returns.

Attention to nontimber products is also being recommended for forest areas on Java in several projects. For the areas under <u>taungya</u> forestation schemes, Kalikonto project staff are promoting higher-value products such as oilseeds that can be locally processed by cultivators and are more difficult to steal than the fruits now grown on often-distant plots. Several social forestry projects in India have placed increasing attention on growing nontimber products, such as medicinal plants, but again have not explored the best channels for marketing or processing them in order to generate maximum income for local people. An innovative NGO in Delhi, India has started an experimental industrial estate which will support a small village from enterprises drawing on raw materials produced in a nearby plantation on government land.

CHOOSING EFFECTIVE PROJECT MEASURES

Measures that provide checks and balances in project design against the unintended consequences of introducing technological or institutional change include: (a) provision of appropriate support services, especially to those categories of farmers with inadequate resources for adoption; (b) choice of technological options that generate additional income to beneficiaries; (c) mechanisms for local institution-building; and (d) strategies for mediation at the local level.

<u>Support Services</u>. Farmers' groups are an excellent conduit for support services. The Central Visayas Regional Project in the Philippines and the Highland Agriculture Development Project in Thailand both attribute a large measure of their success to the strengthening of existing farmers' groups and providing extension services through them. In Thailand, such groups were a focus for offering alternatives to formal credit. Formation of farmers' groups for improved extension services has also proved important in relieving labor constraints to the adoption of soil and moisture conservation on arable lands in the Yogyakarta Rural Development Project in Indonesia. Where extension services are effective, a much wider range of farmers will be interested in the technologies offered.

Income-generating opportunities from projects also address tenurerelated constraints. In Java, farmers traditionally invest much less in rainfed plots than in irrigated rice or home-and-mixed gardens, particularly when the distant rainfed plots are difficult to protect and time-consuming to reach. The Dutch-financed Kalikonto watershed project in eastern Java has increasingly put emphasis on identifying income-generating components. Research efforts have focused on cropping systems with high returns for homeand-mixed gardens on the premise that enough additional income from them would reorient marginal farmers towards heavier agricultural investment in their rainfed plots and make them less dependent on off-farm employment.

Mediation as a Form of Extension Support. In "frontier" areas, generating adequate information about tenure rights, mediating between cultivators and other land claimants, and informing landowners about conservation measures are all crucial to adoption of new practices (Feder, 1988; World Bank, FFARM Study, 1989; Hoare, 1986). Programs carried out by the Bureau of Forest Development in the Philippines relied upon mediation between individuals claiming rights to the same lands (Seymour, 1985). Mediation has led to informal guarantees by <u>de facto</u> owners that cultivators will benefit from land improvements. This mediation is less threatening to the existing power brokers, yet seems to be simultaneously increasing benefits to cultivators, who can now adopt more sustainable practices.

<u>NGOs as Mediators</u>. Some local NGOs have established group plantations on wastelands allocated to them. They are successful largely because of the social pressure that NGOs can place on local elites to protect the groups from power brokers competing for access to these newly productive lands. Yet NGOs have not been able to help groups gain formal lease-certificates for these wastelands, since the legal procedures are formidable and not well understood by government personnel at different levels of the administration. There is potential to expand NGO programs under Bank-assisted projects through support to training of NGO personnel and encouraging policies that streamline government procedures and recognize customary rights.

CONCLUSIONS

Land tenure issues in watershed development are complex. Certain kinds of tenure changes can have a positive impact on adoption, and in some cases, titling or land consolidation on private land in areas with socially recognized tenure rights is effective. The most scope can be found in increasing tenure security in the "frontier" areas and in recognizing and strengthening systems of corporate and common property resource management, where they exist.

Some positive measures that can be included in projects to support land tenure changes or to broaden the range of adoption within existing tenure systems include: providing increased extension support, often through targeted groups; providing sources of credit; focusing on technologies with quicker and high returns; strengthening local institutions; and providing mediation or legal aid to participants.

It becomes clear from this review that the World Bank needs to continue to study the relationship between land tenure and the adoption of soil and water conservation technologies, so that clearer directives can be given to task managers as to what strategies are most productive, sustainable, and equitable in the different Asian settings. More testing is needed of these measures through controlled study of ongoing project experience. Monitoring and evaluation systems are already overburdened by information requirements and are in any event unlikely to yield the culturally sensitive data needed. With Bank guidance, studies could be carried out by host country institutions, providing value both to the borrower and the Bank task manager.

Project Cases Examined in This Review

- 1. Yogyakarta Rural Development Project, Indonesia, (WB/Government) which included a titling component for private, dryland plots to encourage farmers to adopt improved technologies.
- 2. Upland Agriculture and Conservation Project, Indonesia (USAID/WB/Government), which has selected demonstration plots on farms cultivated by the owners for the dissemination of bench terrace technology and agroforestry.
- 3. Social Forestry Project of the State Forest Corporation, Indonesia (Ford Foundation/Government), which has provided extended leases for <u>taungya/</u><u>tumpang sari</u> cultivation and allowed farmers to plant perennial crops in between timber trees.
- 4. National Social Forestry Project, India (USAID/WB/Government), which is the most recent of the Bank's social forestry programs funded for individual states in India.
- 5. West Bengal Social Forestry Program, India (WB/State Government), which includes a Bank-assisted project with a component termed "group farm forestry" encouraging farmers with marginal holdings to undertake block tree planting with shared labor and shared protection systems.
- 6. West Bengal forest department experiment in regeneration of natural forest through allocation of forest land to local villages (WB/forest department program), which has provided villages with intermediate yields and a substantial share of the final timber harvest in rehabilitated sal forests.
- 7. Village Resource Management Societies, Haryana, India (originally Ford Foundation-assisted), which are a local-level society created for watershed management and maintenance of small, water-harvesting structures for irrigation.
- 8. Forest Panchayats, Himachal Pradesh and Uttar Pradesh, India (preindependence institutions), established in the Himalayas and Siwaliks for community management and protection of forests on behalf of the forest department.
- 9. Central Visayas Regional Project (CVRP), Philippines (WB/Government), which is a watershed and coastal rehabilitation project extending the sloping area land technologies (SALT) for land improvement to upland farmers and providing stewardship leases to farmers cultivating state forest lands.
- 9b. Forestry Associations (FOSAs), CVRP, Philippines (WB/Government), which is a component of the above project for organizing upland migrants to exploit lands over 18% slope into associations (FOSAs) for the establishment and extraction of forest plantations on degraded forest lands and providing them with stewardship leases to these lands.

- 10. Highland Agriculture Development Project, Thailand (Australia/WB/Government), which is a project in north Thailand for rehabilitation of lands cultivated by tribals under an extensive (slash-and-burn) agricultural system.
- 11. Gansu Provincial Project, China, (WB/Government), which has allocated pasture lands to individuals for development on long-term leases (the period of the lease has steadily increased since the inception of this program).
- 12. Red Soils Provincial Project, China (WB/Government), which has allocated lands to individuals for development on long-term leases, and which includes a parastatal institution providing capital and marketing support for farmers developing these lands.
- 13. Kalikonto Project, Java, Indonesia (Dutch-assisted), which has experimented with arable and nonarable land watershed development, concentrating recently on increasing economic returns from home gardens to reduce farmer dependence on off-farm employment strategies.

REFERENCES

- Adams, Martin and David Seddon, and Overseas Development Institute. 1983. Land Tenure in Irrigation Planning: Two Examples, Irrigation Management Network Paper 76. Overseas Development Institute: London.
- Anderson, Jock R. and Dodo Thampapillai. 1988. "Soil Conservation in Developing Countries: Project and Policy Intervention," draft paper for Agricultural and Rural Development Department, World Bank. August.
- Arnold, J.E.M. and William Stewart. 1989. "Common Property Resource Management in India: A Desk Review," Report for the Asia Environment Division and the India Agriculture Division, World Bank.
- and J.G. Campbell. 1986. "Institutional Dynamics: The Evolution and Dissolution of Common Property Resource Management," A Panel on Common Property Resource Management, Board on Science and Technology for International Development, National Research Council, <u>Proceedings</u> of the Conference on Common Property Resource Management, pp. 425-454. National Academy Press: Washington, D.C.
- Bandhopadhyay, J. and Vandana Shira. 1985. "Eucalyptus in Rainfed Farm Forestry: A Prescription for Disaster," <u>Economic and Political Weekly</u> 20(40).
- Batie, Sandra and Alyson G. Sappington. 1986. "Cross-Compliance as a Soil Conservation Strategy," <u>American Journal of Agricultural Economics</u>, 68(4):880-885. November.
- Blaikie, Piers. 1987. <u>The Political Economy of Soil Erosion in Developing</u> <u>Countries</u>. Longman Press: London.
- Blaikie, Piers, J.C. Harriss and A.N. Pain. 1985. "Public Policy and The Utilization of Common Property Resources in Tamil Nadu, India," Report presented to the Overseas Development Administration. April.
- Brara, Rita. 1987. "Shifting Sands: A Study of Customary Rights in Grazing." Mimeo. Institute of Development Studies: Jaipur, India.
- Campbell, J.G., Rajendra P. Shrestha and Fred Euphrat. 1987. "Socio-Economic Factors in Traditional Forest Use and Management." Preliminary Results from a Study of Community Forest Management in Nepal. <u>Banko Jankari</u> (Special Issue, Community Forestry Management Workshop), 1(4).
- Cernea, Michael. 1985. <u>Putting People First: Sociological Variables in</u> <u>Rural Development</u>. Oxford University Press (for World Bank): Oxford, United Kingdom.
- Cohen, Paul T. 1983. "Problems of Tenancy and Landlessness in Northern Thailand." <u>Developing Economics</u>, 21:244-266.

- Cullins, Jane and Michael Painter. 1986. "Settlement and Definition in Central America: A Discussion of Development Issues," Working Paper in IDA Series; 31. Worchester, Massachusetts: Clark University International Development Program.
- Damodaran, A. 1987. "Structural Elements of the Fodder Crisis: A Village Study in Karnataka." <u>Indian Economic and Political Weekly Review of</u> <u>Agriculture</u>, 13(22):A16-A22.
- Dani, Anis and J. Gabriel Campbell. 1986. "Sustaining Upland Resources: People's Participation in Watershed Management," ICIMOD Occasional Paper No. 3. International Centre for Integrated Mountain Development and FAO: Kathmandu.
- Edgerton, J. 1987. "Review of Land Registration/Titling and Farmer Participation," Draft, Yogyakarta Rural Development Project Consultants' Report to Indonesia Agriculture Department (World Bank Internal Document).
- Feder, Gershon, Tongroj Onchan, Yongyuth Clamawong, and Chira Hongladaron. 1988. Land Policies and Farm Productivity in Thailand (World Bank Research Publication). Johns Hopkins University Press: Baltimore.
- Gibbs, Christopher J.N. 1983. "Institutional and Organizational Concerns in Upper Watershed Management," in <u>Watershed Resources Management: An</u> <u>Integrated Framework with Studies from Asia and the Pacific.</u> pp. 91-102. Waterview Press: Boulder.
- Guhathakurta, Prabir. 1989. "The Arabari Experience in West Bengal," paper presented to the National Wasteland Development Board: Workshop on Involving Women In Social Forestry. New Delhi, India. February.
- Hart, Gillian. 1986. <u>Power, Labor and Livelihood: Processes of Change in</u> Rural Java. University of California Press: Berkeley.
- Herring, Ronald J. 1983. Land to the Tiller: The Political Economy of Agrarian Reform in South Asia. Yale University Press: New Haven.
- Hoare, Peter and Somphob Larchrojna. 1986. "Change in Traditional Management of Forests: A Study of Thailand's Karen Hill People," <u>Community</u> <u>Forestry: Lessons from Case Studies in Asia and the Pacific Region;</u> Rao, Y.S., M. Hoskins, N.T. Vergara, and C. Castro, eds. Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, Thailand and the Environmental and Policy Institute, East-West Center: Honolulu, Hawaii.
- Jodha, N.S. 1989. "Management of Common Property Resources in Selected Areas of India," in Dani, Anis, and J.G. Campbell, eds., <u>Local Institu-</u> <u>tions and Resource Management</u>. International Center for Investigation on Mountain Development (ICIMOD): Kathmandu, Nepal.

- Kalikonto Project, Konto River Project, Phase III. 1988. Indonesia and Kingdom of the Netherlands <u>Project Working Paper Series</u>. Directorate General of Reforestation and Land Rehabilitation (DGRRL), Ministry of Forestry.
- KEPAS [Kelompok Penelitian Agro-Ekosistem]. 1985. <u>The Critical Uplands of</u> <u>Eastern Java: An Agroecosystems Analysis</u>. Brawijaya University Research Center, East Java Agroecosystem Working Group. January.
- Khasnabis, Ratan and Jyotiprakash Chakravarty. 1982. "Tenancy, Credit and Agrarian Backwardness: Results of a Field Survey." <u>Indian Economic</u> <u>and Political Weekly</u>, pp. A21-A32. March.
- Kulkarni, Sharad. 1988. "Encroachment on Forests: Government versus People." <u>Indian Economic and Political Weekly</u>, pp. 55-59.
- Kunstadter, Peter and E.C. Chapman, Sanga Sabhasri and Mahawitthayalia Chiang Mai, eds. 1978. <u>Farmers in the Forest: Economic Development</u> <u>and Marginal Agriculture in North Thailand</u>. East-West Center, University of Hawaii: Honolulu.
- Ladejinsky, Wolf. 1988. Land Reform as Unfinished Business, Selected papers of W. Ladejinsky edited by Louis Walinsky. Oxford University Press (for World Bank): New York.
- Librero, Aida R. 1984. "Socio-Economic Considerations in a Soil Erosion Management Program: Case Studies of Two Provinces in the Philippines." <u>Soil Erosion Management</u>, CGIAR Proceedings Series, 6. Australian Centre for International Agricultural Research: Canberra, Australia.
- Ljungman, Lennart, Doug McGuire, and Augusta Molnar. 1987. <u>Social Fores-</u> <u>try in India: World Bank Experience</u>. South Asian Agriculture Department Draft Review, World Bank: Washington, D.C.
- Lynch, Owen and Kirk Talbot. 1988. "Legal Responses to the Philippines Deforestation Crisis." Journal of International Law and Politics, Spring.
- MacAndrews, Colin and Lincoln Institute of Land Policy. 1986. Land Policy in Modern Indonesia: A Study of Land Issues in the New Order Period. Delgerchlager, Gunn and Hani: Boston, Massachusetts.
- Mackie, Cynthia. 1986. "Land Tenure and Conservation Practices in the Upper Watersheds of Java." Report submitted to Asia Environment Division as part of Regional Sector Review on Watershed Management and Development, World Bank: Washington, D.C. June.
- Magrath, William. 1989. <u>The Challenge of the Commons: The Allocation of Nonexclusive Resources</u>. Environmental Department Working Paper No. 14, World Bank: Washington, D.C.

and P.L. Arens. 1989. "The Costs of Soil Erosion on Java--A Natural Resource Accounting Approach," Environment Department Working Paper No. 18, World Bank: Washington, D.C.

- McCauley, David. 1988. "Overcoming Institutional Organizational Constraints to Watershed Management of the Densely Populated Island of Java." Paper presented to 5th International Soil Conservation Conference: Land Conservation for Future Generations: Bangkok, Thailand. January.
- ______. 1989. Project Completion Report Annex for Citanduy Project: Annex 5, Policy Analysis. USAID Document.
- McKinnon, John. 1977. "Who's Afraid of the Big Bad Wolf." Faculty of Agriculture, CMU and NADC's 77th Seminar in Agriculture in Northern Thailand Series. April.
- McLain, Rebecca J., and Douglas M. Steenberger. 1988. Land Tenure and Land Use in Southern Haiti: Case Studies of the Les Anglais and Grande Ravine du Sud Watersheds. Land Tenure Research Paper 95: Madison, Wisconsin. April.
- Molnar, Augusta. 1986. "A Review of the Social Forestry Experience in India and Nepal Regarding Community Woodlots, Improved Cookstoves and Women." Report for the South Asia Agriculture Division, World Bank: Washington, D.C.
- National Academy of Sciences. 1986. <u>Common Property Resource Management</u>. National Academy Press: Washington, D.C.
- Naronha, Raymond. 1985. "Sociological Aspects of Forestry Project Design." Draft report to The World Bank: Washington, D.C.
- Pant, Chandrasekhar and ICRISAT. 1981. "Tenancy in Semi-Arid Tropical and Input Use." Economic Program, Progress Report 20, International Crops Research Institute for the Semi-Arid Tropics: Hyderabad, India.
- Peluso, Nancy. 1988a. "Rich Forests, Poor People, and Development: Forest Access Control and Resistance in Java." PhD dissertation, Cornell University.
- . 1988b. "Troubles with Tenure: Farmer Agroforestry on State Lands in Indonesia." Paper prepared for 1989 annual meetings of the American Association for the Advancement of Science: San Francisco. January.

. 1987. "Social Forestry in Java: Can it Work?" Consultants' Report to the Ford Foundation: Jakarta and New York.

- Rahman, Mushtaque, and M. Aminui Islam and Dirpica Baglhi. 1981. <u>Agrarian</u> <u>Egalitarianism: Land Tenures and Land Reform in South Asia</u>. Iowa State University Research Foundation, Kentall/Hunt: Dubuque, Iowa.
- Ramsey, Ansil. 1985. "Population Pressure, Mechanization, and Landlessness in Central Thailand." Journal of Developing Areas, 19:351-368. April.

- Rosenberg, Jean G. and David Rosenberg. 1980. <u>Landless Peasants and Rural</u> <u>Poverty in Indonesia and the Philippines</u>. Cornell University Rural Development Committee (Special Series on Landlessness and Near Landlessness, No. 3): Ithaca, New York.
- Royal Thai Government, Public Welfare Department. 1988. "Highland Agricultural and Social Development Project Completion Report." World Bank, Australian International Development Assistance Bureau, Royal Thai Government: Thailand.
- Sajise, Percy and Terry Rambo. 1985. <u>Agroecosystem Research in Rural</u> <u>Resources Management and Development</u>. Selected papers presented at the Second SUAN-EAI Regional Symposium of Agrosystem Research: Philippines.
- Seddon, David. 1983. "Results of a Failure to Make an Early Investigation into Land Tenure in Morocco." <u>Land Tenure in Irrigation Planning: Two Examples</u>. Irrigation Management Network, Overseas Development Institute.
- Seymour, Frances. 1985. "Ten Lessons Learned from Agroforestry Projects in the Philippines." Paper for Ford Foundation Office: Manila, Philippines.
- Shah, Tushaar. 1987. "Gains from Social Forestry: Lessons from West Bengal." Social Forestry Network Paper 5E. Agriculture Administration Unit, Overseas Development Institute.
- Singh, Chatrapatti. 1989. Presentation at a Methodology Workshop on Common Property Resource Management, sponsored by USAID, World Bank and Development Alternatives (India). New Delhi. February.
- Singh, Inderjit. 1988. "Tenancy in South Asia." World Bank Discussion Paper No. 32, Washington, D.C.
- Soentoro, William Collier and Sri Hartoyo. 1981. <u>Land Tenure and Labor</u> <u>Markets in East Java, Indonesia</u>. Agro-Economic Survey: Bogor, Indonesia, August.
- Sri Palupi. 1988. "Pengaruh Program Perhutanan Sosial [Social Forestry] Perhadap Perranan Wanitadalam Ekonomi Rumahtanggu: Studie Kasus di Desa Pitu, Kecamatan Pitu, Kapupaten Naroi-Jawa Timur." Bogor Agricultural University, Socioeconomic Department, Agricultural Faculty: Bogor, Indonesia.
- Stewart, William. 1989. "Common Property Resource Management: Status and Role in India." Draft paper, World Bank. April.
- Stoler, Ann. 1978. "Garden Use and Household Economy in Rural Java." <u>Bulletin of Indonesian Economic Studies</u>, 14(2):85-101. Australian National University: Canberra, Australia.

- Tampobolan, S.M.H. 1988. "An Economic Analysis of Soil Conservation Practices in the Citanduy River Basin, Java, Indonesia." PhD dissertation (draft), University of the Philippines at Los Banos. November.
- Tingfu, Gus and Liu Shen. 1988. "Reliance on the Broad Masses of Farmers to Control Soil Erosion in the Upper Reaches of the River Valley of China." Paper presented at 9th Annual Symposium on FSR/E: Arkansas. October.
- USAID and the World Bank. 1988. "National Social Forestry Project Mid-Term Review." New Delhi, India.
 - _____. 1984. "Upland Agriculture and Conservation Project Paper." Republic of Indonesia.
- Wade, Robert. 1988. <u>Village Republics: Economic Conditions for Collec-</u> tion Action in South India. Cambridge University Press: Cambridge.
- Wells, Michael. 1989. "Can Indonesia's Biological Diversity be Protected by Linking Economic Development with National Park Management? Three Case Studies from the Outer Islands." Report for The World Bank, Environment Division. March.
- Wiradi, Gunawan, Chris Manning and Sri Hartoyo. 1989. "Employment, Rural Labor Market and Land Tenure: A Preliminary Report of a Recensus in Nine Villages in Java." Draft paper for Agroeconomic Survey Foundation: Bogor, Indonesia. April.
- World Bank. 1989. Indonesia: Forest; Land and Water: Issues in Sustainable Development, Report No. 7822-IND. June.

_____. 1989. <u>Philippines Forestry Fisheries, and Agricultural</u> <u>Resource Management Study (FFARM). Internal Country Department II.</u>

. 1988. Indonesia: Yogyakarta Rural Development PCR, Phase 1.

______. 1988a. <u>India: Review of Rainfed Agriculture and Watershed</u> <u>Development</u>, vols. I and II, Report No. 7138-IN. February.

______. 1988b. India: Uttar Pradesh and Gujarat Social Forestry Project, PCR, 1988.

_____. 1987. Meknes Agricultural Sector, PCR. Operations Evaluation Department.

______. 1985. India: National Social Forestry Project, SAR, 1985.

Young, Michael. 1987. "Land Tenure: Playthings of Governments or An Effective Instrument," in Anthony Chisholm and Robert Dumsday, eds., Land Degradation Problems and Policies. pp. 175-186. Cambridge University Press: Cambridge.

7. <u>A FRAMEWORK FOR PLANNING, MONITORING, AND EVALUATING</u> WATERSHED CONSERVATION PROJECTS

Glenn S. Morgan and Ronald C. Ng

This chapter reviews the World Bank's operational experience with planning, monitoring and evaluation (PME) of watershed development projects; develops a rationale for promoting and developing local competency in PME as part of watershed development projects; and describes the essential components of a PME program that should be established prior to, or as part of, project implementation. To be successful, PME components should be developed within a clearly articulated framework for organizing key functional tasks. The approach described herein recommends that these tasks be organizationally structured under three closely related administrative cells.

DEFINITION OF TERMS

The terms planning, monitoring and evaluation are used to refer to three mutually supportive, though discrete, project activities. Planning, used traditionally, refers to a systematic process of establishing watershed development objectives (spatial and nonspatial), formulating alternative development actions, and selecting technically sound and socially acceptable courses of action. Monitoring denotes continuous assessment of project activities in the context of implementation schedules, the use and allocation of project inputs by targeted beneficiaries, and the measurement of progress against stated goals. Evaluation refers to periodic assessment of the relevance, performance, efficiency and impact of the project in the context of its stated objectives.

WORLD BANK EXPERIENCE WITH WATERSHED PROJECTS

Careful planning, monitoring and evaluation of project activities have been cited as essential components of virtually every World Bank-assisted watershed development project. As reflected in project appraisal reports, the components' overall goals within watershed projects appear consistent with recommendations available in the technical literature. Financial allocations for such components have typically ranged from 1% to 6% of total project costs, with the average expenditure being about 2%.

Available project documentation reveals that the most often cited goals for planning, monitoring and evaluation procedures are to:

- (a) establish baseline information;
- (b) track and document physical progress and achievements;
- (c) account for financial expenditures;

- (d) develop an information system adequate for comparative analysis of project components;
- (e) provide a mechanism for evaluating the need for project adjustments; and
- (f) execute special-purpose studies to evaluate project performance.

Still, World Bank experience with implementation and execution of such tasks within watershed development projects seems to have varied considerably. Benefits of PME, though thought to be large in relation to expenditures, have proven difficult to quantify. The effort required to design and implement PME activities successfully has probably been underestimated in most projects, given that knowledge from many fields such as accounting, sample survey design, and land-use surveying must be coordinated. Supervision reports indicate that few PME components have yielded satisfactory results; most report delays in implementation and relatively poor output.

The constraints faced by designers of PME components are certainly not unique to watershed development projects. At least ten issues have been consistently identified as major problems in implementation encountered by project supervision teams:

- (a) shortages of trained and competent staff;
- (b) a weak, in some cases nonexistent, information base;
- (c) inadequate interdepartmental cooperation and coordination requiring information exchange;
- (d) overall lack of institutional commitment to PME tasks;
- (e) poor understanding of external reporting requirements;
- (f) poorly communicated objectives regarding the users and uses of monitoring and evaluation data;
- (g) poorly supervised and enforced standards of report preparation;
- (h) redundancies in reporting requirements (e.g. quarterly reviews and semiannual, making the same points over and over);
- (i) lack of clarity about responsibilities and obligations of different units;
- (j) inability of field supervision teams independently to verify reported progress.

Organizationally, at the project level, the responsibility for developing the details of PME components has usually been left to the individual project coordination or project implementation units. As a consequence, there appears to be little consistency across watershed projects about: how much and what type of baseline information is collected; the expenditure incurred to develop and maintain an ongoing management information system; the level and detail of supporting information required; the frequency of surveys and other data collection exercises; or the methodology employed or the technologies utilized to collect and manage information. This lack of consistency in approach makes the task of comparing project experiences somewhat more difficult.

As with functional responsibilities, there are also no clearly defined organizational and institutional blueprints relevant to all watershed development programs. Some watershed development projects have recommended the establishment of new project-level institutions, varying by level of decision-making authority and management responsibility. For example, the Indonesia Forest Institutions and Conservation Project, for which implementation commenced in 1988, has recommended establishing a project planning and implementation unit (PPIU) for each project component (forestry, soil conservation, pasture and grazing, etc.). Under this model, the individual unit has responsibility for monitoring its disciplinary specialty under the general guidance of a project liaison office. Another approach has been to establish formal, centralized PME units with more autonomy from the project implementing staff. Often, the tasks of PME are contracted out to independent research institutes, universities, or private consulting operations and are supervised by small monitoring units. Yet another institutional option, tested in the Pilot Project for Watershed Development in Rainfed Areas of India (implementation commenced in 1984), is to establish monitoring and evaluation responsibilities with a state-level watershed development cell. Each approach has enjoyed some success and endured some disappointments in implementation. What appears to be consistent in the review of previous projects is the recommendation that PME tasks and their execution remain functionally separate from implementing agencies in order to ensure objective evaluation of project performance.

Despite some setbacks, many program planners remain committed to the idea that a major objective of watershed development projects should be to establish, within appropriate lead agencies, capacities to carry out planning, monitoring and evaluation tasks. In past projects, such tasks have included, <u>inter alia</u>, the execution of diagnostic surveys, preparation of land-use and land-capability maps, development and maintenance of a watershed information system describing the baseline conditions of the watershed to be treated, the preparation of treatment plans, the execution of special research and investigative studies, training of staff in line agencies in the application of costeffective planning tools and procedures, and training of field staff in appropriate techniques for eliciting public input in the watershed development process.

RATIONALE FOR PLANNING, MONITORING AND EVALUATION CELLS

The approach that will be described refers to a planning, monitoring and evaluation (PME) unit having three separate but closely related cells, one each for planning, monitoring and evaluation. While the conventional term, monitoring, is retained for the second of these cells in the general model, it is more functionally a management cell. Watershed development projects are predicated on the principle that watersheds are viable and meaningful physical units for development planning and program implementation. Most importantly, watersheds are viewed as convenient and logical units for evaluating the biological and physical linkages between upstream and downstream activities. These activities are linked naturally through the hydrology of the watershed, because physical changes in upper catchments can result in a chain reaction of physical impacts downstream. This can only be done through a careful land-use planning process.

Watershed land-use planning is fundamentally concerned with delineating where, by whom, and in what sequence conservation and rehabilitation actions will be undertaken. The specific spatial arrangement and timing of activities are of critical importance to the success of the investment package and therefore should be approached systematically. In addition, the approach must be executed in a way which simultaneously considers the place of an individual watershed in its regional environmental and economic context (strategic planning) and the important role of public participation in the preparation of site-specific treatment plans (micro-planning).

It is generally believed that, in the absence of a systematic approach to watershed planning, conservation and development authorities will be constrained in their ability to describe accurately the current land-use situation, monitor the dynamics of land-use change, evaluate the state of land degradation, or predict the likely impact of proposed development projects. The difficulties created by this situation are cross-sectoral with implications for forestry, agriculture, water management and pasture development. In the context of watershed development projects, a planning cell must be capable of addressing several interrelated tasks. Typically these tasks include:

- (a) establishment of watershed development <u>priorities</u> on a regional basis;
- (b) coordination of implementation responsibilities among line agencies;
- (c) elicitation of people's <u>participation</u> in the establishment of investment priorities;
- (d) development of technically sound, <u>sustainable land management alter</u>-<u>natives</u> through micro-level village planning; and
- (e) effective and timely <u>communication</u> of project activities to the local inhabitants affected by the project.

The realization of these planning goals depends on several prerequisites, such as institutional ability to evaluate development proposals in a regional environmental and economic context; existence of a process which allows communications among line departments on a regular basis; existence of trained and committed staff to work with people at the grass-roots level; existence of local community organizations to articulate community needs and desires; and technical ability to articulate and implement sound and sustainable technical solutions to land management problems.

In the generic model, a monitoring cell would have responsibility for translating information and regional priorities defined by the planning cell into location-specific action plans, that is, a management function. Clearly, there is explicit linkage and perhaps a slight overlap in the responsibilities of the two units. Monitoring of watershed development projects will involve both socioeconomic household surveys (longitudinal, cross-sectional, informal interviews, etc.), as well as physical monitoring (erosion rates, revegetation rates, etc.). Ideally, one would wish to be able to compare a series of survey results with a reliable baseline of information. Unfortunately, this is not possible if baseline data are not available. While the establishment of baseline data is certainly a welcome long-term goal, it is not necessarily a prerequisite of monitoring programs.

Several key issues need to be addressed during the design of monitoring components: namely, the choice and articulation of key indicators to be measured and collected; the procedures and methodologies to be employed in collecting data; the temporal frequency of collecting information; the size of the sample; and how data will be utilized in future planning exercises.

Each project will vary according to staff skills, available budget, institutional capacity; nevertheless, the work of a monitoring cell should parallel the strategic planning efforts of the planning cell. Thus, it is critical that an adequate watershed management information system (WMIS) be established. It should be designed with long-term objectives in mind and at a minimum should address the functional tasks described below in the following section.

Evaluation tasks typically involve independent assessment of a wide range of considerations, including assessment of the replicability and sustainability of project objectives; the quality of project preparation and appraisal; the performance and efficiency of watershed investments in the context of original goals; the sequencing of project components; and the extent to which investments in different components were mutually reinforcing. In practice, evaluation has focused primarily on measuring physical progress and less on measuring behavioral changes of participating communities.

Within watershed projects, evaluation is generally regarded, somewhat like monitoring, as an ongoing management mechanism for identifying design and implementation problems and making appropriate adjustments to the project. In the longer term, evaluation reports are useful in the design of follow-up projects. Ideally, evaluations should be undertaken by independent organizations and budgetary allocations should be separated from the planning and monitoring budgets. As with other elements of a PME unit, blueprints for success are rarely available.

FUNCTIONAL TASKS OF WATERSHED PLANNING, MONITORING AND EVALUATION CELLS

Regardless of the organizational framework selected for PME components, the staff responsible for implementing planning, monitoring and evaluation components of watershed projects should address the following functional areas:

Technical Records Management

An important function of the PME Unit is to establish a systematic approach to recording and retrieving data on field trials and experiments, technical studies, species performance under different agroclimatic conditions, planting methods, costs, returns and effectiveness. These data have been particularly scarce in watershed projects and to paraphrase one project supervision report, "when it comes to hard facts regarding the technical or economic merits of recommended practices in relation to controlling erosion and sedimentation, to their impacts on agricultural productivity and farmers' incomes, to the rate of adoption under different conditions and to several related factors, no systematic, quantitative assessments are generally available." In practical terms, establishing a database of technical records involves the use of desktop computer workstations and laptops, together with appropriate database management software. In many jurisdictions, the data are available in numerous reports and documents, but need to be collated and recorded in a format more accessible to planners. In practice, the technical records database would be compiled both from existing data, as well as new field data, as it is collected and reported from experimental stations, demonstration plots, and operational field trials.

Geography (GIS) and Cartography

A second objective of a planning cell should be to improve the management of spatially referenced information such as maps, air photos, and satellite imagery. This function could be effectively supported through the development of a geographical information system (GIS). A GIS, in the context of watershed rehabilitation and stabilization projects, is a computer-based workstation which permits the integration of baseline data (physical and social) deemed relevant to watershed development planning and management. Typical GIS systems link computer mapping software and tabular database management software into one comprehensive system.

A GIS database is organized on a modular basis, each module corresponding to important planning parameters. The strength of the GIS approach is that data handling and analysis can be carried out on the spatial and nonspatial elements of the database simultaneously. These capabilities can be used either by themselves or in conjunction with other simulation or statistical modeling techniques. The main modules of a GIS database usually consist of some variation of the following:

- (a) base module (administrative boundaries, transportation, communications facilities, settlements);
- (b) terrain/soil module (land unit descriptions, soil types, geomorphology, erosion characteristics);
- (c) land cover/land-use module (vegetative cover, major land-use types);
- (d) hydrology module (rainfall, climate, river discharge data);
- (e) socioeconomic module (farming systems, demographics).

If organized and implemented in a rationale manner, a GIS can be a valuable tool which facilitates the storage, retrieval and production of maps, statistical reports and, in some cases, the production and processing of satellite imagery. It is also thought to be an appropriate mechanism for storing, analyzing and disseminating field data from monitoring and evaluation field teams. GIS analytical techniques can be used on information derived from intensive ground studies or can be based on data derived from the use of remotely sensed imagery such as aerial photographs or space-craft pictures.

Village-Level Information Management

In many situations, reasonably reliable social and economic data exist for individual villages within a watershed, but often require systematic storage and retrieval to make the information more readily available to concerned agencies. To formulate site-development plans, additional information on the social and economic conditions prevailing in the village needs to be collected. Village-level data are usually collected by revenue officers and updated on a cyclical basis.

The standard approach is to collect and record village-level and other relevant socioeconomic information (fuel, fodder demand and supply, population, etc.) using previously designed data collection forms. The information on the forms could be efficiently managed on a small personal computer with appropriate spreadsheet or database management software.

Watershed Strategic Planning

The extent to which dryland degradation in upland watersheds can be reversed will depend on a much improved understanding of many factors: among them, the status and rate of vegetative denudation, the severity of local soil erosion processes, the intensity of human and livestock pressures, the ability to introduce sustainable measures to control degradation, and the ability to communicate unambiguous benefits to practitioners of these.

As a basis for priority selection of large-scale investments in the stabilization, conservation, and reclamation of degraded lands, planners require knowledge about the status of lands across an entire region. In most situations, evidence of widespread degradation is anecdotal or based on smallscale, special-purpose, local surveys. For most jurisdictions, almost no maps of regional degradation exist and rarely has systematic assessment of degradation been undertaken. An important element in the planning, monitoring and evaluation therefore is to assist in the establishment of regional baseline databases.

Strategic planning is used to refer to the process by which priorities for watershed development are articulated and recorded. This usually requires close interaction and coordination among line agencies and the resource users. The process of setting regional priorities for watershed programs should be based on careful consideration of:

- (a) physical evidence of degradation (extent of gully and sheet erosion, erosion rates, deforestation, water quality);
- (b) social and economic indicators of degradation (fodder and fuel deficiencies, decreasing farm yields); and
- (c) likelihood of introducing sustainable technical packages (slope and soil characteristics, current land-use practices, local willingness).

On the surface, land-use planning appears to be a logical and necessary, if not essential, part of any watershed development activity. Numerous planning models have been proposed and tested in the field with varying levels of success. Still, many practitioners have questioned the overall utility of land-use planning exercises. Put simply, the development of land-use plans has frequently been described as burdensome, time-consuming and expensive. In situations where the planning goal has been to develop rigid village or regional master plans, the results often do not live up to expectations. In practice, many examples could be cited where detailed land-use plans have been drawn up based on elaborate soil surveys and land capability studies, only to be subsequently shelved and rarely consulted.

In most cases, the disappointment with land-use planning arises out of a fundamental confusion between the <u>land-use plan</u> as an end product and <u>land-use planning</u> as a mechanism for articulating local needs, resolving conflict, ensuring rights, and enforcing obligations of land users. The challenge to watershed development planners is to avoid the syndrome of focusing on elaborate programs aimed at developing the master plans and shift attention towards an iterative process of matching local needs to local constraints. Rather than being abandoned, land-use planning for watershed development should be reoriented towards village-level consultation, program flexibility, selectivity and institutional coordination of predetermined responsibilities.

Formulation of Site-Development Plans and Annual Work Program

Site development plans should flow naturally from the strategic planning performed in the planning cell. The tasks of such a unit include the management of public participation in the planning process and the development of site-specific action plans. The annual work program involves the scheduling of tasks to be performed, delegating responsibility to appropriate agencies, budgeting, and coordination of field activities.

The steps involved in preparing site-development plans seem well developed and understood. In most projects, site plans are formulated based on some variation of the following process:

- (a) conduct diagnostic survey and local needs assessment;
- (b) evaluate local resource potential and constraints;
- (c) articulate local technical, financial and logistical prescriptions
 (the plan);
- (d) secure local endorsement, commitment and support for proposed action plans;
- (e) implement program;
- (f) conduct periodic reviews to assess progress and revise prescriptions as necessary.

Many different types of reporting formats have been developed which may be adopted for each step of the interactive planning process. Whatever the format chosen, the village-level diagnostic survey should provide detailed descriptions of the specific location of areas requiring remedial treatment, the current status of these lands with respect to land-use practice, land capability, land ownership/tenure, the land users, and a description of treatment options to be considered.

The identification of treatments and options is largely a technical exercise based on diagnostic surveys, but the final decisions on the type, scale and timing of measures to be installed must be determined by the needs and preferences of local land-users. The operational challenge for watershed development practitioners is twofold: Firstly, how to efficiently obtain information and opinions from the rural residents. Secondly, how to convert and integrate that information into programs which are locally relevant, technically sound and which also serve broader, regional resource management goals. Unfortunately, little effort has been made toward incorporating or soliciting the active participation of the watershed land-users in the planning of site-development actions.

The need for public participation is especially important in watershed development schemes when the project treatments involve:

- (a) private or communal lands;
- (b) temporary land closures;
- (c) changes in land management practices (e.g., grazing patterns, cut and carry, rotational management, etc.);
- (d) investment of time and/or financial resources by local inhabitants (e.g., planting vetiver grass hedges or private construction of water-harvesting structures).

Several approaches to soliciting popular participation as well as monitoring beneficiary impact of watershed investments have been commonly used in the field. These approaches include:

- (a) one-on-one interaction with local people (personal interviews, questionnaires, household surveys, individual observations);
- (b) communication and interaction with community leaders (interviews with village leaders, traditional leaders, local entrepreneurs, progressive farmers, informants);
- (c) dissemination of information and participation through community meetings (e.g., public forums, hearings, presentations); and
- (d) interaction through community organizations [nongovernmental organizations (NGOs), religious organizations, local councils, regional organizations].

Monitoring Progress

Monitoring progress involves regularly scheduled site inspections to assess works completed and should include statements of expenditure incurred and problems and delays encountered. Monitoring progress is an essential feedback mechanism as these findings define how annual work plans should be modified or corrected. Monitoring activities use several different techniques. The most common approach is to have site inspectors record required information on pro-forma recording documents. These documents would be fed back into the WMIS as part of the permanent database record. In practice, independent field verification of progress reports has proven to be quite difficult in watershed projects, particularly when the watershed areas are remote or access is difficult. It has proven extremely difficult, for example, for World Bank supervision teams to verify the numbers of checkdams and gully plugs constructed or to make reliable estimates of total reforested areas treated by the project. A complementary approach is to utilize remotesensing technology, such as high-resolution satellite pictures to assess physical progress. For example, site inspectors could clearly see the progress made, especially regarding forestry plantations in upland watershed areas. While these images could possibly be used quite effectively, for example, to evaluate the total impact of larger projects, they are probably not useful for monitoring small catchments of less than 3,000 hectares. Another approach, though not used widely as yet, would be to perform field monitoring using lowcost, hand-held video cameras to record construction or plantation activities as they are executed.

Monitoring Results

Monitoring results also involves field inspections and supervision, but rather than simply indicating physical progress, attempts to assess the effectiveness of activities in terms of survival rates, erosion control, fuelwood produced. Closely related is the concept of monitoring benefits. Sample surveys should be done on a regular basis (e.g., annually or quarterly) to assess the beneficiaries' perception of the project's effect on pasture rehabilitation, improved farm and fuelwood yields, and reductions in erosion rates. Village-level meetings should be held on a regular basis to elicit beneficiary response to the progress of works completed. Again, monitoring results could use a combination of personal interviews, video recordings, public meetings, and formal questionnaires to record information.

Monitoring results could also include more detailed long-term studies related to project progress, including information on disbursements, the type and location of erosion control structures financed, and dissemination of erosion control technology through extension services. Other programs might focus on physical monitoring for recording the effect of project investments on the rates of erosion.

Monitoring Benefits

Monitoring benefits attempts to describe the annual increments to production attributable, either directly or indirectly, to project investments. This monitoring function focuses on the interaction between project activities and reactions of the target populations. In watershed projects, it includes, but is not limited to, assessment of grazing, farming, and other benefits. Such monitoring is usually based on periodic household surveys and should be supported for a reasonable time period following completion of the project. Typically, monitoring beneficiaries would attempt to account for changes in household incomes and relative abundance of land-based resources such as fodder, fuel, access to grazing, or water supply that could be related to project investments.

Interim Project Evaluations

This function involves the careful review of experience during implementation, including institutional problems, technical achievements and constraints, and socioeconomic benefits derived. Interim evaluation would be based on field information collected in the monitoring stages of the project. Interim reporting must go beyond an accounting of project expenditures and physical progress and should focus on the relevance, performance, efficiency and impact of the project in the context of stated goals. Ideally, both interim and overall project evaluation should be performed by an independent external agency such as a university, research institute, or qualified consultants.

Evaluation of Impact of Physical Treatments

Impact evaluation involves detailed and objective evaluation of the overall effectiveness of watershed treatments such as soil conservation, pasture rehabilitation or land management practices. Ideally, the evaluation should also be carried out by a university, independent research institute, or qualified consultants. With respect to watershed projects, impact evaluation can be a very difficult task as many factors external to the project can influence the viability of investments.

Report Generation (Internal/External)

Report generation is an important element of all PME units, though typically it is overlooked. This function addresses the requirements for periodic reporting to the state on physical progress. The process is essentially manual, although word-processing facilities could be introduced to facilitate report writing. The reports would be generated directly from the data collected and systematically recorded in the watershed management information system.

Evaluation teams should also have the capacity to generate specialpurpose reports for external institutions such as development agencies, NGOs, research groups, or public information campaigns. This capacity should be flexible enough to address the needs of formal evaluations such as mid-term reviews, project completion studies, and ex-post reviews, as well as informal management reviews. Like many other elements of the PME unit, report generation must rely on the quality and timeliness of information contained within the management information system. The reports and accounts generated by an evaluation team could be presented in a number of different formats such as formal written reports, diagnostic analyses or verbal and visual presentations.

SUMMARY

Watershed planning, monitoring and evaluation tasks are frequently cited as among the most important components of successful projects. Nevertheless, the potential of PME activities will be achieved only if it is clearly understood who is to use the results and for what purposes and if the practical limitations of available methodologies and techniques are accepted. In general, there is agreement that monitoring and measurement of physical processes (erosion, deforestation) or physical delivery of project inputs is easier than measuring the less tangible, people-centered goals of watershed rehabilitation programs such as increasing beneficiary participation.

In designing PME components of watershed projects, the mutually reinforcing nature of these tasks must be clearly understood. Casley and Kumar (1987) note that "monitoring and evaluation are separated by their objectives, reference periods, requirements for comparative analysis, and primary users. But having emphasized the differences, we need to enter a qualification: in spite of these distinct functions, there are common features which highlight the relation between them. In many cases, the same data are used for both and the indicators for monitoring may be included in the range of information required for evaluation, but they will be reviewed over longer time spans, with the use of comparative analytical techniques, and a larger group of users will be addressed."

One conclusion should be made clear; PME methodologies and procedures need to be flexible and well adapted to local circumstances. Due to the wide variation in objectives, scale and scope of investments in watershed projects, there can be no blueprint which is universally applicable or acceptable in all situations. Each situation will vary regarding the technical capabilities of existing staff, institutional commitment to PME tasks, availability of historical, time-series data and so on. In all situations, PME must be seen as an evolutionary process, building slowly on existing capabilities over relatively long time periods. This is particularly important when monitoring the effects of project investment on the productivity of natural systems such as forests, soils, or water.

REFERENCES

Casley, Dennis J. and Krishna Kumar. 1987. <u>Project Monitoring and Evaluation</u> <u>in Agriculture</u>. Published for the World Bank, The Johns Hopkins University Press: Baltimore.

8. BIBLIOGRAPHIES ON SOIL AND MOISTURE CONSERVATION TECHNOLOGIES

The more than 200 studies cited in Chapter 2 concerning on-farm impacts of soil and moisture conservation technologies on surface runoff, erosion/sedimentation and productivity and yield are arranged in four tables. This separate presentation make them more readily accessible to the reader who wishes to locate specific references. Table 8.1 is the complete list of research studies in alphabetical order. Tables 8.2, 8.3 and 8.4 pertain respectively to the three topics: surface runoff. erosion/sedimentation and productivity and yield, giving pertinent information from the references which are listed approximately in the order of appearance and grouped according to the main treatment being studied.

TABLE 8.1: Global Studies on On-Farm Impacts

- Abdurachman, A., Barus, A. and U. Sudirman. 1985. Peranan Pola Tanam dalam Usaha Pencegahan Erosi pada Lahan Pertanian Tanaman Semusin. Pemberitaan Penelitian Tanah dan Pupuk 4:41-46.
- Abennar. W. 1986. Pengaruh Pupuk Kandang dan Tanaman Terhadap Erosi dan ar. W. 1986. Pengaruh Pupuk Kandang dan Tanaman Terhadap Erosi dan Limpasan Permukaan Pada Regosol Abu Vulkan. Tesis. Fakultas Pertanian Universitas Brawijaya. Malang.
- Abujamin, S., Abdurachman, A., and Suwardjo. 1985. Contour grass strips as a low cost conservation practice. ASPAC Extension Bull. No.221.pp.1-7.
- Abujamin, S., Abdurachman, A. and U. Kurnia. 1983. Strip Rumput Permanen Sebagai Salah Satu Cara Konservasi Tanah. Pemberitaan Penelitian Tanah dan Pupuk 1:16-20.
- 5. Ahmad, A.R. 1983. Pengaruh Pengelolaan Tanah dan Tanaman Terhadap, Erosi dan Limpasan Permukaan. Tesis Fakultas Pertanian. Universitas Brawijaya, Malang.
- Alegre, J.C., Cassel, D.K., and D.E. Bandy. 1986. Effects of land clearing and subsequent management on soil physical properties. Soil Sci. Soc. Am. J. 50(6):1379-1384.
- 7. Ambasht, R.S., and K.N. Misra. 1980. Conservation studies of a hilly grassland. In : <u>Proceedings of the Fifth International Symposium on</u> <u>Tropical Ecology</u>. Ed. J.I. Furtado. Kuala Lampur, Malayasia. pp. 133-139.

- 8. Arsjik, A.H. 1976. Pengaruh Kemiringan Lereng dan Intensitas Hujan Terhadap Jumlah Aliran Permukaan dan Kehilangen Tanah Pada Tanah Podzolik Jonggol dan Latosol Citayam. Tesis Fakultas. Kehutanan Institut Pertanian Bogor. Bogor.
- 9. Artaban. 1985 Peranan Pengelolaan Tanah dan Tanaman dalam Menekan laju Erosi di Daerah Aliran Sungai Waduk Bening, Madiun. Tesis Fakultas Pertanian, Universitas Pembangunan Nasional Veteran, Surabaya.
- Baird, R.W., Richardson, C.W., W.G. Knisel. 1970. Effects of conservation practices on storm runoff in the Texas Blackland Prairie. ARS/USDA Tech. Bull. no. 1406. 31 pp.
- 11. Baird, R.W. and C.W. Richardson. 1969. Effects of conservation treatment on water yield. In : <u>Effects of Watershed Changes on Streamflow</u>. Eds. W.L. Moore, and C.W. Morgan. Univ. of Texas Press, Austin, Texas. pp. 69-78.
- 12. Beasley, R.S. 1979. Intensive site preparation and sediment losses on steep watersheds in the Gulf Coastal Plain. Soil Sci. Soc. Am. J. 43(2):412-417.
- 13. Bennet, H.H. 1939. Soil Conservation. McGraw Hill. New York, New York.
- 14. Bertoni, S., Lombardi, F. and R. Benatti. 1975. Equacao de perdas de solo. Boletin Tecnico no. 21, Secao Conservacao do Solo. Instituto Agronomico de Estado de Sao Paulo, Brazil.
- 15. Bertoni, S., Pastana, I., Lombardi, F. and R. Benatti. 1972. page 2 of 16 Conclusoes gerais das pesquisas sobre Conseração de solo no Instituto Agronomico, Circular # 20 de la Divisão de Solos, Instituto Agronomico do Estado de São Paulo, Brazil.
- 16. Bhatia, K.S. and H.P. Choudhary. 1977. Runoff and erosion losses and crop yields from slopy and eroded alluvial soils of Uttar Pradesh in relation to contour farming and fertilization. Soil Conservation Digest, Vol. 5, No. 2, October 1977. pp.16-22.
- Black, A.L. 1968. Conservation bench terraces in Kansas. Trans. of ASAE. 11:(3)387-388.
- Black, A.L. 1968. Conservation bench terraces in Montana. Trans. of ASAE. 11:(3)393-395.
- Blong, R.J. 1983. Gully sidewall development in New South Wales, Australia. In : <u>Soil Erosion and Conservation</u>. Eds., S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.574-584.
- 20. Bo-Myeong Woo. 1984. Status of watershed forest influence research in Korea. In: Country Papers On Status of Watershed Influence Research in Asia and the Pacific. Eds. L. Hamilton, M. Bonnel and D.E. Mercer. East-West Center Working Paper. Honolulu, Hawaii. pp.153-173.

- 21. Bonsu, M. 1983. Organic residues for less erosion and more grain in Ghana. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.615-621
- 22. Bowie, A.J. 1982. Investigations of vegetation for stabilizing eroding stream banks. Trans. of ASAE. 25:(6)1601-1606,1611.
- 23. Bradley, G.R. and H.Y. Kim. 1964. Site selection and soil characteristics. In: <u>Technical Guide for Upland Development Using the Bench Terrace</u> <u>Method</u>. Coursebook from training and demonstration held 9 February-18 April 1964 at Sosa, Kyonggi Do, Korea. pp.3-4.
- 24. Branson, F.A., Miller, R.F., and I.S. McQueen. 1966. Contour furrowing, pitting and ripping on rangelands of the western United States. Jour. Range Mgmt. 19:182-190.
- 25. Brown, A.L., and A.C. Everson. 1952. Longevity of ripped fourrows in southern Arizona desert grassland. Jour. Range Mgmt. 5:415-419.
- 26. Brown, D., Hallman, R.G., Lee, C.R., Skogerboe, J.G., Eskew, K., Price, R.A., Page, N.R., Clar, M., Kort, R. and H. Hopkins. 1986. <u>Reclamation and Vegetative Restoration of Problem Soils and</u> <u>Disturbed Lands</u>. Noyes Data Corporation, Park Ridge, New Jersey. 560 pp.
- 27. Buol, S.W., Hole, F.D., and R.J. McKraken. 1973. <u>Soil Genesis and</u> Classification. Ames, IA. Iowa State Univ. Press.
- 28. Burwell, R.E., Allmaras, R.R. and L.L. Sloneker. 1966. alteration of soil surfaces by tillage and rainfall. Consv. 21:61-63 Structural J. Soil Water
- 29. Campbell, I.A. 1983. The partial area concept applied to sediment source area. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.128-138.
- 30. Carson, B. 1989. Soil Conservation Strategies for Upland Areas in Indonesia. Occasional Papers of the East-West Environment and Policy Institute. Paper No. 9. 120pp.
- 31. Carter, D.L. 1983. Erosion and sediment losses in furrow-irrigated land. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.355-364. page 3 of 16.
- 32. Castellanos, V. and J.L. Thomas. 1980. Application of multiple-use research on a watershed in Honduras. Proc. from IUFRO/MAB Conference: Research on Multiple-use of Forest Resources.
- 33. Chan, C., 1981. Evaluation of soil loss factors on cultivated slopelands of Taiwan. ASPAC Technical Bull. No. 55. 28 p.

- 34. Chang, S.M., Huang, C.T., and U.C. Wang. 1968. Soil and water conservation experiment on a pineapple orchard. Fengshan Tropical Horticultural Experiment Station, No. 55.
- 35 Chakravarty, R.K., Vasudevaiah, R.D., Guha, D.P. and S.P.S. Teotia. 1966. Soil moisture studies in the terraced land to explore its utility for 'rabi' cultivation in the upper catchment of Damodar Valley. J. Soil Water Consv. India. 14(3&4):27-32.
- 36. Charreau, C. 1972. Problems in agricultural usage of tropical soils for annual cropping. Agron. Tropicale 27:905-929.
- 37. Chiun-Ming, L. 1983. Impact of check dams on steep mountain channels in northeastern Taiwan. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.540-548.
- 38. Choudary, P.C. and B.N. Chatterjee. 1967. Moisture conservation under mulches in the eroded terraced soils of Ranchi. J. Soil Water Consv. India. 15(1&2):61-71.
- 39. Cooper, J.R., Gilliam, J.W., Daniels, R.B., and W.P. Robarge. 1987. Riparian areas as filters for agricultural sediment. Soil Sci. Soc. Am. J. 51(2):416-420.
- 40. Cordero, A. 1964. The effect of land clearing on soil fertility in the tropical region of Santa Cruz, Bolivia. M.S. Thesis, Univ. of Fla., Gainseville. 102 pp.
- 41. Costales, E.F. and A.B. Costales 1985. Stabilization of streambanks and riparian zones by riprap combined with selected vegetative engineering structures. Sylvatrop Philipp. For. Res. 10:(1)17-33.
- 42. CSWCRTI. 1982. <u>25 years of Research on Soil and Water Conservation in</u> <u>Southern, Hilly, High Rainfall Regions</u>. Monograph No.4. Central Soil and Water Conservation Research and Training Institute, Dehradun, India. 212 pgs + annexes. <u>As reported in</u> : K.G. Tejwani. 1989. White Cover Report - Draft Material - Chapter . World Bank Internal Document. February 5, 1989. page 4 of 16 TABLE 4
- 43. Dallaire, G. 1976. Filter fabrics bright future in road and highway construction. Civil Engineering 46(5):61-65
- 44. De Boodt, M., Van Den Berghe, C. and D. Gabriels. 1979. Fertilizer losses associated with soil erosion. In: <u>Soil Physical Properties and Crop</u> <u>Production in the Tropics</u>. Eds. R. Lal and D.J. Greenland. John Wiley and Sons. Chichester, England. pp.455-464.
- 45. Dendy, F.E. 1982. Distribution of sediment deposits in small reservoirs. Trans. of ASAE. 25:(1)100-104
- 45. Dhruva Narayana, V.V. 1986. Soil and water conservation research in India. Indian Journal of Soil Conservation. 14(3):22-31.

- 47. Dickenson, R.E., Langley, B.C., and C.E. Fisher. 1940. Water and soil conservation experiments at Spur, Texas. Texas Agri. Exper. Station Bull. 587. 67 pp.
- 48. Doty, R.D., Wood, H.B., and R.A. Merriam. 1981. Suspended sediment production from forested watersheds on Oahu, Hawaii. Water Resources Bull. 17(3)298-307.
- 49. Dunne, T. 1979. Sediment yield and land use in tropical catchments. Journal of Hydrology (Amsterdam). 42(3/4):281-300.
- 50. Edwards, K. 1983. Analysis of Runoff and soil loss from long-term plots. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.472-479.
- 51. El-Swaify, S.A., Dangler, E.W., and C.L. Armstrong. 1982. <u>Soil Erosion by</u> <u>Water in the Tropics</u>. College of Tropical Agriculture and Human Resources. Univ. of Hawaii, Manoa. 173 pp.
- 52. Elwell, H.A. and M.A. Stocking. 1988. Loss of nutrients by sheet erosion is a major hidden farming cost. The Zimbabwe Science News. Vol.22, Nos.7/8 July/August 1988. pp.79-82.
- 53. FAO. 1976. <u>Soil conservation for developing countries</u>. FAO Soils Bull. No. 30. pg.81
- 54. Felipe-Morales, F., Meyer, R., Alegre, C. and C. Vittorelli. 1979. Losses of water and soil under different cultivation systems in two Peruvian Locations, Santa Ana (Central Highlands) and San Ramon

(Central High Jungle), 1975-1976. In: <u>Soil Physical Properties and</u> <u>Crop Production in the Tropics</u>. Eds. R. Lal and D.J. Greenland. John Wiley and Sons. Chichester, England. pp.489-499.

- 55. Ffoliot, P.F. 1980. <u>Watershed Resource Management and Environmental</u> Monitoring in Humid Tropical Ecosystems. UNESCO/MAB/AID.
- 56. Figueroa, J.F.L. and M.A. Garduno. 1981. Evaluacion de cinco tipos de terrazas en suelos de ladera de la cuenca del rio Tezcoco.
- 57. Filipovic. 1968. Erosion of arable land in the upper Jasenica watershed and its influence on winter wheat yield. Arh. Polypr. Nauke. 21(74) 16-17.
- 58. Finkel, H.J. 1986. <u>Semiarid Soil and Water Conservation</u>. CRC Press, Boca Raton, Florida. 126 p.
- 59. Florido, L.V. 1985. Check dams for the control of gully erosion in the pine forest watersheds. Sylvatrop Philipp. 10:(1)9-16.
- 60. Forest Service USDA, Region 5. 1934. <u>Guideline for Watershed Improvement</u> <u>Measures</u>. 69 pp.

- 61. Frye, W.W., Ebelhar, S.A., Murdock, L.W. and R.L. Blevins. 1982. Soil erosion effects on properties and productivity of two Kentucky soils. J. Soil Sci. Soc. Am. 46:1,051-1,055.
- 62. Gayoso, J.A. and A.A. Iroume. 1984. Soil disturbance from logging in Southern Chile. In : Symposium on Effects of Forest Land Use On Erosion and Slope Stability. edited by C.L. O'Loughlin and A.J. Pearce. 1984. East-West Center. Honolulu, Hawaii. pp.203-209.
- 63. Gintings, A.N. 1982. Aliran Permukaan dan Erosi dari Tanah yang Tertutup Tanaman Kopi dan Hutan Alam di Sumberjaya-Lampung Utara. Laporan No.399, Balai Penelitian Hutan. Bogor.
- 64. Graham, O.P. 1984. Gully erosion. J. Soil Cons. N.S.W. 40:(1)31-37.
- 65. Greenland, D.J. and R. Lal. 1979. Towards optimizing soil physical properties for sustained production from soils in the tropics. In: <u>Soil Physical Properties and Crop Production in the Tropics</u>. Eds. R. Lal and D.J. Greenland. John Wiley and Sons. Chichester, England. pp.529-530
- 66. Grohman, F. 1960. Distribucao de tamanho de poros en tres de solos do Estado de Sao Paulo. Bragantia 19:319-328.
- 68. Gupta, S.K., Das, D.C., Tejwani, K.G., Chittaranjan, 5., and Srinivas. 1971. Mechanical measures of erosion control. In : <u>Soil and Water</u> <u>Conservation Research, 1956-1971</u>. Eds. K.G. Tejwani, S.K. Gupta and H.N. Mathur. Indian Council of Agricultural Research. New Delhi. pp.146-182.
- 69. Haas, H.J. and W.O. Willis. 1968. Conservation bench terraces in North Dakota. Trans. of ASAE 11(3):397-398,402.
- 70. Hamilton, L.S. 1985. Overcoming myths about soil and water impacts of tropical forest land uses.
- 71. Hardjono, D. 1987. Demonstarsi UPSA dan Permasalahannya <u>dalam</u> Lokakarya Pelaksanaan Rehabilitasi Lahan dan Konservasi Tanah Secara Terpadu di Sub-DAS Konto. Malang/Batu, 11-12 Maret 1987. Proyek Cali Konto Dirjen. Reboisasi dan Rehabilitasi Lahan (RRL) Departemen Kehutanan RI. Bekerjesama Dengan Dirjen Kerjasama Internasional (DGIS) Departamen Luar Negeri Kerajaan Belanda. Hal. 2.1-2 s/d 2.1-7.
- 72. Harjono. 1979. Soil erosion study in Upper Solo river basin. Balai Teknologi Pengelolaan DAS Solo. Surakarta.
- 73. Harrold, L.L. and W.M. Edwards. 1972. A severe rainstorm test of no-till corn. J. Soil Water Conserv. 27:30. TABLE 4
- 74. Harrold, L.L. and F.J. Dragoun. 1969. Effect of erosion control land treatment on flow from agricultural watersheds. Trans. of ASAE 12:(6)857-861.

- 75. Hauser, V.L. 1968. Conservation bench terraces in Texas. Trans. of ASAE. 11:(3)385-386,392.
- 76. Hauser, V.L. and M.B. Cox. 1962. Evaluation of the Zingg conservation bench terrace. Agri. Eng. 43: (8)462-467.
- 77. Hibbert, A.R. 1969. Water yeild changes after converting a forest catchment to grass. Water Resources Research 5:634-640.
- 78. Houston, W.R. 1965. Soil moisture response to range improvement in the Northern Great Plains. Jour. Range Mgmt. 18:25-30.
- 79. Hurni, H. 1982. Soil erosion in Huai Thung Choa Northern Thailand: Concerns and constraints. Mountain Research and Development 2(2): 141-151.
- 80. Ives, R.M. and C.F. Shaykewich. 1987. Effect of simultated soil erosion on wheat yeilds on the humid Canadian Prairie. J. Soil Water Consv. 42(3):205-208.
- Iwamoto, M. and K. Murikami. 1983. Effect of check dams on a torrent. J. Jap. For. Soc. 65:(12)458-464.
- 82. Jaiswal, S.P. 1966. Influence of grasses under natural conditions on the improvement of soil fertility. J. Indian Soc. Soil Sci. 14(3):205-209.
- 83. Jepson, H.G. 1939. Prevention and control of gullies. U.S.D.A. Farmers Bulletin no. 1813. 59 pp.
- 84. Jones, O.R. and R.N. Clark. 1987. Effects of furrow dikes on water conservation and dryland crop yields. Soil Sci. Soc. Am. J. 51(5): 1307-1314.
- 85. Kalbande, A.R. and E. Velappan. 1977. Effect of cover cropping on soil fertility under arecanut plantation. J. Soil Water Consv. India. 27(1&2):72-75.
- 86. Kampen, J. 1979. Watershed management and technology transfer in the semi-arid tropics. In : <u>Development and Transfer of Technology for</u> <u>Rainfed Agriculture and the SAT Farmer, Proc. of the Inaugural Symp.</u> <u>at ICRISAT. ICRISAT, Andra Pradesh, India. pp.111-119.</u>
- 87. Keep, T. 1987. Investigation of terrace breaching in Missouri. In: Optimum Erosion Control at Least Cost - Proceedings of the National Symposium on Conservation Systems. Am. Soc. Ag. Eng., St. Joseph, Michigan. pp.384-390.
- 88. Khan, A.D. 1962. Measurement of increase in productivity by adopting soil and water conservation practices. J. Soil Water Consv. India. 10(1&2):25-33.
- 89. Koelliker, J.K. 1981. Impact of terrace systems on water yield. ASAE Paper no. 81-2051. 6 pp.

- 90. Koichi, 5., Sakurai, Y. and K. Takase. 1984. Soil loss and runoff characteristics of shifting cultivation land in Iriomote Island. In : Symposium on Effects of Forest Land Use On Erosion and Slope Stability. edited by C.L. O'Loughlin and A.J. Pearce. 1984. East-West Center. Honolulu, Hawaii. pp.147-153.
- 91. Kurnia, U. and R.L. Watung. 1985. Pengaruh Pengolahan Tanah dan Mulsa Sisa Tanaman Terhadap Produktivitas Tanah Latosol Kadipaten. Makalah Lokakarya Hasil Penelitian Pengelolaan DAS dan Dampak Pemanfaatan Sumber Alam Terhadap Lingkungan. Cisarua, Bogor 9-10 Maret 1985.
- 92. Laflen, J.M., Highfill, R.E., Amemiya, M. and C.K. Mutchler. 1985. Structures and methods for controlling water erosion. In: <u>Soil</u> <u>Erosion and Crop Productivity</u>. edited by R.F. Follett and B.A. Stewart. SSSA Publishers. Madison, Wisc. pp.431-442.
- 93. Lal, R. 1987. Effects of soil erosion on crop productivity. In : <u>CRC</u> <u>Critical Reviews in Plant Science</u>. Vol. 5, Issue 4. Pg. 303-367.
- 94. Lal, R. 1984. Mulch requirements for erosion control with the no-till system in the tropics: a review. In: <u>Challenges in African Hydrology</u> <u>and Water Resources (Proc. Harare Symposium)</u>. IAHS Publ. no. 144. pp.475-484
- 95. Lal, R. 1983. Soil erosion and productivity in tropical soils. In : Soil <u>Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.237-247.
- 96. Lal, R. 1975. Role of mulching techniques in tropical soil and water management. Int. Inst. Trop. Agric. Tech. Bull. No. 1.
- 97. Lal, R., Kang, B.T., Moorman, F.R., Juo, J.S.R., and J.C. Moomaw. 1975. Soil Management problems and possible solutions in western Nigeria. In: <u>Soil Management in Tropical America</u>. Eds. E. Bornemisza and A. Alvarado. North Carolina State Univ., Raleigh. pp. 372-408.
- 98. Lal, R. 1974. Soil erosion and shifting agriculture. In: Shifting Cultivation and Soil Conservation in Africa. FAO Soils Bull. 24, FAO, Rome. pp.48-71.
- 99. Lattanzi, A.R., Meyer, L.D., and M.F. Baumgardner. 1974. Influences of mulch rate and slope steepness on interrill erosion. Soil Sci. Soc. Am. J. 38(6):946-950.
- 100. Le Buanec, B. 1972. Dix ans culture motorisee sur un bassin versant du centre Cote d'Ivoire. Evolution de la fertite' et de la production. Agron. Tropicale 27:1191-1211.
- 101. Leopold, L.B., Wolman, M.G. and J.P. Miller. 1964. Fluvial Processes in Geomorphology. Freeman, San Francisco, Calif. 522 pp.

- 102. Liao, M.C. 1981. Soil Conservation measures for steep orchards in Taiwan. In: South-East Asian Regional Symposium on Problems of Soil Erosion and Sedimentation. pp.301-310.
- 103. Liao, M.C., Chang, H.M., and R.S. Lin. 1975. A comparison of runoff from bench terraces and hillside ditches. JCSWC 1:24-32.
- 104. Liao, M. C . 1972 . Study on soil and water conservation in sugarcane land. TSES Report Vol . 55, pp . 75-90.
- 105. Lin, C . F. 1969 . Experimental study of erosion and runoff of Yellowish-Brown Gravelly Red soil in Pinchin Tea District. Experimental Reports of Soil and Water Conservation in Taiwan, 1:139-152.
- 106. Litaniwan, B.G. 1986. Pengaruh Vegetasi Penutup Tanah Terhadap Erosi dan Aliran Permukaan pada Tanah Tegalan di DAS Tritis Kecamatan Wdaslingtan Kabupaten Wonosobo. Skripsi Fakultas Kehutanan, Universitas Gadjah Mada. Yogyakarta.
- 107. Lombardi Neto, F., and J. Bertoni. 1975. Tolerencia de perdas para solos do Estado de Sao Paulo . Bol . Tec . Inst. Agron. 28 :1-12.
- 108. Luft, G. and G. Morgenschweis. 1984. View on problems deriving from large-scale terracing in the wine-growing area of the Kaiserstuhl Mountains J. Rural Eng. and Develop . pp .138-148.
- 109. Luft, G., Morgenschweis, G. and A. Vogelbacher. 1982. The effects of large scale terracing on hydrological processes. Proc. Symp. Hydrolog. Research Basins. Sonderh. Landeshydrologie, Bern, 1982. pp. 543-553.
- 110. Lugo-Lopez, M.A., J. Juarez, and J.A. Bonnet. 1968. Relative infiltration rates of Puerto Rican soils. J. Agr. Univ. Puerto Rico 52: 233 - 240.
- 111. Lukito, H. 5. 1984 . Pengaruh Jenis Tanaman Terhadap Erosi dan Limpasan Permukaan di Desa Gubug Klakah, Kecamatan Poncokusumo, Malang. Tesis Fakultas Pertanian, Universitas Brawijaya, Malang.
- 112. Lyles, L. 1967. Effect of dryland leveling on soil moisture storage and grain sorghum yield. Trans . of ASAE 8(4): 523-525.
- 113. Mannering, J.V. and L.D. Meyer. 1963. The effects of various rates ofsurface mulch on infiltration and erosion. Soil Sci. Soc. Am. J. 27 (1) :84-86.
- 114. Marques, J.Q.A. and J. Bartoni. 1961. Sistemas de preparo do solo em relacao a producao e a erosao. <u>Bragantia</u> 20: 403 -459.
- 115. Marsh B. 1971. Immediate and long- term effects of soil loss. Proc . Australian Soil Conservation Conf.- 1971.

- 116. Marston, D., Anecksamphant and R. Chirasathaworn. 1983. Soil conservation and land development in Thailand. In : <u>Soil Erosion and</u> <u>Conservation.</u> Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp. 634 - 641.
- 117. Massee, T.W., and H.O Waggoner. 1985. Productivity losses from soil erosion on dry cropland in the intermountain area. J. Soil Water Consv. 40(5):447-450.
- 118. Mbagwu, J.S.C., Lal, R., and T.W. Scott. 1984. Effects of desurfacing of Alfisols and Ultisols in southern Nigeria: I. Crop Performance. Soil Sci. Soc. Am. J. 48(4) :828-833.
- 119. Mbagwu, J.S.C., Lal, R., and T.W. Scott. 1984. Effects of desurfacing of Alfisols and Ultisols in southern Nigeria: II. Changes in soil physical properties. Soil Sci. Soc. Am. J. 48(4):834-838.
- 120. McCorkle, J.S., and T. Dale. 1941. Conservation practices for the rangelands of the southern Great Plains. S.C.S./U.S.D.A. 18 pp.
- 121. McPhee, P.J., Hartman, M.O., and N.F. Kieck. 1983. Soil erodibility and crop management factors of soils under pineapple production. ASAE Paper No. 83-2073.
- 122. Mensah-Bonsu and H.B. Obeng. 1979. Effects of cultural practices on soil erosion and maize production in the semi-deciduous rainforest and forest-savanna transitional zones of Ghana. In: <u>Soil Physical</u> <u>Properties and Crop Production in the Tropics</u>. Eds. R. Lal and D.J. Greenland. John Wiley and Sons. Chichester, England. pp.509-519.
- 123. Meyer, L.D., Wischmeier, W.H., and G.R. Foster. 1970. Mulch rates required for erosion control on steep slopes. Soil Sci. Soc. Am. J. 34(6):928-930.
- 124. Mickelson, R.H. 1968. Conservation bench terraces in Eastern Colorado. Trans. of ASAE. 11:(3)389-392
- 125. Mickelson, R.H. 1966. Level pan system for spreading and storing watershed runoff. Soil Sci. Soc. Am. J. 30(3):388-392.
- 126. Mickelson, R.H. 1966. spreading runoff. Level pan construction for diverting and Trans. of ASAE 9:(4)568-570.
- 127. Mielke, L.N. 1985. Performance of water and sediment control basins in northeastern Nebraska. J. Soil Water Consv. 40(6):524-528
- 128. Miller, C.R., Worlbrown, R. and R.R. Turner. 1962. Upland gully sediment production. IASH Pub. #59.
- 129. Millington, A.C. 1984. Indigeneous soil conservation studies in Sierra Leone. In: <u>Challenges in African Hydrology and Water Resources</u> (Proc. Harare Symposium). IAHS Publ. no. 144. pp.529-537.

- 130. Miranda, S.M., Pathak, P., and K.L. Srivastava. 1982. Runoff management on small agricultural watersheds: The ICRISAT experience. National Seminar on <u>A Decade of Dryland Agricultural Research in india and Thrust in the Eighties</u>. Hyderbad, India.
- 131. Mittal, S.P., Singh, P., Agnihotri, R.C., Dyal, S.K.N. and A.D. Sud. 1986. Effects of conservation farming practices on runoff soil loss and yield of maize in Shiwalik foothills. Indian J. Soil Conservation. Vol. 14, No. 1. April 1986. pp. 1-6.
- 132. Morgan, R.P.C. 1986. <u>Soil Erosion and Conservation</u>. John Wiley & Sons, New York, New York. 297 pp.
- 133. Moura, F.W. and S.W. Buol. 1972. Studies of a Latosol Roxo in Brazil. Experientiae 13:201-234.
- 134. Mueller-Dombois, D. 1973. A non-adapted vegetation interferes with water removal in a tropical rainforest area in Hawaii. Tropical Ecology. 14(1):1-18. TABLE 4
- 135. Murad, A. 1985. Penilaian Tindakan Pengawetan Tanah Dengan Tehnik Sipil Dalam Usahatani lahan Kerinjg di Jampang Tengah, Sukabumi. Tesis Fakultas Kehutanan. Institut Pertanian Bogor.
- 136. North Carolina State University. 1973,1974. Research on Tropical Soils. Annual Report. Soil Science Dept., North Carolina State University, Raleigh.
- 137. Norton, L.D., Cogo, N.P. and W.C. Moldenhauer. 1983. Effectiveness of mulch in controlling soil erosion. In : <u>Soil Erosion and</u> <u>Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.598-606
- 138. O'Loughlin, C.L., and A.J. Pearce. 1976. Influence of cenozoic geology on mass movement and sediment yield response to forest removal. North Westland, New Zealand. Bull. Int. Assoc. Engineering Geology 14:41-46
- 139. Osuji, G.E., Babalola, O. and F.O. Aboaba. 1980. Rainfall erosivity and tillage practices: affecting soil and water loss on a tropical soil in Nigeria. J. Environ. Management 10:207-217.
- 140. P3HTA. 1987. Penelitian Terapan Pertanian Lahan Kering dan Konservasi. Progress Report 1986-1987. P3HTA. Salatiga. 141. P3HTA. 1988. Penelitian Terapan Pertanian Lahan Kering dan Konservasi. Laporan Tahunan 1986/1987. P3HTA. UACP-FAS. Salatiga.
- 141. P3HTA. 1988. Penelitian Terapan Pertanian Lahan Kering dan Konservasi. Laporan Tahunan 1986-1987. P3HTA. UACP-FAS.
- 142. Pathak, P., Miranda, S.M. and S.A. El-Swaify. 1983. Improved rainfed farming for semiarid tropics. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.338-354.

- 143. Patnaik, N. 1975. Soil erosion: A menace to the nation. Indian Farming 24(11):7-10.
- 144. Patnaik, U.S., Satry, G. Sharda, V.N., Juyal, G.P., and V.S. Katiyar. 1986. Soil conservation engineering practices for agricultural lands. Indian Journal of Soil Conservation. 14(3):85-89.
- 145. Pearce, A.J. and L.S. Hamilton. 1986. <u>Water and Soil Conservation</u> <u>Guidelines for Land-use Planning</u>. Environmental and Policy Institute, East-West Center. Honolulu, Hawaii. 43 pp.
- 146. Peterson, Branson. 1962.
- 147. Pickup, G., Higgins, R.J., and R.F. Warner. 1981. Erosion and sediment yield in the Fly River drainage basins, Papua New Guinea. IASH 132:438-457
- 148. Pinczes, Z. 1980. 'A muvelesi agak es modok hatasa a talajeroziora'. Foldr. Kozl.. 28:357-359
- 149. Pla, I., Florentino, A. and D. Lobo. 1983. Soil and water conservation problems in the Central Plains of Venezuela. In : <u>Soil Erosion and</u> <u>Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp. 66-77. TABLE 4 page 11 of 16
- 150. Popence, H.L. 1957. The influence of the shifting cultivation cycle on soil properties in Central America. Proc. Ninth Pacific Sci. Congr. (Bangkok) &:72-77.
- 151. Powell, G.M. and L.P. Herndon. 1987. Maintenance of field conservation structures. In: Optimum Erosion Control at Least Cost - Proceedings of the National Symposium on Conservation Systems. Am. Soc. Ag. Eng., St. Joseph, Michigan. pp.374-383.
- 152. Proyek P3DAS Solo. 1982. Pengaruh Teras Bangku dan Penghijaun (Silvopasture) Terhadap Laju Erosi. Proyek Pusat Pengembangen Pengelolaan Daerah Aliran Sugai (P3DAS). Surakarta.
- 153. Randhawa, N.S. and J. Venkateswarlu. 1979. Indian experiences in the semi-arid tropics: prospect and retrospect. In : <u>Development and</u> <u>Transfer of Technology for Rainfed Agriculture and the SAT Farmer,</u> <u>Proc. of the Inaugural Symp. at ICRISAT</u>. ICRISAT, Andra Pradesh, India. pp.207-219.
- 154. Reed, L.A. 1978. Effectiveness of sediment control techniques used during highway construction in Pennsylvania. USGS Water Supply Paper no. 2054.
- 155. Richadson, C.W. 1973. Runoff, erosion, and tillage efficiency on graded furrow and terraced watersheds. J. Soil Water Consv. 28(4):162-164.

- 156. Richardson, C.W. 1972. Changes in water yield of small watersheds by agricultural practices. Trans. of ASAE 15:(3)591-593.
- 157. Rockwood, W.G. and R. Lal. 1974. Mulch tillage: A technique for soil and water conservation in the tropics. Span 17:77-79.
- 158. Roose, E.J. and F.X. Masson. 1983. Consequences of heavy mechanization and new rotation on runoff and on loessial soil degradation in northern France. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp. 24 - 33.
- 159. Sahasrabuddhe, K.R. 1964. Preliminary trials of bunding in deep black soils of the Deccan region of Maharashtra. J. Soil Water Consv. India. 12(3&4):67-79.
- 160. Sanchez, Pedro A.. 1976. <u>Properties and Management of Soils in the</u> <u>Tropics</u>. John Wiley and Sons, New York. 618 pp.
- 161. Saplaco, 5., Lapitan, R., and M. Aquino. 1980. Hydro-meteorological characterization of upland ecosystems at Mt. Makiling. In : <u>Proceedings of the Fifth International Symposium on Tropical</u> Ecology. Ed. J.I. Furtado. Kuala Lampur, Malayasia. pp. 411-425.
- 162. Scott, G.A. 1969. Vegetation and avalanching in rainfall areas of Oahu. MA Thesis, University of Hawaii. 98 p.
- 163. Sembiring, H. and A.M. Fagi. 1989. Paket Usahatani dalam Mengatasi Erosi di DAS Brantas, Jawa Timur. P3HTA Malang.
- 164. Semple. 1937.
- 165. Seno, K., Ohyagi, 5 . and Y. Fukushima. 1981. Erosion control on a granite mountain in Japan. In: South-East Asian Regional Symposium on Problems of Soil Erosion and Sedimentation. pp . 95-105.
- 166. Seubert, C . E . 1975 . Effects of land clearing on crop performance and changes in soil properties in an Ultisol of the Amazon jungle of Peru. M.S. thesis, North Carolina State University, Raleigh. 152 pp.
- 167. Sfeir-Younis, A. 1985. <u>Soil Conservation in Developing Countries: A</u> <u>Background Report</u>. Unpublished report to the World Bank. 582 p.
- 168. Sharma, R. C. and S. S. Khanna. 1978. Impact of various soil conservation practices on soil fertility and moisture conservation. J. Soil Water Consv. India. 28(1&2) :50-60.
- 169. Sheng, T.C., Jackson, J.K., Kraayenhagen, J., Nakasthin, N. and P. Watnaprateep. 1981. The effects of different structures on erosion and runoff. In: South-East Asian Regional Symposium on Problems of Soil Erosion and Sedimentation. pp. 301- 310.

- 170. Sheng, T. C., and H. R. Stennet. 1975. Forestry development and watershed management in the upland regions - Jamaica. FAO Working Document SF/JAM 505. Rome: FAO-UNDP. 1981. Effect of mulch rate.
- 171. Singer, M.J., Matsuda, Y., and J. Blackard. on soil loss by raindrop splash. Soil Sci. Soc. Am. J. 45(1) :107-110.
- 172. Singh, A. 1974. Selection of structures for soil and water conservation. Soil Conservation Digest 2(2) :49-53.
- 173. Singh, G., Rajbans, D., and S.N. Bhola. 1967. Soil and water loss (run-off) studies under different vegetative covers on 0. 5 and 1.0% slopes at Kota. 1967. J. Soil Water Consv. 15(3&4) :17-23.
- 174. Singh, G., Singhal, A.K., and K.K.M. Nambiar. 1967. Effect of mulching on moisture retention and yield of wheat under rainfed conditions. J. Soil Water Consv. India. 15(1&2) :102-107.
- 175. Sinha, A.K. and C.N. Rai. 1980. Economics of common terracing methods in the uplands of Chotanagpur. J. Soil Water Consv. India. 30(1&2): 42-46.
- 176. Smyle, J.W., 1987. Sediment production from small catchments in the mid-elevation wet zone of Sri Lanka. M.S. Thesis, University of Georgia. Athens, Georgia. 49 p.
- 177. Spomer, R.G., Saxton, K.E., and Heinemann, H.G. 1973. Water yield and erosion response to land management. J. Soil Water Consv. 28(4) : 168-171.
- 178. Stein, O.R., Neibling, W.H., Logan, T.J., and W.C. Moldenhauer. 1986. Runoff and soil loss as influenced by tillage and residue cover. Soil Sci. Soc. Am. J. 50(6) :1527-1531.
- 179. Stern, P. 1981. Gabions for hydraulic structures. Appropriate Technology. 7:(4)6-8.

- 180. Stewart, B.A., Unger, P.W. and O.R. Jones. 1983. Soil and water conservation in semiarid regions. In : <u>Soil Erosion and</u> <u>Conservation.</u> Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.328-337.
- 181. Suarez de Castro, F. 1957. Las quemas como practica agricola y sus efectos. Fed. Nac. Cafetaleros de Colombia Bol. Tec. 2.
- 182. Suarez de Castro, F. and A. Rodriguez. 1955. Perdidas por erosion de elementos nutritivos bajo diferentes cubiertas vegetales y con varias practicas de conservacion de suelos. <u>Federacion Nacional de</u> Cafeteros de Colombia Bol. Tec. 14.
- 183. Subagyono, K. 1988. Pengaruh Penanaman Berbagai tanaman Penutup Tanah Secara Strip Terhadap Erosi dan Limpasan Permukaan pada Mediteran Desa Jatikerta Sumberpucung Malang. Tesis. Fakultas Pertanian Universitas Brawijaya. Malang.
- 184. Sub Proyek Bantuan Teknik UNDP Solo. 1979. Evaluasi Penelitian Erosi Pada Plot Percobaan Proyek TA IN5/72/006. Kerjasama antara Sub Proyek Bantuan Teknik UNDP Solo/TA IN5/72/006. Surakarta dengan Fakultas Kehutanan UGM Yogyakarta. Surakarta.
- 185. Sudirman and A. Abdurachman. 1981. Pengaruh Kadar Ciri Tanah, Mulsa dan Pupuk Organik Terhadap Pertumbuhan Jagung dan Pemakaian Air. <u>dalam</u> Kumpulan Makalah Pertemuan Teknis Proyek Penelitian Tanah di Cipayung - Bogor. 10 s/d 13 November 1981. Proyek Penelitian Tanah. Puslit Tanah - Bogor. Hal. 445-458.
- 186. Sudirman, Simkkaban, N., Suwardjo, H. and 5. Arsyad. 1986. Pengaruh Tingkat Erosi dan Pengapuran Terhadap Produktivitas Tanah. <u>dalam</u> Pemberitaan Penelitian Tanah dan Pupuk No. 6, 1986. Pusat Penelitian Tanah, Bogor. Hal. 9-14.
- 187. Sunardi, M. 1989. Penggunaan tanaman Strip untuk Pengendalian Erosi dan Limpasan Permukaan pada Tanaman Tumpangsari Jagung dan Ubikayu tanpa teras. Tesis. Fakultas Pertanian Universitas Brawijaya. Malang.
- 188. Sutrisno. 1987. Pengaruh Pemberian Jerami dan Sifat-sifat Terhadap Erosi dan Aliran Permukaan. Tesis Jerusan Tanah Fakultas Pertanian. Institut Pertanian Bogor. Bogor.
- 189. Suwardjo, Suhardjo, M. and S.H. Talauhu. 1988. Pengaruh Panjang Lereng dan Cara Pengelolaan Lahan Terhadap Erosi dan Pertumbuhan Tanaman Kedelai dalam Prosiding Petremuan Teknis penelitian Tanah. Cipayung 18-20 Maret 1986. Pusat Penelitian Tanah. Badan Litbang Pertanian. Bogor.
- 190. Suwardjo and Sofijah Abujamin. 1983. Crop residue mulch for conserving soil in uplands of Indonesia. In : <u>Soil Erosion and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.607-614.

- 191. Suwito, H. 1984. Pengaruh Pengelolaan Tanah dan Tanaman Terhadap Erosi dan Limpasan Permukaan di Daerah Aliran Waduk Karangkates. Tesis. Fakultas Pertanian Universitas Brawijaya. Malang. TABLE 4 page 14 of 16.
- 192. Team Konservasi Tanah dan Air. 1981a. Pengaruh Mulsa Sisa Tanaman dan Pengelolahan Tanan Terhadap Erosi, Sifat-sifat Tanah, Pertumbuhan dan Hasil Tanaman Padi Pada Tanah Latosol Citayam. <u>dalam</u> Progres Penelitian Konservasi Tanah dan Air 1980/1981 Proyek Penelitian Tanah, Puslit Tanah. Bogor. Hal. III.10-1 s/d III.10-7.
- 193. Team Konservasi Tanah dan Air. 1980d. Pengaruh Mulsa Sisa Tanaman dan Pengelolaan Tanan Terhadap Erosi. Sifat-sifat Tanah dan Petembuhan Tanaman pada Tanah Latosol di Citayam dan pada Tanah Podsolik. Di Pekalongan dan laporan Progres. Penelitian Konservasi Tanah dan Air 1979/1980 Proyek Penelitian Tanah. Lembaga tanah. Bogor. Hal. IX.1 - IX.13.v
- 194. Tejwani, K.G. and B. Verma. Undated. Reclamation and Management of Ravine lands in India. Presented at: International Conference on Watershed Mgmt. and Land Development in the Tropics, IITA, Ibadan, Nigeria.
- 195. Tregubov, P.S. 1981. Effective erosion control in the USSR. In : <u>Soil</u> <u>Conservation: Problems and Prospects</u>. Ed. R.P.C. Morgan. Wiley & Sons, New York, New York. pp.451-459.
- 196. Trimble, S.W. 1981. Changes in sediment storage in Coon Creek Basin, Driftless Area, Wisconsin, 1853-1975. Science 214:181-183)
- 197. Unger, Paul W. 1984. Tillage systems for soil and water conservation. FAO Soils Bulletin 54. FAO, Rome. 278 pp.
- 198. USDA. 1981. Soil, water and related resources in the United States: Analysis of resource trends. 1980 RCA Appraisal, Part II. USDA. Wash., DC.
- 199. Utumo, T.W. 1986. Pengaruh Penutupan Mulsa Jerami Padi Terhadap Sifat Fisik Tanah dan Erosi Pada Latosol Darmaga yang Ditanami Padi Gogo Selama Satu Musim Tanam. Tesis Jurusan Tanah Fakultas Pertanian. Institut Pertanian Bogor. Bogor.
- 200. Valentine, K.A. 1947. Effects of water-retaining and water-spreading structures in revegetating semi-desert rangeland. New Mexico Agri. Exper. Station Bull. 341. 22p.
- 201. Van der Weert, R. 1974. The influence of mechanical forest clearing on soil conditions and resulting effects on root growth. Trop. Agr. (Trinidad) 51:325-331.
- 202. Vasudevaiah, R.D., Teotia, S.P.S. and D.P. Guha. 1965. Runoff -- loss determination at Deochanda Experiment Station: II Effect of annually cultivated grain crops and perenniak grasses on sZ slopes. J. Soil Water Consv. India. 13(1&2):36-46.

- 203. Verma, G.P. 1981. Erosion control on vertisols under comparatively high rainfall conditions. In: South-East Asian Regional Symposium on Problems of Soil Erosion and Sedimentation. pp.301-310.
- 204. Walker, S.H. and K.R. Rushton. 1986. Water losses through the bunds or irrigated rice fields interpreted through an analogue model. Agric. Water Manage. 11:(1)59-73.
- 205. Wang, 1969 page 15 of 16.
- 206. Ward, T.J. 1983. Sediment yield modeling of roadways. In : <u>Soil Erosion</u> <u>and Conservation</u>. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.188-199.
- 207. Warner, R.C., and M.C. Hirschi. 1983. Modeling check dam trap efficiency. ASAE Paper no. 83-2082. 10 pp.
- 208. Watnaprateep, P. 1980. First year study on soil loss and runoff from cropping under a forest plantation. Paper presented at ASEAN seminar on management of tropical forests, ASEAN forests for social welfare. December 1980, Chiang Mai, Thailand. 10 p.
- 209. Watters, R.F. 1971. Shifting cultivation in Latin America. FAO For. Dev. Paper 17, pp.291-299.
- 210. Wein, R.W. 1970. Microenvironmental effects of erosion control treatments. Utah State University, Ph.D. Dissertation. 181 pp.
- 211. Weltz, M, and M.K. Wood. Short-duration grazing in central New Mexico: Effects on sediment production. 41(4):262-266.
- 212. Whitaker, F.D., Heinemann, H.G., and W.H. Wischmeier. 1973. Chemical weed controls affect runoff, erosion, and corn yields. J. Soil Water Consv. 28(4):174-176.
- 213. Widajati. 1989. Kajian Pengaruh Sistem Penanaman dan Pemberian Mulsa Terhadap Aliran Permukaan dan Erosi Pada Lahan Tegalnan Daerah Hulu. Thesis Fakulatas Kehutanan. Universitas Gajah Mada. Yogyakarta.
- 214. Wieczorek, G.F., Jishan, W., and L. Tianchi. 1987. Deforestation and landslides in Yunnan, China. In: <u>Proceedings of Conference XVII,</u> <u>International Erosion Control Association</u>. IECA Pinole CA. pp.181-196.
- 215. Wiersum, K.F. 1983. Effects of various vegetation layers in a Acacia auriculiformis forest plantation on surface erosion in Java, Indonesia. In : Soil Erosion and Conservation. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.79-89.
- 216. Wilder, C.A. and M.T. Rains. 1976. <u>Site Improvement Techniques On The</u> <u>Y-LT: A Status Report</u>. Forest Service USDA, Southwestern State and Private Forestry. 12pp.

- 217. Wilson, L.G. 1967. Sediment removal from flood water by grass filtration. Trans. of ASAE 10:(1)35-37.
- 218. Winkworth, R.E. 1963. Some effects of furrow spacing and depth on soil moisture in central Australia. Jour. of Range Mgmt. 16:138-142.
- 219. Wischmeier, W.H., and D.D. Smith. 1978. Predicting rainfall erosion losses a guide to conservation and planning. USDA AH # 537.58 pp.
- 220. Wischmeier, W.H., and D.D. Smith. 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agric. Handbook no. 282. USDA, Wash.,D.C.
- 221. Yost, R.S., El-Swaify, S.A., Dangler, E.W. and A.K.F. Lo. 1983. The influence of simulated soil erosion and restorative fertilization on maize production on an Oxisol. In : Soil Erosion and Conservation. Eds. S.A. El-Swaify, W.C. Moldenhauer and A. Lo. Soil Conservation Society of America. Ankeny, Iowa. pp.248-261.

61 7 F			0. IN TE					arut àva
	TECHNOLOGY\TREATMENT ====================================		CLIMATE		LAND USE	SCALE		REMARKS
155	Conservation practices	USA	T	N/A	Agricultural	Watershed	Agricultural practices have significant effect on on-site runoff from small watersheds. Effects management dependant. Poor management will increase water yields. Significant runoff reduction associated intensely managed areas.	In 30 years of studies little effect of conservation practices on areas larger than 120 ha has been noted or studied.
110	Ferralsols (Oxisols) Acrisols/Nitosols (Ultisols) Chernozems/Phaeozems (Nollisols) Luvisols/Podzoluvisols (Alfisols) Cambisols (Inceptisols) Fluvisols/Gleysols/Regosols (Entisols) Vertisols	Puerto Rico	W/D	N/A	Undisturbed	Watershed	Max/min infiltration rate = 15.4 / 8.4 cm/hr Max/min infiltration rate = 23.6 / 7.4 cm/hr Max/min infiltration rate = 19.5 / 8.2 cm/hr Max/min infiltration rate = 11.5 / 2.7 cm/hr Max/min infiltration rate = 13.2 / 2.7 cm/hr Max/min infiltration rate = 27.5 / 2.3 cm/hr Max/min infiltration rate = 9.5 / 0.1 cm/hr	rates in undisturbed Puerto Rican
119	Removal of 5 cm of topsoil	Nigeria	W/D	NG	NG	Field	61% decrease in water holding capacity in Ultisols, 12 - 23% decrease in water holding capacity for Alfisols	Measurements taken at 7 months after topsoil removal
181	Land clearing	Colombia	W/D	Steep	Agriculture	Field	Decrease in surface runoff.	Attributed to increase in permeability from burning; soil = Andosol (Andept)
100	Land clearing	Ivory Coast	W/D	NG	Agriculture	Field	Large increase in surface runoff	Soil = sandy Alfisol
166	Land clearing ~ bulldozer	Peru	CW	NG	Agriculture	Plot	95% decrease in infiltration capacity	Comparison to clearing by slash H and burn method I
201	Land clearing ~ KG blade	Trinidad	W/D	NG	Agriculture	Field	29% increase in soil bulk density in top 16 cm decreased infiltration capacity.	Comparison to pre-treatment bulk density
6	Land clearing ~ slash/burn Land clearing ~ bulldozer with straight blade	Amazon	CW	2-4%	Agriculture	Field	37% decrease in infiltration rate 96% decrease in infiltration rate	
	tand clearing - bulldozer with shear blade						90% decrease in infiltration rate	
160	forest clearing	Ghana	CW	NG	Forestry	Field	13% decrease in non-capillary porosity	Soil ≈ sandy loam
π	Conversion of forest to grassland	USA	τ	Steep	Grassi and	Watershed	Greater water yield, higher groundwater levels in deep soils, no significant difference in stormflow, peak stormflow, and stormflow duration when grass dense and vigorous	Comparison to pre-conversion parameters
77	Conversion of forest to grassland	USA	т	NG	Grassl and	Vatershed	No significant difference in total discharge when grass production high. Decrease in production increased discharge 12 cm/yr over predicted forest discharge	Comparison to pre-conversion parameters conversion N

.

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE	IMPACT	REMARKS
	Conversion of forest to grassland	Hawa i i	CW	NG	Grassland		Increase in runoff rates	Attributed to decreased rate of evapotranspiration by grass relative to natural rainforest cover
	Bare soil Nardwood plantation Coniferous plantation	Korea	T	27%	Forestry	Watershed	132% increase in surface runoff 36% decrease in surface runoff 42% decrease in surface runoff	Comparison to grassed; soil = sandy clay loam; Pt = 1,370 mm/yr
	Fern cover Degraded grass cover Grass cover	Sri Lanka	EM	50% 50% 50%	Forestry	Watershed	110% increase in surface runoff 55% increase in surface runoff No significant difference in surface runoff	Comparison to closed canopy Pinus caribea plantation; Soils = sandy clay loam Nitosol (Typic Tropudult), Pt = 5,640 mm/yr
	fern cover Degraded grass cover Grass cover	Sri Lanka	EM	50% 50% 50%	Forestry	Watershed	205% increase in average peak discharge 220% increase in average peak discharge 58% increase in average peak discharge	Comparison to closed canopy Pinus caribea plantation Soils = sandy clay loam Nitosol (Typic tropudult), Pt = 5,640 mm/yr
	Clearcut Pasture 6 yr. old Pinus plantation	Chile	W/D	30X 30X 30X	Forestry Pasture Forestry	Plot	73% increase in surface runoff 52% increase in surface runoff 14% increase in surface runoff	Comparison to 30 yr. old Pinus plantation; soil = clay loam; Pt = 2,000 mm/yr
182	Grass cover	Colombia	W/D	22%	Pasture	Plot	70% decrease in surface runoff	Comparison to monthly tilled bare soil.
	Grass cover Grass cover	NSW, Australia	SATr	8% 8.5%	Gressland Gressland	Plot Plot	81% decrease in surface runoff 75% decrease in surface runoff	Comparison to wheat; soil = calcic and chromic luvisols, respectively; Pt = 644 and 561 mm/yr, respectively
	Grass cover (Pennisetum, Cynodon,Urochloa,Panicum)	India	D/W	5%	Agriculture	Field	No significant difference in surface runoff	Comparison to conventional cultivation of gorapaddy,urid, corn,peanut; soil = sandy clay, Pt = 1,302 mm/yr
	Grass - Imperata,Saccharum Plantation forest - Gliricidia,Leucaena	Philippines	D/WI	36-70%	Grassland Forestry	Field	No significant difference in surface runoff No significant difference in surface runoff	Comparison to secondary forest; Soil = clay loam, Pt = 2,600mm/yr
I	Kaingin				Agriculture		165% increase in surface runoff	
160 (Mulch/Cover crop	Pan-tropical	N/A	N/A	Agrícul ture	N/A	Protection from compaction and decreased infiltration	Luvisols, Nitosols, Acrisols (Ultisols and Alfisols) with sandy topsoils susceptible to compaction and resultingly lower soil moisture levels following cultivation.
1	Nulch Forest cover Mulch Forest cover	Nigeria	W/D	1% 1% 5% 5%	Corn Forest Corn Forest	Plot	69% decrease in surface runoff 73% decrease in surface runoff 81% decrease in surface runoff 97% decrease in surface runoff	Comparison to unmulched

CITE	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	IMPACT	REMARKS
22723	Mulch Forest cover Nulch <i>Forest cover</i>		I 28 5114-5	10% 10% 15% 15%	Corn Forest Corn Forest	~~=====	87% decrease in surface runoff 96% decrease in surface runoff 89% decrease in surface runoff 89% decrease in surface runoff	
102	Desmodium spp. cover Bahia grass Eragrostis spp. mulch	Taiwan	D/WM	46% 46% 46%	Litchi	Field	No significant difference in surface runoff 98% decrease in surface runoff 69% decrease in surface runoff	Comparison to clean cultivation; Pt = 3,494 mm/yr
102	Eragrostis barrier/mulch Guinea grass barrier/mulch South African pigeon grass barrier/mulch	Taiwan	D/WN	23X 23X 23X	Banana	field	30% decrease in surface runoff 25% decrease in surface runoff No significant difference in surface runoff	Comparison to clean cultivation; Pt = 2,348 mm/yr
3	Grass strips (0.5m wide - Brachiaria, 1m wide - Paspalum)	java	EM	15-22%	Agriculture	Field	9% decrease in surface runoff	Comparison to bare soil
183	Vegetative strip (Mucuna	Indones i a	D/WH	12%	Corn & cassava	Plot	No significant difference in runoff	Comparison to corn & cassave w/o vegetative strips
	utilis) Vegetative strip (Pucraica						14% decrease in surface runoff	vegerarive arripa
	phaseoloide) Vegetative strip (Mimosa						10% decrease in surface runoff	
	invisa) Vegetative strip (Pennisetum purpureum)						32% increase in surface runoff	- 19
160	Mulch	Pan-tropical	N/A	N/A	Agriculture	N/A	Decrease soil moisture losses from evaporation	لى لى (Andepts), and oxidic soils have! a low range of available moisture (gravity dreined @ 0.1 bar)
96	Mulch	Nigeria	W/D	N/A	Agricultu re	N/A	Increased soil water, decreased runoff, decreased evaporation rates	Best management practice for Luvisols, Podzoluvisols (Alfisols)
197	Mulch (1.1 t/ha) Mulch (2.2 t/ha) Mulch (4.4 t/ha) Mulch (8.8 t/ha) Mulch (13.2 t/ha)	USA	7	NG NG NG NG NG	Sorghum failow	Field Field Field Field Field	38% increase in soil moisture storage 39% increase in soil moisture storage 61% increase in soil moisture storage 93% increase in soil moisture storage 104% increase in soil moisture storage	Comparison to unmulched
180	Mulch (12 t/ha)	USA	SATimp	NG	Agriculture	Field	104% increase in soil moisture storage	Comparison to no mulch
171	Mulch (0.33 t/ha, 22% cover) Mulch (0.44 t/ha, 37% cover) Mulch (0.66 t/ha, 46% cover) Mulch (0.88 t/ha, 58% cover) Mulch (1.21 t/ha, 81% cover) Mulch (1.87 t/ha, 87% cover) Mulch (2.47 t/ha, 92% cover)	USA	T	NG	Agriculture	Plot	No significant difference in surface runoff No significant difference in surface runoff	Comparison to no mulch under rainfall simulator
113	Mulch (0.63 t/ha)	USA	T	5%	Agriculture	Plot	11% decrease in surface runoff	Comparison to no mulch; soil =

							SERVATION TECHNOLOGIES ON AND SURFACE- RUNOFF	
	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE		REMARKS
	Mulch (1.23 t/ha) Mulch (2.47 t/ha) Mulch (2.47 t/ha) Mulch (4.94 t/ha) Mulch (9.88 t/ha)	**************	29223222	5% 5% 5% 5%			44% decrease in surface runoff 89% decrease in surface runoff 96% decrease in surface runoff 100% decrease in surface runoff	silt loam; rainfall simulator study
38	Mulch (5 cm rice straw)	India	D/WN	1X	Wheat/barley/ gram/linseed	Field	3% increase in soil moisture storage	Comparison to unmulched
192	Mulch	Indonesia	D/WH	NG	Corn	Plot	86% - 91% decrease in surface runoff	Comparison to unmulched corn
189	Mulch (9 t/ha)	Indonesia	W/D	NG	Soybean	Plot	Conserved equivalent of 23 days of plant's water requirements throughout growing season	Comparison to unmulched
199	Muich (0.6 t/ha) Muich (1.0 t/ha) Muich (1.6 t/ha) Muich (0.6 t/ha) Muich (1.0 t/ha) Muich (1.6 t/ha) Muich (0.6 t/ha) Muich (1.0 t/ha)	Indonesia	D/W	72 92 142	Upland rice	Plot	50% decrease in surface runoff 69% decrease in surface runoff 83% decrease in surface runoff 24% decrease in surface runoff 69% decrease in surface runoff 86% decrease in surface runoff 26% decrease in surface runoff	Comparison to unmulched (rice straw); soil = Latosol
	Mulch (1.6 t/ha)						83% decrease in surface runoff	
188	Mulch (0.6 t/ha) Mulch (1.0 t/ha) Mulch (1.6 t/ha)	Indonesia	D/WM	7-14%	Upland rice	Plot	33% decrease in surface runoff 59% decrease in surface runoff 84% decrease in surface runoff	Comparison to unmulched (rice straw); soil = latosol I
213	Mixed cropping & mulch (4.4 t/ha) Mixed cropping	Indonesia	D/WM	20%	Corn & peanuts	Plot	43% decrease in surface runoff No significant difference in surface runoff	Comparison to corn & peanuts 5 strip cropped
106	Multicropping	Indones i a	D/WM	20%	Clove/banana/ cassava/ungor laut/coconut	Plot	99% decrease in surface runoff	Comparison to corn monculture
9	Corn & teak intercrop	Indonesia	SATr	NG	Agriculture	Plot	2% - 17% decrease in surface runoff	Comparison to corn monoculture; Pt = 715 - 848 mm/yr
173	Natural cover Natural cover Grass cover (Cymodon spp.) Grass cover (Cymodon spp.) Peanut Peanut Gram Gram Jowar Jowar	India	SATr	0.5% 1% 0.5% 1% 0.5% 1% 0.5% 1% 0.5%	Natural cover Natural cover Grass Grass Peanut Peanut Gram Gram Jowar . Jowar	field	99.9% decrease in surface runoff 99.9% decrease in surface runoff 72% decrease in surface runoff 56% decrease in surface runoff 52% decrease in surface runoff 55% decrease in surface runoff 25% decrease in surface runoff 40% decrease in surface runoff 18% decrease in surface runoff	Comparison to cultivated fallow; soil = silty clay loam, Pt = 800 mm/yr
208	Agroforestry (intercropping)	Thailand	D/WM	NG	Gmelina arbore and rice	a Field	840% increase in surface runoff	Comparison to Gmelina arborea cropped alone
63	Coffee - 1 yr old	Indonesia	D/WM	46-66%	Agriculture	Plot	135% increase in surface runoff	Comparison to undisturbed natural

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON SOIL NOISTURE AND SURFACE RUNOFF

. . .

1 C 2 2 2 2	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	IMPACT 	REMARKS
	Coffee - 3 yr old Coffee - 16 yr old						348% increase in surface runoff 726% increase in surface runoff	forest.
8	Tobacco Potato Corn + beans	Indonesia	D/WI	30X	Agriculture	Plot	301% increase in surface runoff 889% increase in surface runoff 369% increase in surface runoff	Comparison to unweeded cassava; soil = andosol
2	Nanure (16 t/ha)	Indonesia	D/W	16X	Agriculture	Plot	45% decrease in surface runoff	Comparison to unmanured; soil = "volcanic, dusty regosol"
21	Cow dung (5 t/ha)	Ghana	CW	7.5%	Corn	Plot	90% decrease in surface runoff	Comparison to bare fallow;
	Wood shavings (5 t/ha)			7.5%		Plot	92% decrease in surface runoff	Pt = 1,340 mm/yr
	Poultry manure (5 t/ha)			7.5%		Plot	93% decrease in surface runoff	
	Cow/poultry manure (5 t/ha)			7.5%		Plot	91% decrease in surface runoff	
	Commercial fertilizer			7.5%		Plot	59% decrease in surface runoff	
21	Cow dung (2 t/ha)	Ghana	SATE	2%	Sorghum	Plot	64% decrease in surface runoff	Comparison to bare fallow;
	Cow dung (4 t/ha)			2%		Plot	77% decrease in surface runoff	Pt = 320 mm/yr
	Сом dung (4 t/ha) & straw mulch (4 t/ha)			2%		Plot	89% decrease in surface runoff	·····
	Cow dung (5 t/ha)			2%		Plot	82% decrease in surface runoff	
	Cow dung (5 t/ha) & straw mulch (4 t/ha)			2%		Plot	91% decrease in surface runoff	
90	Mulch and minimum tillage	Indonesia	EN	3.5X	Cassava/rice/	Plot	75% decrease in surface runoff	Comparison to unmulched,
	Bare soil			3.5%	corn/peanuts/	Plot	70% increase in surface runoff	traditional cultivation:
	Mulch and minimum tillage			9%	beans	Plot	64% decrease in surface runoff	
	Bare soit			9%		Plot	43% increase in surface runoff	in order of treatment pairs of soils = Nitosol (Tropudult).
	Mulch and minimum tillage			10%		Plot	No significant difference in surface runoff	Nitosol (Tropudalf),
	Bare soil			10%		Plot	No significant difference in surface runoff	Nitosol (Tropudalf),
	Mulch and minimum tillage			14%		Plot	63% decrease in surface runoff	Ferralsol (Haplorthox),
	Bare soil			14%		Plot	No significant difference in surface runoff	Nitosol (Tropudalf),
	Nulch and minimum tillage			14%		Plot	92% decrease in surface runoff	kitosot (itopadati),
	Bare soit			14%		Plot	No significant difference in surface runoff	
	Stubble mulch tillage Clean cultivation/fallow	USA	SATmp	NG	Wheat	Field Field	14mm increase in soil moisture storage 35mm increase in soil moisture storage	Comparison to clean cultivation, continuous wheat
	No-till	Thailand	D/WM	NG	Upland 'rice	Plot	67% decrease in surface runoff	Comparison to clean cultivation
	Stubble mulch Bare fallow			NG NG	• · · · ·		42% decrease in surface runoff 208% increase in surface runoff	
	Disk plow/stubble mulch	Thailand	D/LIN	NG	Upland rice	Plot	84% decrease in surface runoff	Comparison to disk plowed and
	No-till/mulch			NG		Plot	88% decrease in surface runoff	no mulch
	Disk plow/stubble melch No-till/mulch	Thailand	D/WN	NG NG	Peanuts	Piot Piot	38% decrease in surface runoff 50% decrease in surface runoff	Comparison to disk plowed and no mulch
	No-till with stubble mulch (chemical weed control)	USA	т	3%	Corn	Field	16% increase in surface runoff	Comparison to conventional tillage with stubble mulch
84	Furrow dikes with stubble mulch	USA	T	NG	Wheat-sorghum- fallow	Field	25 - 30 mm/yr decrease in surface runoff	Soil = clay loam Xerosol

					× .		· · · · · ·	
	Table 8.2							·
							SERVATION TECHNOLOGIES ON AND SURFACE RUNOFF	
	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE	INPACT	REMARKS
22223	======================================	38822233223388	**********	\$#2# F 223	19928géttttt	:프코드루프랑크라 ያ음	989992200000000000000000000000000000000	Pt = 1,270 mm/yr
54	A Rows up & down slope Contoured Cover cropped (Lupinus) and rows up & down slope	Peru	SATr	25% 25% 25%	Potato	Field	71% increase in surface runoff 8% decrease in surface runoff 44% increase in surface runoff	Comparison to continuous fallow
	Hulched			25%			16% decrease in surface runoff	
54	Rows up & down slope/burned Cover cropped and rows up & down	Peru	W/D	30X 30X	Potato	Field	19% increase in surface runoff 6% increase in surface runoff	Comparison to continuous fallow
	Contoured Mulch and rows up & down slope			30X 30X			14% increase in surface runoff 15% increase in surface runoff	
122	2 Bare fallow Zero-tillage Mulching Ridging across slope Minimum tillage	Ghana	W/D	7.5% 7.5% 7.5% 7.5% 7.5%	Corn	Field	214% increase in surface runoff 51% decrease in surface runoff 85% decrease in surface runoff 47% decrease in surface runoff 37% decrease in surface runoff	Comparison to traditional mixed cropping; soil = sandy loam to sandy clay, Pt = 1,500 mm/yr
122	2 Bare fallow Zero-tillage Mulching Ridging across slope Minimum tillage	Ghana	W/D	3X 3X 3X 3X 3X	Corn	Field	722% increase in surface runoff 18% decrease in surface runoff 82% decrease in surface runoff 31% decrease in surface runoff 7% decrease in surface runoff	Comparison to traditional mixed cropping; soil = sandy clay loam to sandy clay, Pt = 1,400 mm/yr
60	5 Cultivation	Brazil	CW	NG	Agriculture	Field	50% decrease in percentage of large soil aggregates, pore clogging	Soil = Ferrasol, Acrisols, Nitosols (Oxisols & Ultisols) (O
133	5 Cultivation	Brazil	CW	NG	Agriculture	Field	85% decrease in infiltration capacity	Result of 15 years cropping; attributed to compaction by machinery and illuviation of clay soil = Ferrasol (Oxisol)
157	7 No-till Bare fallow No-till Bare fallow No-till Bare fallow No-till Bare fallow	Nigeria	W/D	1% 1% 5% 5% 10% 10% 15% 15%	Agriculture	Field Field Field Field Field Field Field	86% decrease in surface runoff 127% increase in surface runoff 80% decrease in surface runoff 130% increase in surface runoff 77% decrease in surface runoff 90% increase in surface runoff 134% increase in surface runoff	Comparison to conventional plowing
7:	3 Plow,clean till,contour No-till,contour	USA	T	6% 21%	Agriculture	Field Field	48% decrease in surface runoff 43% decrease in surface runoff	Comparison to plow,clean till, and sloping rows
91	D Burn to clear/no-till Bulldoze to 4% slope & till	Japan	W/D	12-18X 3-5X	Agricul ture	Field	31% decrease in surface runoff 47% decrease in surface runoff	Comparison to burn to clear & tilled; soil = sandy clay loam; Pt = 2200 mm/yr
16	S Contour cultivation	India	W/D	2.2%	Barley/jowar	Plot	29% decrease in surface runoff	Comparison to up & down slope cultivation

			CLIMATE			SCALE	IMPACT R#8#===================================	
46 (Contour rows	India	D/W	NG	Agriculture	Field	25% decrease in surface runoff	Comparison to up & down slop cultivation; based on review 30 years of experiment statio projects
	Plough Plough-disk-harrow Cultivate Rotovate	USA	T	NG	Agricul tur e	Plot	858% increase in total water infiltrated 250% increase in total water infiltrated 279% increase in total water infiltrated 72% increase in total water infiltrated	Comparison to untilled; attributed to surface roughn not to increased permeability
1	Animal traction Broken grassland till,stubble plow,subscil till,stubble plow Heavy equipment, post harvest	France	T	5X 5X 5X 5X 5X	Winter barley Grassland Agriculture Agriculture Potato/endive	Plot Plot Plot	99.9% decrease in surface runoff 350% increase in surface runoff 150% increase in surface runoff 600% increase in surface runoff 1,317% increase in surface runoff	Comparison to permanent gras Rainfall simulator study - 1 33mm rainfall
178 1	tidge-tillage	USA	T	NG	Agricul ture	Field	May increase surface runoff	Increase in surface runoff d to concentration of flow in furrows and ridges increasin slope.
24 (Contour furrowing	USA	SATmp	NG	Rangeland	Field	8% increase in soil moisture storage in top 75 cm of soil	Generally, soils with medium fine texture show most consi beneficial response to furro
78 (Furrowing	USA	SAT m p	NG	Rangeland	Field	Little benefit as soil moisture conservation tool on clayey soils if compaction of soil surface occurs	
200 1	Furrowing	USA	SATeep	NG	Rangeland	Field	Ineffective as soil moisture conservation tool in sandy soils	
47	Furrowing	USA	SATmp	NG	Rangeland	Field	121% increase in soil moisture storage	Comparison to non-furrowed; soil = clay loam
164	Furrowing	USA	T	NG	Grassland	Field	Rainfall percolated 6-18 inches deeper	Comparison to non-furrowed
18	Furrowing	Australia	SATr	NG	Grassland	Field	Water storage upto 1 meter deeper	Comparison to non-furrowed
42	Broadbed & furrow	India	SATE	0.4%	Pearl millet/	Field	61% decrease in surface runoff,	Comparison to traditional fi
I	Broadbed & furrow			0.6%	sorghum intercrop with	Field	56% decrease in peak discharge 48% decrease in surface runoff, 31% decrease in peak discharge	cropping system with a monso failow; soil = very fine cla
I	Broadbed & furrow & field bunds			0.6%	Cajanus cajan	Field	51% decrease in peak discharge 66% decrease in sufface runoff 56% decrease in peak discharge	Vertisol (Typic Pellustert; Pt = 760mm/yr
I	Flat on grade			0.6%	7	field	36% decrease in surface runoff, no significant difference in peak discharge	
42	Broadbed & furrow	India	SATE	0.6%	Pearl millet/	field	38% increase in surface runoff,	Comparison to traditional
1	Flat on grade with graded bunds			0.6%	sorghum intercrop with	Field	67% increase in peak discharge 23% decrease in surface runoff, no significant difference in peak discharge	cropping system with field bunds; soil = fine clay (Udic Rhodoustalf).

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE		REMARKS
*****	Traditional with contour bunds			NG	Cajanus cajan		37% decrease in surface runoff, 33% decrease in peak discharge	Alfisols unstable in bunds & furrous. Pt = 760mm/yr
130	Broadbed and furrow	India	SATr	NG	Agriculture	Field	50% decrease in surface runoff	Comparison to traditional flat land with bunds
131	Cross-slope planting Ridge & furrow(60 cm spacing)	India	0/W	1.5%	Grains	Plot	21% decrease in surface runoff 86% decrease in surface runoff	Comparison to up & downslope cultivation; Soil = well-drained, sandy loam (Inceptisol)
180	Furrow dams	USA	SATmp	0-5 X	sorghum	Field	35-88mm of surface runoff conserved	5cm storage capacity before overtop; soil = clay loam
72	Bench terrace Afforestation	Indonesia	D/WH	10-47%	Agriculture	Plot	50% decrease in surface runoff 70% decrease in surface runoff	Comparison to unimproved local practices; Pt = 2,000-3,350 mm/yr
167	Terracing & reforestation	Indonesia	EM	NG	Agriculture	Watershed	50% decrease in runoff coefficients	Comparison to pre-treatment Levels
177	Level terrace Pasture	USA	T	2-18% 2-18%	Corn Pasture	Field	No significant difference in surface runoff 37% decrease in surface runoff 10% decrease in peak runoff on both	Comparison to contour planted corn; soil = deep loess, Pt = 815 mm/yr.
102	Bench terrace Mulch/Bahia grass strips Mulch/Bahia grass cover	Taiwan	D/WM	28% 28% 28%	Citrus	Field	74% decrease in surface runoff 92% decrease in surface runoff NG	Comparison to clean cultivation; Pt = 1,634 mm/yr 000000000000000000000000000000000000
102	Level terrace Grass barrier (2.5m spacing) Grass barrier (5m spacing) Mulch/Bahia grass cover	Taiwan	D/WA	24% 24% 24% 24%	Banana	Field	77% decrease in surface runoff 67% decrease in surface runoff 29% decrease in surface runoff 87% decrease in surface runoff	Comparison to clean cultivation, Pt = 2,274 mma/yr
103	Bench terraces Bench terraces with grass cover (Bahia,Love) or mulch	Taiwan	D/WH	28X 28X	Citrus orchard	Field	75% decrease in surface runoff 90% decrease in surface runoff	Comparison to clean cultivation; soil = clay loam
103	Bench terraces with Bahia Hillside ditches with Bahia	Taiwan	D/WM	28% 28%	Citrus orchard	Field	48% decrease in surface runoff 75% decrease in surface runoff	Comparison to bench terraces and hillside ditches without Bahia
102	Reverse slope bench terrace Mulch & close planted on the contour	Taiwan	D/WH	20% 20%	Pineapple	Field	86% decrease in surface runoff 82% decrease in surface runoff	Comparison to planting up & down slope; Pt = 1,373 mm/yr
68	Contour rows Up & down slope planting/ contour furrows	India	D/W	25%	Potato	Field	70% decrease in surface runoff 10% decrease in surface runoff	Comparison to up & down slope cultivation
	Permanent grass Bench terrace						70% decrease in surface runoff 50% decrease in surface runoff	
10	Terraces with increase in permanent grass/3 yr. crop rotation/deep tillage	USA	ĩ	2-3%	Agriculture	Watershed	24% decrease in surface runoff	28 yr study; Soil = calcareous clay, Pt = 889 mm/yr

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON SOIL MOISTURE AND SURFACE RUNOFF

.

.

CITE	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	IMPACT 	REMARKS ====================================
	Terraces with shallow tillage and grazing of crop residues		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2-3%			20% increase in surface runoff	
	Terraces with no improved practices			2-3%			No difference in surface runoff	
11	Terraces with conservation cropping & permanent cover	USA	T	NG	Agriculture	Watershed	20 - 33% decrease in surface runoff	200 ha watershed; Soils = black soils
	Contour-strip on terraces Terraces	USA	T	NG NG	Agriculture		30% decrease in annual surface runoff No significant difference in annual surface runoff	Comparison to pre-treatment
219	Contour farmed terraces	USA	ſ	NG	Agriculture	Watershed	9 - 37% decrease in surface runoff	General statement for USA
84	Graded furrows vs contour tilled graded terraces	USA	T	NG	Wheat-sorghum- fallow	Field	25% increase in surface runoff from graded terraces relative to graded furrows	Greatest increases in small storm events; Soil = clay loam XeroSol (Torrertic Paleustoll); Pt = 1,270 mm/yr
155	Graded furrows vs terraces	USA	T	2-3%	Cotton/sorghum, oats	/ Watershed	21% decrease in surface runoff from graded furrows relative to terraces.	Graded furrow system held up to storm that caused extensive terrace failure; Soil = black clay, Pt = 853 mm/yr
112	Land leveling	USA	T	NG	Sorghum	Field	No significant difference in soil moisture storage	Comparison to unleveled; Pt = 673mm/yr
187	Contour bunds	Indonesia	D/WM	12%	Agriculture	Plot	18% decrease in surface runoff	Comparison to unbunded
204	Field bunds	Indones i a	EN	NG	Irrigated rice	Field	Water efficiency of rice 25-30%, attributed to farmers maintaining water head too high thus increasing lateral flow into bunds and water lost to vertical percolation.	Results tally with other studies, range of efficiencies recorded - 18% (sands) - 45% (cley) in 10 countries.
126	Level pans	USA	T	NG	Agriculture	Field	12.7cm - 22.9cm increase in soil moisture storage.	Increase dependant on timing and distribution of rainfall
126	Level pans	USA	SATmp	NG	Sorghum	field	7 month moisture storage equivalent to 19 - 21 month fallow	Pt = 422 mm/yr
182	Terrace	Colombia	W/D	45%	Coffee	Plot	116% increase in surface runoff	Comparison to unterraced coffee.
10	Terraces	USA	T	2-3%	Agriculture	Watershed	Reduction in peak runoff - magnitude of reduction inversely proportional to size of watershed	28 yr study; Soil = calcareous clay, Pt = 889 mm/yr
10	Terraces	USA	T	2-3%	Agriculture	Watershed	Wet soils - increase in surface runoff, dry soils - decrease in surface runoff	28 yr study; Soil = calcareous clay, Pt = 889 mm/yr
191	Bench terrace Bench terrace Bench terrace Bench terrace	Indonesia	D/WN	9%	Corn & cassava Sweet potato Corn Cassava	Plot	44% - 65% decrease in surface runoff 50% decrease in surface runoff 31% decrease in surface runoff 52% decrease in surface runoff	Comparison to unternaced

			CLIMATE		LAND USE	SCALE		REMARKS
	Flat bench terrace Sloping bench terrace	Indonesia	D/WM	NG	Agriculture	Plot	17% increase in surface runoff 293% increase in surface runoff	Comparison to ridge terrace
163	Bench terrace Ridge terrace	Indonesia	D/WH	NG	Agriculture	Plot	31% increase-15% decrease in surface runoff 80% - 201% increase in surface runoff	Comparison to unimproved local farming system.
76	Zingg conservation bench terrace	USA	т	NG	Agriculture	Field	No significant difference in soil moisture storage	Comparison to unterraced.
17	Zingg conservation bench terrace	USA	T	1.5%	Sorghum/wheat/ fallow	Field	Excess soil moisture made tillage operations difficult.	Soil = silty clay
124	Zingg conservation bench terrace	USA	SATmp	1%	Sorghum	Field	7 month soil moisture storage in terrace equivalent to 19 month storage in fallow	Soil = silt loan to clay loam; Pt = 424mm/yr
75	Zingg conservation bench terrace	USA	SATmp	1.5%	Sorghum/wheat	Field	Soil moisture storage the same continuously cropped as level terrace fallowed 11 months	Soil = silty clay loam,
75	Zingg conservation bench terrace	USA	SATmp	1.5%	Sorghum/wheat	field	No soil moisture conservation benefits in coarse or low water-holding capacity soils	
69	Zingg conservation bench terrace	USA	SATinp	1-5%	Wheat/corn/ bromegrass & alfalfa	field	No increase in overwinter soil moisture storage, increase occurred in spring.	Soil = silt loam to silty clay loam, Pt = 445 mm/yr 00
169	Contour bunds Bench terrace Hillside ditches Intermittent terrace	Theiland	D/WA	NG NG NG NG	Agricul ture	Field	70% increase in surface runoff 140% increase in surface runoff 70% increase in surface runoff 60% increase in surface runoff	Comparison to unterraced control, soil = Acrisol (Typic Paleudult); Pt = 1,612 mm/yr. increased runoff undesirable.
68	Graded vs Bench terraces	India	D/WM	25 X	Agriculture	field	No significant difference in surface runoff between these two terrace types	
68	Contour bunds/ridge-type terraces/level terraces/ absorptive terraces	India	SATr & At	NG	Agricul ture	field	Ponding due to insufficient drainage	Sail = Vertisals and other poorly drained soil types
168	Contour bunding/bench terracing/land levelling	India	SATr & DW/M	NG	Agriculture	field	50% decrease in depth to which water percolated	Comparison to adjacent untreated lands
103	Bench terraces vs hillside ditches	Taiwan	D/WH	28%	Citrus orchard	field	Runoff less from bench terraces relative to hillside ditches	If bench terrace topsoil not replaced, percolation rates are low and runoff rates are high; 4 years were necessary to consolidate soil on bench terrace so that less than from hillside ditches
89	Terraces - 42% watershed area Terraces - 75% watershed area	USA	T	NG NG	Agriculture	Watershed	11% decrease in surface runoff, 36% decrease in total discharge from 10 yr. storm 44% decrease in surface runoff, 60% decrease in total discharge from 10 yr storm	11,500 ha watershed

-	ITE TECHNOLOGY\TREATMENT		CLIMATE		LAND USE	SCALE		REMARKS
	108 Large-scale terracing 110 Large-scale terracing	Switzerland Switzerland	T T	NG NG	Vineyards Vineyards	Watershed	Significant increase in peak discharges, time to peak discharge, steeper slope of dry weather hydrograph recession curve, reduction in base and low flows, greater variability in runoff. Decrease in soil's	Effects attributed to : increase of asphalted roads and drainage system (guilies & pipes) and destruction of soil structure by mechanical action of heavy
							hydraulic conductivity, decrease in soil moisture.	equipment in terrace building. Soit = deep loess.
	58 Check dams to harvest water	lsrael	SATap	NG	NG	Watershed	improved output from downstream shallow aquifers	Effective where installed in series along same river, hydrologic/hydrogeologic inputs are known, pumps and energy available, and technical staff to operate and maintain
	206 Dirt roads	USA	T	0.2-30%	Dirt roads	Plot	24% - 96% of rainfall occurs as runoff	Range of runoff values from rainfall simulator study.

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

.

. E E	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	INPACT ************************************	COMPARISON	REMARKS
145	Forestry Agroforestry Pasture Bench terraces & intensive -CrOp management Bench terraces	Pan-tropical	Various	45+X 35-60X 10-45X 10-35X 10-25X	Forestry Agroforestry Pasture Agrículture/ Horticulture	Watershed Watershed Watershed Watershed	Minimize soil erosion Minimize soil erosion Minimize soil erosion	N/A	Nost intensive management options, at the given range of slopes, to minimize soil erosion. The shallower the soil, adjust down the upper end of the range.
	Remove trees Remove undergrowth Remove trees/undergrowth Remove undergrowth/litter Remove all	ava	EN	97. 97. 97. 97. 97.	Acacia spp. plantation	Plot Plot Plot Plot Plot	200% increase in sediment yield 400% increase in sediment yield 100% increase in sediment yield 26,000% increase in sediment yield 4,300% increase in sediment yield	N/A	Compared to undisturbed; soil = clay, Gleysol (Typic Tropsquept)
	Fern cover Degraded grass cover Grass cover	Sri Lanka	EN	50% 50% 50%	Forestry	Watershed	566% increase in sediment yield 170% increase in sediment yield No significant difference in sediment yield	0.56 t/he/yr	Comparison to closed camopy Pinus caribos plantation
100	Land clearing	Ivory Coast	W/D	NG	Agriculture	Field	Large increase in erosion rate.	N/A	Soil = sandy Alfisol
98	Land clearing	Nigeria	W/D	NG	Agriculture	Field	Large increase in erosion rate	N/A	Soil = sandy Alfisol
97	Plowing	Nigeria	W/D	NG	Agriculture	field	Erosion rate upto 115 t/ha/yr	N/A	Soil = sandy Alfisol
58 / N	Contour cultivation	Israel	SATE	3-8X	Agriculture	field	Slopes less than 3% no difference from cross-slope cultivation, slopes greater than 8% have weshouts and increased erosion	N/A	
	Cultivated failow Bunds	India	SATr	NG NG	Agriculture	field	Questionable practice due to erosion hazard. Erosion between bunds may be substantiel, and inedequate amintenance often results in breaches	N/A	Soil = heavy soil, e.g. Ver
160	Traditional cultivation	Amazon	CW	Steep	Agriculture	field	No indications of increased erosion	H/A	Soil = Ultisol
209 :	Shifting cultivation	Venezuela	W/D	Steep	Agriculture	field	Little erosion amongst traditional cultivators, severe erosion amongst neucomers to shifting cultivation	N/A	
70 (Conversion of forest to grassiand	World-wide	ALL	N/A	Grassland (Watershed	No significant difference in erosion/ sediment yield once grass established.	N/A	"Lose mass unsting protection with conversion to grassiand
	Conversion of forest to grassland	Hawa i i	CW	NG	Grassland (Watershed	Increased erosion/sedimentation		Attributed to increased rund due to reduced evapotranspir by Adropogon on rainforest a
162 1	latural erosion	Hava i i	CW	Steep	Natural cover	Vatershed	Lendslides observed only under forest and fern cover, not grass	¥/A	Hance Velley

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSIGN AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE		COMPAR I SON	
		New Guinea	EN	N/A	Natural cover	Hatershed	Dominant sediment sources are landslides and slopewash under forest cover	B/A	Annual runoff = 5,300-7,200am/yr
. 1	Forest, litter removed/burned 40 yr. old teak plantation Plowed, rainfed maize Fired, dibbled rainfed maize Bench terraced, rainfed maize/cassava	Indonesia	D/WN	10%	Various	Plot	1,400% increase in erosion rate 1,400% increase in erosion rate 1,900% increase in erosion rate 1,300% increase in erosion rate 300% increase in erosion rate	5 t/ha/yr	Comparison to undisturbed forest; soil * deep volcanic soil
(Coffee plantation Dense Imperata grassland Degraded forest, shrub, dense undergrowth						No significant difference in erosion rate No significant difference in erosion rate No significant difference in erosion rate		
1	Fern cover Degraded grass cover Grass cover Closed canopy Pinus plantation	Sri Lanka	EN	50X 50X 50X 50X	Forestry forestry forestry forestry	Vatershed	90% of sediment yield in 30% rainfall events 90% of sediment yield in 30% rainfall events 90% of sediment yield in 10% rainfall events 90% of sediment yield in 10% rainfall events	N/A	Soils = sandy cley loam Hitosol (Typic Tropuduit), Pt = 5,460 mm/yr
48	forest	Hawa i i	CW	NG	Forest	Vatershed	90% of sediment yield in 2% rainfall events	R/A	
	Red Deer River basin Amazon River basin	Egypt Cananda Brazil China	SATE T CV D/VM	N/A N/A N/A N/A	Nixed Nixed Nixed Nixed	Watershed	80% of sediment at the mouth from the Andes	E/A	ı
1	Spring Creek	USA Cenada USA	T T	N/A N/A N/A	Nixed Nixed	Watershed Watershed	1.1 t/m/yr sediment from river banks 36% increase in sediment yield following disturbance of 0.45% of the watershed		204 -
			-		NG		51% of sediment from 1% of watershed		
	Rouge and traits Willside cultivation Sna2ing land Burned forest land Brush lands Forests	Honduras	W/0	NG	Nixed Agriculture Pasture Forestry Nixed Forestry	Watershed	45% of sediment produced, 2% of area 20% of sediment produced, 13% of area 20% of sediment produced, 20% of area 4% of sediment produced, 10% of area 1% of sediment produced, 20% of area 1% of sediment produced, 35% of area	N/A	
49 (Roads and trails	Kenya	W/Ó	N/A	Hixed .	Watershed	Large fraction of sediment leaving agricultural catchments contributed by roads and trails	N/A	Based an sediment yield analysis from 63 catchments
206 (Dirt roads	USA	T	N/A	Nixed	Plot	3 - 660 t/hA/yr sediment yield	R/A	Range of soil loss values reported in literature. Soil loss use dependent.
14 :	Soil loss tolerances	Brazit	CV	N/A	Agricul ture	field	Lithosol = 2-7 t/ha/yr Podzol = 5-13 t/ha/yr Dark red latosol = 12-16 t/ha/yr	K/A	Soil loss tolerance is that quantity of soil that may be eroaded without a sites ability to sustain productivity being effected.

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT		CLIMATE	SLOPE	LAND USE	SCALE		COMPAR I SON	REMARKS	
	Soil loss tolerances	Brezil	CN	N/A	Agriculture	Field	Acrisols and Witosols (Ultisols with argillic horizon), Lithosols, Regosols = 4.6 ~ 16.6 t/ha/yr	N/A	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
220	Soil loss tolerances	USA	ĩ	N/A	Agriculture	field	2.2 - 12.1 t/ha/yr	N/A		
13	Soil loss tolerances	USA	T	N/A	Agriculture	Field	Topsoil formation rate (under tillage) = approx. 30 yr/cm or 12.4 t/ha/yr	N/A		
27	Soil loss tolerances	Vorldvide	ALL	N/A	N/A	N/A	Range of soil formation rate, in literature = 1.3 - 750 yr/cm or 286 - 0.5 t/ha/yr dependent on climate, parent material, and criteria (profile development vs total soil depth)	N/A		
51	Soil loss tolerances	Pan-tropical	EM & D/WM & CW & W/D	N/A	Agriculture	field	On basis of erosion impacts, highly weathered tropical soils should have lower soil loss tolerances than their temperate counterparts.	N/A		
50	Soil loss tolerances	NSV, Australia	SATE	N/A	W/A	N/A	Soil formation rate : 350 yr/cm in alluvium, longer in bedrock	N/A		ı
2	Manure (16 t/hs)	Indonesia	D/W	16%	Agriculture	Plot	42% decrease in erosion rate	341 t/ha	Comparison to unmanured	· 205
21	Cow dung (5 t/ha) Wood shavings (5 t/ha) Poultry manure (5 t/ha) Cow/poultry manure (5 t/h Commercial fertilizer	Ghana Na)	CV	7.5% 7.5% 7.5% 7.5% 7.5%	Corn	Plot Plot Plot Plot Plot	99% decrease in sediment yield 99% decrease in sediment yield 99% decrease in sediment yield 99% decrease in sediment yield 94% decrease in sediment yield	64 t/ha/yr	Comparison to bare fallow; Pt = 1,340 mm/yr	1
21	Cow dung (2 t/ha) Cow dung (4 t/ha) Cow dung (4 t/ha) & straw mulch (4 t/ha) Cow dung (5 t/ha) Cow dung (5 t/ha)		SATr	2X 2X 2X 2X	Sorghun	Plot Plot Plot Plot	73% decrease in sediment yield 81% decrease in sediment yield 98% decrease in sediment yield 83% decrease in sediment yield	5.2 t/ha/yr	Comparison to bare fallow; Pt = 320 mm/yr	
	Cow dung (5 t/ha) & straw mulch (4 t/ha)	ſ		2%		Plot	98XX decrease in sediment yield			
	Mulch .	Nígeria	W/D	N/A	Agriculture	Field	Protection from compaction and increased erosion	N/A	Best management practice for Luvisols, Podzoluvisols (Alfisols)	
149	50% asphalt mulch 100% asphalt mulch	Venezuela	W/D	4X 4X	Sorghum	Field Field	68% decrease in erosion rate 99.9% decrease in erosion rate	57 t/ha/yr	Comparison to no-mulch; soit = sandy Loam (Typic Haplustalf)	
123	Mulch (0.62 - 1.23 t/ha) Mulch (2.5 t/ha)	USA	T	15X 15X	Agriculture	Field	66% decrease in sediment yield 82% decrease in sediment yield	N/A	Comparison to no mulch	

.

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

CITE TECHNOLOGY/TREATMENT		CLIMATE	SLOPE	LAND USE	SCALE		COMPAR I SON	REMARKS
			134			95% decrease in sediment yield	: = = = = = = = = = = = = = = = = = = =	\$\$ 4449 **********************************
99 Mulch (0.55 t/ha) Mulch (2.2 t/ha) Mulch (8.8 t/ha)	USA	T	2X 2X 2X	Agriculture	Field	40% decrease in interrill erosion rate 80% decrease in interrill erosion rate Interrill erosion rate negligible	M/A	Comperison to no mulch; soil = silt loam (Typic Haplustelf) Interrill erosion = erosion by raindrop splash
171 Mulch (0.33 t/ha, 22% cover) Mulch (0.44 t/ha, 37% cover) Mulch (0.66 t/ha, 46% cover) Mulch (0.68 t/ha, 58% cover) Mulch (1.21 t/ha, 81% cover) Mulch (1.87 t/ha, 87% cover) Mulch (2.47 t/ha, 92% cover)	USA	T	NG	Agricul ture	Plot	42% decrease in sediment yield 43% decrease in sediment yield 62% decrease in sediment yield 62% decrease in sediment yield 81% decrease in sediment yield 92% decrease in sediment yield	H/A	Comparison to no mulch under rainfall simulator
113 Mulch (0.63 t/ha) Mulch (1.23 t/ha) Mulch (2.47 t/ha) Mulch (4.94 t/ha) Mulch (9.88 t/ha)	USA	T	5X 5X 5X 5X 5X 5X	Agriculture	Plot	69% decrease in sediment yield 89% decrease in sediment yield 97% decrease in sediment yield 99.9% decrease in sediment yield 99.9% decrease in sediment yield	31 t/ha	Comparison to no mulch; soil = siit loam; rainfall simulator atusy
199 Mulch (0.6 t/ha) Mulch (1.0 t/ha) Mulch (1.6 t/ha) Mulch (0.6 t/ha) Mulch (1.0 t/ha) Mulch (1.0 t/ha) Mulch (0.6 t/ha) Mulch (1.0 t/ha) Mulch (1.0 t/ha)	Indonesia	D/W	7% 9% 14%	Upland rice	Plot	78% decrease in erosion rate 92% decrease in erosion rate 96% decrease in erosion rate 24% decrease in erosion rate 56% decrease in erosion rate 16% decrease in erosion rate 54% decrease in erosion rate 59% decrease in erosion rate	18.6 t/ha 22.3 t/ha 27.9 t/ha	Comparison to unsulched; soil = Reddish-brown Latosol; rice straw mulch 1 1300
188 Mulch (0.6 t/ha) Mulch (1.0 t/ha) Mulch (1.6 t/ha)	Indonesia	D/W	7-14%	Upland rice	Plot	35% decrease in erosion rate 61% decrease in erosion rate 62% decrease in erosion rate		Comparison to unmulched; soil = Reddish-brown Latosol; rice straw mulch
213 Nixed cropping & mutch (4.4 t/ha) Nixed cropping	Indonesia	D/WN	201	Corn & peanuts	Plot	74% decrease in erosion rate No significant difference in erosion rate	250 lbs.	Comparison to corn & peanuts strip cropped
160 Mulch/Cover Crop 190 Mulch and minimum titlage	Pan-tropical		N/A	Agricul ture	field	Protection from compaction and increased erosion	W/A	Luvisols, Nitosols, Acrisols (Ultisols and Alfisols) with sandy topsoils susceptible to compaction and increased erosion following exposure and cultivation.
Sare soil Bulch and minimum tillage Bare soil Aulch and minimum tillage	Indonesia		3.5X 3.5X 9X 9X 10X	Casseva/rice/ corn/peanuts/ beans	Plot Plot Plot Plot Plot	99% decrease in sediment yield 620% increase in sediment yield 92% decrease in sediment yield 245% increase in sediment yield 56% decrease in sediment yield	332 t/ha 195 t/ha	Comparison to unmulched, traditional cultivation; in order of treatment pairs soils = Nitosol (Tropudult), Nitosol (Tropudalf),

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE	INPACT	COMPAR I SON	REMARKS
	Bare soil Mulch and minimum tillage Bare soil Mulch and minimum tillage Bare soil			10% 14% 14% 14% 14%		Plot Plot Plot Plot Plot	25% increase in sediment yield 89% decrease in sediment yield 149% increase in sediment yield 96% decrease in sediment yield 431% increase in sediment yield		Nitosol (Tropudalf), Ferralsol (Haplorthox), Nitosol (Tropudalf),
116	Disk plow/stubble mulch No-till/mulch	Theiland	D/WH	NG NG	Upland rice	Plot Plot	64% decrease in sediment yield 75% decrease in sediment yield	5.5 t/ha	Comparison to disk plowed and no mulch
116	Disk plow/stubble mulch No-till/mulch	Theiland	D/WN	NG NG	Peanuts	Plot Plot	77% decrease in sediment yield 83% decrease in sediment yield	3 t/ha	Comparison to disk plowed and no mulch
41	Fascine Wattling Muiching Bare soit	Philippines	D/W	20-35X	Grazing/kaingin	field	154% increase in 5 yr sediment yield 142% increase in 5 yr sediment yield 145% increase in 5 yr sediment yield 1,110% increase in 5 yr sediment yield	48.3 t/he	Comparison to grass sod of Love and Bermuda grasses/Alnus,Pinus, Paidium,and Eucalyptus seedlings; soil = clay loam, Pt=2,679 mm/yr
41	Fascine Mattling Hulching Bare soil	Philippines	D/LAN	20-35X	Grazing/kaingin	Field	110% increase in sediment yield 96% increase in sediment yield 152% increase in sediment yield 14,500% increase in sediment yield	1.05 t/ha	Comparison to sediment yield at years 4 & 5 of grass sod of Love and Bermuda grass/Alnus,Pinus, Psidium,Eucalyptus seedlings, soil = clay Loam, Pt=2,679 mm/yr
102	Desmodium spp. cover Bahia grass Erngrostis spp. mulch	Taiwan	D/M	46X	Litchi	Field	95% decrease in sediment yield 99.6% decrease in sediment yield 96% decrease in sediment yield	55 t/ha	Comparison to clean cultivation; Pt = 3,494 mm/yr
182	Grass cover	Colombia	W/D	22%	Pasture	Field	97% decrease in erosion rate	0.3 t/ha	Comparison to monthly tilled N bare soil.
50	Grass cover Grass cover	NSW, Australia	SATr	8X 8.5X	Grassland Grassland	Plot Plot	98% decrease in sediment yield 99% decrease in sediment yield	47 t/ha 148 t/ha	Comparison to wheat; soil = 1 calcic and chromic luvisols, respectively; Pt = 666 and 561 mm/yr, respectively
215	Shaded grass Unshaded grass	Nigeria	W/D	NG	Agroforestry	field	84% increase in erosion rate 91% decrease in erosion rate	0.1 t/ha	Comparison to tree plantation
202	Grass cover (Pennisetum, Cynodon,Urochlos,Panicum)	India	D/W	5x	Agriculture	Field	70% decrease in in sediment yield	N/A	Comparison to conventional cultivation of gorapaddy,urid, corn,peanut; soil = sandy clay, Pt = 1,302 mm/yr
7	Grass - ungrazed 15 years Grass - heavily grazed	India	D/W	Gentle	Pasture	Field	63% decrease in sediment yield 163% increase in sediment yield	8 t/ha/yr	Comparison to fenced and lightly grazed
211	Short duration grazing (few day high density grazing, many day rested)	USA	SATap	0-3X	Pasture	Field	200% increase in sediment yield	N/A	Comparison to moderate, continuous grazing; soil = fine loam to loam Yermosol (Aridisol)
161	Grass - Imperata,Saccharum	Philippines	D/WI	36-70%	Grassland	Field	No significant difference in sediment yield	0.4 t/ha/yr	Comparison to secondary forest

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

CITE	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE		COMPAR I SON	REMARKS
@ 2 2 2 2 1	Plantation forest -	************	**********	222222222	forestry	.20633823823	No significant difference in sediment yield		10190 0 04000000000000000000000000000000000
	Gliricidia,Leucaena Kaingin				Agriculture		2,760% increase in sediment yield		
217	Grass strips	USA	T	NG	Vaste treatment	field	99% decrease in sediment concentration and 67% decrease in BOD	5,215 ppm	Comparison to concentration levels and BOD of water prior to movement through grass strip
217	10 ft. wide grass strip 25 ft. wide grass strip	USA	T	NG	Agriculture	Plot	50% decrease in sediment yield 70% decrease in sediment yield	N/A	Comparison to sediment load of water prior to movement through grass strip
102	Eragrostis barrier/mulch Guinea grass barrier/mulch South African pigeon grass barrier/mulch	Taiwan	D/W	23X 23X 23X	Banana	Field	97.5% decrease in sediment yield 97% decrease in sediment yield 97% decrease in sediment yield	53 t/ha/yr	Comparison to clean cultivation; Pt = 2,348 mm/yr
39	Vegetative buffers	USA	T	0-20X	Agriculture	Watershed	84-90% trap efficiency by riparian buffers	N/A	Trap efficiency = % of eroded sediments deposited in riparian zone
3	Grass strips (0.5m wide - Brachiaria, 1m wide - Paspalum)	ava	EN	15-22%	Agriculture	Field	93% decrease in sediment yield	N/A	Comperison to bare soil
31	Sediment besins Grass strips Mulch in furrows	USA	T	NG NG NG	Beans/peas/ sugarbeets/ alfalfa	Watershed Watershed Plot	80% decrease in sediment yield 40 - 60% decrease in sediment yield 90% decrease in erosion rate	N/A	Comparison to calibration period; soil = silt loan
4	Grass strip (P. natatum, 1 m wide)	Indonesia	D/W	NG	Agriculture	Plot	21% decrease in erosion rate	NG	Comparison to no grass strip
	Grass strip (B. decumbena, 0.5 m wide)						24% decrease in erosion rate		·
183	Vegetative strip (Mucuna (utilis)	Indonesia	D/W	12%	Corn & cassava	Plot	13% decrease in erosion rate	89 t/ha	Comparison to corn & cassava w/o
	Vegetative strip (Pucraica phaseoloide)						No significant differenc in erosion rate		vegetative strips
	Vegetative strip (Nimosa invisa)						8% decrease in erosion rate		
	Vegetative strip (Pennisetua purpureum)				•		No significant difference in erosion rate		
74	Reforestation Seeding native grass Contour strips Crop rotation & fallow	USA	T	NG NG NG NG	Forestry Grassiand Agriculture Agriculture	Watershed Watershed	99.9% decrease in sediment yield 99.9% decrease in sediment yield 50% decrease in sediment yield 50% decrease in sediment yield	N/A	Comparison to pre-treatment
22	Vegetative stabilization of streambanks	USA	T	N/A	Streambanks	Watershed	Must eliminate forces that cause bed degradation before possible to	N/A	Channel structures will become ineffective or deteriorate due

•

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	INPACT	COMPARISON	REMARKS
							stabilize banks vegetatively.		to hydrology changes; must have mmintenance.
	Nulch and no-till Nulch and mouldboard plow Nulch and sweep tillage Nulch and chisel Nulch and chisel & disk	USA	T	5.5% 5.5% 5.5% 5.5% 5.5%	Corn/soy/oats	Plot Plot Plot Plot Plot	94% reduction in sediment yield 81% reduction in sediment yield 77% reduction in sediment yield 45% reduction in sediment yield 26% reduction in sediment yield	₩/Α	Comparison to same tillage type with less then 15% crop residue cover as mulch; soil = fine loam Luvisol (Typic Wapludal†)
116	No-till Stubble mulch Bare fallow	Thailand	D/LIN	NG NG NG	Rice	Plot Plot Plot	93% decrease in sediment yield 90% decrease in sediment yield 375% increase in sediment yield	40 t/he	Comperison to clean cultivation
212	No-till with stubble mutch (chemical weed control)	USA	T	3x	Corn	field	60% increase in sediment yield	N/Å	Comparison to conventional tillage with stubble mulch
	Cultivated fallow Cultivated fallow Grass cover (Cynodon spp.) Grass cover (Cynodon spp.) Pearut Pearut Gram Gram Jouar Jouar Jouar	India	SAT	0.5X 1X 0.5X 1X 0.5X 1X 0.5X 1X 0.5X 1X	Failow Failow Grass Grass Peanut Peanut Gram Gram Jouar Jouar	Field	1,239% increase in sediment yield 850% increase in sediment yield 12% increase in sediment yield 6% decrease in sediment yield 327% increase in sediment yield 395% increase in sediment yield 691% increase in sediment yield 430% increase in sediment yield 527% increase in sediment yield 527% increase in sediment yield	N/A	Comparison to natural cover; soil = silty clay loam, Pt = 800 mm/yr I 0 9
	Coffee - 1 yr old Coffee - 3 yr old Coffee - 16 yr old	Indonesia	D/LM	46-66X	Agrícul ture	Plot	526% increase in erosion rate 406% increase in erosion rate 310% increase in erosion rate	0.31 t/ha	Comparison to undisturbed natural forest
	Tobacco (cultivated) Potato (cultivated) Corn & beans (cultivated)	Indonesia	0/W	302	Agricul ture	Plot	138% increase in erosion rate 557% increase in erosion rate 52% increase in erosion rate	3.2 t/ha/mo	Comparison to non-cultivated cassava
	Rows up & down slope Contoured Cover cropped (Lupinus) end rows up & down slope Mulched	Peru	SAT	25%	Potato	field	176% increase in sediment yield 12% increase in sediment yield 29% increase in sediment yield No increase in sediment yield	4.7 t/ha	Comparison to continuous fallow
i	Rous up & down slope/burned Cover cropped and rous up & down Contoured Nuich and rows up & down slope	Peru	W/D	302	Potato	field	680% increase in sediment yield 157% increase in sediment yield 576% increase in sediment yield 490% increase in sediment yield	16.4 t/ha	Comparison to continuous fallow
	Bare fallou Zero-tillage Muiching	Ghana	W/D	7.5% 7.5% 7.5%	Corn	field	964% increase in sediment yield 80% decrease in sediment yield 98% decrease in sediment yield	18.8 t/ha/yr	Comparison to traditional mixed cropping; soil = sandy loam to sandy clay, Pt = 1,500 mm/yr

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

.

i TE	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	INPACT 	COMPAR I SON	REMARKS
	Ridging across slope Ninimum tillinge			7.5% 7.5%			81% decrease in sediment yield 83% decrease in sediment yield		
	Bare fallou Zero-tillage Mulching Ridging across slope Ninimum tillage	Ghana	W/D	3X 3X 3X 3X 3X 3X	Corn	Field	795% increase in sediment yield 205% increase in sediment yield 38% decrease in sediment yield 62% increase in sediment yield 33% increase in sediment yield	2.1 t/ha/yr	Comparison to traditional mixed cropping; soil = sandy clay (com to sandy clay, Pt = 1,400 mm/yr
165	Reforestation/mulch/plate terraces	Japan	T	70%	Forestry	Watershed	99.7% decrease in sediment yield	69 t/ha/yr	Comparison to bare soil
208	Agroforestry (intercropping)	Theiland	D/WH	NG	Gmelina arborea and rice	Field	10% increase in sediment yield	N/A,	Comparison to Gmelina arborea cropped alone
9	Agroforestry	Indonesia	SATE	NG	Corn & teak	Plot	12% - 31% decrease in erosion rate	6-28.7 t/ha	Comparison to corn monoculture
72	Acacia auriculiformis plantation - 5 yr old	Intonesia	D/WM	MG	Forestry	Field	24% increase in rainfall erosivity below plantation campy	W/A	Comparison to rainfall erosivity outside of plantation
12 (Clearcut/brush chopping (37% bare soil)	USĄ	r	30%	Forestry	Watershed	16.3 t/he sediment yield	H/A	All 3 site prep methods increase addiment similarly: soil =
l I	(S7% bare soil) Clearcut(with shear)/windrow (S3% bare soil)			30X			16.5 t/ha sediment yield		sandy loam (Ultisols/Alfisols).
((JSA Dare soll) Clearcut/contour bedding (69% bare soil)			30%			21.7 t/ha sediment yield		Contour bedding difficult in steep, stump covered areas. Improper bedding causes gullies.
- 1	Clearcut Pasture 6 yr. old Pinus plantation	Chile	W/D	30X 30X 30X	Forestry Pasture Forestry	Plot	2,140% increase in sediment yield 100% increase in sediment yield No significant difference in sediment yield	0.2 t/ha/yr	Comparison to 30 yr. old Pinus I plantation; soil = clay loam; N Pt = 2,000 mm/yr
215 (Coffee & shade	Costa Rica	W/D	NG	Agroforestry	Field	78% decrease in erosion rate	0.4 t/ha	Comparison to coffee/no shade (
	Tes, 65% cover Tes, 95% cover	India	D/W	NG NG	Agroforestry	Field	87% decrease in erosion rate 95% decrease in erosion rate	4.6 t/ha/yr	Comparison to tes with 15% cover
1	Multi-story tree garden Matural forest Shifting cultivation, fallow period	Pan-tropical	Various	Various Various Various	Agroforestry	Various	98% decrease in erosion rate 89% decrease in erosion rate 95% decrease in erosion rate	2.8 t/ha/yr	Median observed values from literature - Comparison to shifting cultivation during cropping period
	Forest plantation, undisturbed			Var i ous			79% decrease in erosion rate		cropping period
- 1	Forest plantation, burned, no litter layer			Various			1,800% increase in erosion rate		
	Tree Crops with cover crop			Various			73% decrease in erosion rate		
	Taungya Tree Crops, clean weeded			Various Various			88% increase in erosion rate 1,610% increase in erosion rate		
	Nulti-story tree garden Natural forest	Pan-tropicai	Various	Various Various	Agroforestry	Various	99.8% decrease in crosion rate 91% decrease in crosion rate	70 t/ha/yr	Maximum observed values from literature - Comparison to

÷

.

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	INPACT	COMPARISON	REMARKS
	Shifting cultivation, fallow period			Various			89% decrease in erosion rate	***********	shifting cultivation during cropping period
	Forest plantation, undisturbed			Various			91% decrease in erosion rate		and the sector
	Forest plantation, burned, no litter layer			Various			50% increase in erosion rate		
	Tree crops with cover crop and mulch			Various			92% decrease in erosion rate		
	Taungya Tree crops, clean weeded			Various Various			293% increase in erosion rate 161% increase in erosion rate		
216	61 yr old reforestation 1 yr old reforestation & brush dans	USA	T	NG NG	Various	Watershed	1% decrease in sediment yields 65% decrease in sediment yields	N/A	Comparison to before treatment.
	2 yr old reforestation 2 yr old reforestation & brush dams			NG NG			4% decrease in sediment yields 70% decrease in sediment yields		
	5 yr old reforestation 5 yr old reforestation & brush dams			NG NG			10% decrease in sediment yields 75% decrease in sediment yields		
	8 yr old reforestation 8 yr old reforestation & bruth dams			NG NG			38% decrease in sediment yields 95% decrease in sediment yields		
	12 yr old reforestation 12 yr old reforestation & bruth dams			NG NG			95% decrease in sediment yields 95% decrease in sediment yields		- 211
20) Bare soil Hardwood plantation Coniferous plantation	Kores	T	27%	Forestry	Watershed	1,088% increase in sediment yield 113% increase in sediment yield 100% increase in sediment yield	1.7 t/ha/yr	Comparison to grassed; soil = sandy clay loam; Pt = 1,370 mm/yr
20) Baie soil Well-forested Young plantation	Kores	T	58X	Forestry	Watershed	38,900% increase in sediment yield 433% increase in sediment yield 3,000% increase in sediment yield	0.3 t/ha/yr	Comparison to grassed; soil = sandy
136	Clear cutting	New Zealand	T	Steep	Forestry	Watershed	3,900% increase in erosion rate	1.4 t/ha/yr	Comparison to pre-clearcut
141	l Grap rotation Grap rotation	Indonesia	D/LM	NG	Com & cessava Upland rice/ com/cassava & peanuts/grass/ bahana	Piot	326% increase in erosion rate 440% increase in erosion rate	5.5 t/ha/yr	Comparison to corn monoculture
106	Nixed cropping	Indonesia	D/UN	20%	Clove/banana/ cassava/ungor laut/coconut	Plot	99% decrease in erosion rate	8 tons	Comparison to corn monoculture
141	Crop rotation	Indonesia	D/WI	NG	Peanut/corn/ cassava-peanut	Plot	59% decrease in erosion rate		Comparison to corn/Ceiba
	Agroforestry with crop rotation				Upland rice/ corn/caskava/		35% - 73% decrease in erosion rate		pentandra intercrop

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

TE TECHNOLOGY/TREATMENT		CLIMATE	9000C	LAND USE			COMPARISON	REMARKS
				beans/banana/ grass/Ceibs pentandra				
150 Shifting cultivation	Gustemala	W/D	Steep	Corn/beans	Field	No significant difference in erosion rates following clearing.	N/A	Low bulk density volcanic soil - Andosol (Andept)
215 2 yr old corn swidden	Philippines	D/WM	NG	Agriculture	Field	275% increase in erosion rate	1.6 t/ha/yr	Comparison to 1 yr. old swidd
215 12 yr old rice swidden	Philippines	D/WM	NG	Agriculture	field	7,350% increase in erosion rate	1.6 t/ha/yr	Comparison to 1 yr old swidde
73 Plow,clean till,contour No-till,contour	USA	T	6X 21X	Agriculture	Field Field	86% decrease in sediment yield 99.9% decrease in sediment yield	51 t/ha	Comparison to plow,clean till and sloping rows
139 No-till, 4 t/ha mulch Nand cultivation Mouldboard plow Plow, bare fallow	Nigeria	W/D	2X 2X 2X 2X	Corn	field Field Field Field	99% decrease in sediment yield 38% decrease in sediment yield No significant difference in sediment yield 104% increase in sediment yield	8.5 t/ha	Comparison to conventional tillage (plow & harrow)
157 No-till Bare fallow No-till Bare fallow	Nigeria	W/D	1% 1% 5%	Agriculture	Field Field Field	98% decrease in sediment yield 400% increase in sediment yield 99.9% decrease in sediment yield	0.4 t/ha 2.2 t/ha	Comparison to conventional plowing
No-till No-till Bara fullow			5X 15X 15X		Field Field Field	64% increase in sediment yield 99.9% decrease in sediment yield 310% increase in sediment yield	3.9 t/ha	
67 Mo-till Mo-till Mo-till	Trinidad		11X 11X 22X 22X 52X 52X	Corn Coupea Corn Coupea Corn Coupea	Field	70% decrease in sediment yield 94% decrease in sediment yield 74% decrease in sediment yield 87% decrease in sediment yield 61% decrease in sediment yield 78% decrease in sediment yield	N/A	Comparison to bare soil; soi sandy clay Acrisol (Ultisol)
67 No-till Till No-till Till	Trinidad		22% 22% 22% 22%	Corn Corn Coupea Coupea	field	90% decrease in sediment yield 89% decrease in sediment yield 85% decrease in sediment yield 94% decrease in sediment yield	N/A	Comparison to bare soil; soi sandy clay Acrisol (Ultisol)
36 Deep tillege	Senegal	W/D	NG	Agricul ture	Field	63X decrease in erosion rate	10 t/ha/yr	Comperison to shallow tillage in sendy soils.
14 Deep tillage	Brøzil	W/D	NG , .	Cotton	field	100% increase in crossion rate	8 t/ha/yr	Comparison to shallow tillage in Ferrasol (Oxisol).
46 Contour rows	India	D/WN	NG	Agricul ture	Field	30% decrease in sediment yield	N/A	Comparison to up & down stop cultivation; based on review 30 years of experiment statio projects
19 Contour rows Contour rows	USA		1-2X 3-5X	Agriculture	field	40% decrease in erosion rate 50% decrease in erosion rate	N/A	Comparison to un-contoured ro full benefits only in gully a

INPACTS OF SOLL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE	1119ACT ************************************	COMPARISON	
	Contour rows			6-9%			50% decrease in erosion rate		depression free fields. If
	Contour rows			9-12%			40% decrease in erosion rate		breakovers of contour rows
	Contour rows			13-16%			30% decrease in erosion rate		occurs than erosion will be
	Contour rows			17-20%			20% decrease in erosion rate		greater than in uncontoured.
C	Contour rous			21-25\$			10% decrease in erosion rate		-
132 (Contour strip-cropping	ALL	ALL	Various	Agriculture	Field	35-75% reduction in sediment yield, slope dependent	N/A	Comparison to up & down slope tillage
195 (Contour strip-cropping	USSR	T	NG	Agriculture	Field	50% decrease in erosion rate	N/A	Comparison to non-strip-crop when strips 50-100m wide
	Froadbed & furrow	India	SATE	0.4%	Corn/sorghum	Field	87% decrease in sediment yield	6.6, t/ha	Comperison to traditional
	Iroadbed & furrow			0.6%	intercropped	field	82% decrease in sediment yield	• • •	cropping system: soil = very
	Frondhed & furrow &			0.4%	with Cajanus cajan	Field	91% decrease in sediment yield		fine clay Vertisol (Typic Pellustert);
	let on grade			0.6%	calen	Field	80% decrease in sediment yield		Pt = 760 mm/yr
	roadbed & furrow	India	SATE	0.6%	Pearl millet/	Field	49% increase in sediment yield	2.52 t/ba	Comperison to traditional
	ist on grade with graded bunds			0.6%	sorghum	Field	72% decrease in sediment yield		cropping system with field
	raditional with contour				with Cajanus	Field	979 deserves in audious visit		bunds; soil = fine Udic
	bunds			NG	cajan Cajan	riela	87% decrease in sodiment yield		Rhodoustalf. Alfisols unstable in bunds & furrows. Pt= 760 mm/yr
30 8	iroadbed and furrow	India	SAT	NG	Agriculture	Field	83X decrease in sediment yield	W/A	Comparison to traditional flo land with bunds
	ross-slope planting tidge & furrous	India	W/D	1.5%	Grain	Plot	43% decrease in erosion rate 96% decrease in erosion rate	25.5 t/ha	Comparison to up & downstope planting; soil = well-drained sandy loam (inceptisol)
178 R	idge-tillage	USA	T	NG	Aariculture	Field	Hay increase sediment yield	N/A	Improve in addition of the t
	idge-tillage with crop residues in furrows						50-86% decrease in sediment yield		Increase in sediment yield by ridge-tillage function of run concentrated in furrows and ridges increasing slope.
	urn to clear/no-tili	Japan	W/D	12-18%	Agriculture	Field	85% decrease in sediment yield	20 t/ha	Comparison to burn to clear
	ulidoze to 4% slope & till iorested (tree ht. = 10 m)			3-5% 12-18%			150% increase in sediment yield 99.9% decrease in sediment yield	-	& tilled; soil = sandy clay loam; Pt = 2200 mm/yr
	ench terrace	Taiwan	D/144	28%	Citrus	Field	97% decrease in sediment vield	156 t/ba/w	Comperison to clean cultivati
	ulch/Bahia grass strips Wlch/Bahia grass cover						98% decrease in sediment yield 99% decrease in sediment yield	++ may #1	Pt = 1,634 m/yr
	evel terrace	Teixan	D/191	24%	Banana	Field	99.5% decrease in sediment yield	39 t/ha/yr	Comparison to clean cultivati
G	irass barrier (2.5% spacing) irass barrier (5% spacing) wlch/Bahie grass cover						97% decrease in sediment yield 90% decrease in sediment yield 99.7% decrease in sediment yield		Pt = 2,274 mm/yr
02 B	ench terrace vs Bahia grass	Taiwan	D/WH	20-28%	Perennial	field	Soil conservation effect of all types of	H/A	

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

TE TECHNOLOGY/TREAT		LOCATION	CLIMATE		LAND USE	SCALE	1#PACT	COMPARISON	REMARKS
: ·	•			· .			bench terraces was poorer than that of Bahia grass (except level retention terraces)		
68 Contour rows Up & down slope contour furrows	planting/	India	D/LM	25%	Poteto	field	60% decrease in sediment yield 30% decrease in sediment yield	H/A	Comparison to up & down slope cultivation
Perminent grass Bench terrace	· .		• •				99% decresse in sediment yield 97% decresse in sediment yield		· · · · · · · · · · · · · · · · · · ·
143 Contour cultivat	ion	India	D/Lat	25X	Potato	field	1,400% increase in sediment yield	1.1 t/hp	Comparison to banch terraced; Pt = 1,295 mm/yr
16 Contour cultivat	ion	India	W/0	2.2%	Barley/jowar	Plot	62% decresse in erosion rate	14 <mark>,t/ha</mark>	Comparison to up & down slope cultivation; soli = eroded, elluvial soil.
102 Reverse slope be Huich & close pi the contour	anch terrace anted on	Taiwan	D/LM	20%	Pinsaple	field	99.9% decrease in addment yield 84% decrease in addment yield	34 t/he/yr	Comparison to planting up & down slope; Pt = 1,373 mm/yr
92 Grass waterways		USA	T	ĂLI 1	Agriculture	Watershed	N/A	H/A	If erosion rates above usternay are high, than difficult to establish, expansive to maintain.
172 Vegetative gully	cantrol	India	ALL	H/A	ALL	W/A	Gully stabilization	N/A	If slope of gully channel < 19% and drainage area small, slope laveling and ravagatation is appropriate approach
55 Outside gully ch measures to : decrease overla spread water, increase infilt	nd flow,	USA	SA/A	NG	Var i cus	Watershed	25-60% decrease in sediment yield	H/A	Comparison to before treatment.
Outside gully ch mensures (same gully structure	annel as above) &			NG			60-75% decrease in sediment yield		
Inside gully cha tree plantings				N/A	N/A		May increase sediment yield as grow beyond sapling stage and divert flow flow into gully wells		
121 Contour bunds		South Africa	T	9%	Pineapples	Field	200% increase in sediment yield	33 t/he/yr	Comparison to no contour bunds; soil = shallow, erodible sand
148 Contour bund eve Contour bund eve Contour bund eve	ry 5 rous	Hungary	T	32%	Vineyard	Field	25% decrease in sediment yield 77% decrease in sediment yield 99.9% decrease in sediment yield	4.4 t/ha/yr	Comparison to no contour bunds
79 Contour bunds - Contour bunds - Contour bunds -	yr 2	Theiland	D/W	1111 1111 2511	Agriculture	Field	100% trap efficiency 100% trap efficiency 51% trap efficiency	H/A	Trap efficiency = % of eroded sediments stored behind bund

INPACTS OF SOLL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLINATE		LAND USE	SCALE	1NPAC1	COMPARISON	REMARKS
	Contour bunds - yr 2 Contour bunds - yr 1 Contour bunds - yr 2 Contour bunds - yr 2 Contour bunds - yr 2			25X 51X 51X 65X 65X	· · · · · · · · · · · · · · · · · · ·		0% trap efficiency 42% trap efficiency 0% trap efficiency 36% trap efficiency 0% trap efficiency		
159	Bunds - year 1 Bunds - year 2 Bunds - year 3	India	0/\M	NG NG NG	Agriculture	Watershed	117 breaches, avg. width - 2.2m 47 breaches, avg. width - 3.8m 19 breaches, avg. width - 3.7m	N/A	175 ha of bunded lands; soil = black soils
116	Graded contour banks (terraces) Level absorption banks	Thailand	D/W	3-10% 3-10%	Agricul ture	Vatershed	Bank life span = 5 yrs. Commonly fail due to unsuitable soils (low infiltration rates)	N/A	
198	Terracing	USA	1	ALL	Agriculture/ Forestry	Watershed	N/A	N/A	"Terracing is more expensive per tan of soil crosion reduction than any other alternatives for soil crosion control"
187	Contour bunds	Indonesia	D/WN	12%	Agriculture	Plot	32% decrease in erosion rate	44.3 t/ha	Comparison to unbunded
177	Level terrace Pasture	USA	T	2-18X 2-18X	Corn	Field	96% decrease in erosion rate 96% decrease in erosion rate	59 t/ha/yr	Comparison to contour planted corn; soil = deep losss, Pt = 815 mm/yr. I
177	Level terrace Pesture Contour planted corn	USA	T	2-18X 2-18X 2-18X	Corn	Watershed	Meglible sediment yield from gullying Meglible sediment yield from gullying 14.3 t/ha/yr sediment yield from gullying	N/A	215 -
152	Bench terrace Silvipasture	Indonesia	0/101	15-40X > 50X	Agriculture	Plot	81% - 95% decrease in erosion rate 82% - 96% decrease in erosion rate	NG	Comperison to unimproved local ferming practices
205	Bench terracus Grass berriers (weeping love grass)	Taiwan	D/184	28%	Bananas	Field	99% decrease in sediment yield 93% decrease in sediment yield	87 t/ha/yr	Comparison to clean cultivation; soll = clay loan, Pt = 2,334 mm/yr
103	Bench terraces with grass cover (Bahia,Love) or mulch	Taiwan	D/111	28%	Citrus orchard	Field	71% decrease in sediment yield	5 t/he/yr	Comparison to banch terraces W/o grass cover or mulch; soil = clay loan
1	Bench terrace & crop residue management	Indonesia	D/1M	NG	Agriculture	Plot	99% decrease in erosion rate	185 t/he/yr	Comparison to unternaced & no mulch
167	Terracing & reforestation	Indonesia	EN	NG	Agriculture	Watershod	90% decrease in sediment yield	N/A	Comperison to pre-treatment levels
33	Level bench terrace Reverse slope bench terrace Sloping bench terrace Level retention bench terrace	Taiwan	D/M	NG	Agriculture	field	86X decrease in erosion rate 95X decrease in erosion rate 65X decrease in erosion rate 99X decrease in erosion rate	N/A.	Resed on preliminary 'P' factors for Taluen derived from empirical studies in Taluen

INPACTS OF SOLL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLUPE	LAND USE	SCALE	INPACT ************************************	COMPAR I SOM	REMARKS
l	Drainage level bench terrace Grass barrier Millside ditch with full grass cover				· · · · · · · · · · · · · · · · · · ·		97% decrease in erosion rate 80% decrease in erosion rate 96% decrease in erosion rate		
	Land abandonment Terraces	Nepal	D/1M	NG	Agriculture	Vatershed	58% decrease in sediment yield 15% decrease in sediment yield	W/A	Comperison to pre-treatment Levels
1	Contour farmed terraces Contour farmed terraces Contour farmed terraces Contour farmed terraces Contour farmed terraces Contour farmed terraces	USA	T	1-2% 3-8% 9-12% 13-16% 17-20% 21-25%	Agricul ture	field	40% decrease in erosion rate 50% decrease in erosion rate 40% decrease in erosion rate 30% decrease in erosion rate 20% decrease in erosion rate 10% decrease in erosion rate	N/A	Comparison to contour farmed; Terraces include broad base, steep backslape, level
155 (Graded furrous vs terraces	USA	T	2-3%	Cotton/sorghum/ oats	Natershed	No significant difference in sediment yield	N/A	Graded furrow system held up to storm that caused extensive terrace failure; Soit = black clay, Pt = 853 mm/yr
170	Banch terraces	Jamaica	D/W	N/A	Agriculture	#/ A	N/A	M/A	Upper limit for bench terraces 47% slope and 100m in length
74	Terrace	USA	T	H/A	Agriculture	Watershed	90% decrease in sediment yield	W/A	Comparison to unterraced; soil deep toess
	Bench terrace Ridge terrace Bench terrace Ridge terrace	Indonesia	D/W	LowLand Upland	Agriculture ,	Plot	30% decrease in erosion rate 20% decrease in erosion rate 90% decrease in erosion rate 77% decrease in erosion rate	22.1 t/ha 34.4 t/ha	Comparison to unimproved local farming system
	Bench terrace Bench terrace Bench terrace Bench terrace	Indonesia	D/W	9%	Corn & cassava Sweet potato Corn Casava	Plot	61% - 78% decrease in erosion rate 57% decrease in erosion rate 44% decrease in erosion rate 65% decrease in erosion rate	6.6-9.1 t/ha 10.3 t/ha 16.6 t/ha 11.1 t/ha	Comparison to unterraced
184	Bench terrace	Indonesia	D/WH	NG	Agriculture	Plot	49% - 70% decrease in erosion rate	35.4 t/ha	Comparison to traditional uplan practices
71	Bench terrace	Indonesia	D/WH	25%	Agriculture	Plot	91% decrease in erosion rate	485 t/ha/yr	Comparison to unterraced
	Flat bench terrace Sloping bench terrace	Indonesia	D/WN	NG	Agriculture	Plot	125% increase in erosion rate 800% increase in erosion rate	0_04 t/he	Comparison to ridge terrace
182	Terrace	Colombia	W/D	45%	Coffee	Field	89% decrease in erosion rate	0.2 t/ha	Comparison to unterraced coffee.
	Level bench terrace Bench terrace, 1.6% outslope Conservation bench terrace Steep backslope terrace	Ecuador	W/D	4-6 X	Agriculture	Field	69% increase in sediment yield 50% increase in sediment yield 9% decrease in sediment yield 36%% decrease in sediment yield	0.6 t/ha	Comparison to unterraced control; soils = Loam to Loamy sand

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	TECHNOLOGY/TREATMENT	LOCATION	CLIMATE		LAND USE	SCALE	INPACT	COMPARISON	REMARKS
#8888.	Broad base terrace						70% decrease in sediment yield		
169	Contour bunds Bench terrace Hillside ditches Intermittent terrace	Thailand	D/W	NG	Agricul ture	Field	43% decrease in sediment yield 46% decrease in sediment yield 50% decrease in sediment yield 52% decrease in sediment yield	12 t <i>/</i> he	Comparison to unterraced control; soil = Acrisol (Typic Paleudult); Pt = 1,612 cm/yr
	Broad base/steep back/ narrow base terraces	USA	T	MG	Agricul ture	Vatershed	8/A	N/A	Studied 14.4 km of new terraces, all breached in first year; breaches due to slope failure and internal piping. Soil = deep loess.
	Broad base/steep back/ narrow base terraces	USA	T	NG	Agriculture	Watershed	B/A	B/A	Survey of farmers - 18% terraces breach in first 5 years.
23	Sench terraces	Korea	T	N/A	Agricul ture	H/A	N/A .	N/A	Useful on 10-35% slopes where solidepth > 45cm and parent saterial weathered (no slick granite or shale)
94	Terraces (20m inter-terrace width)	Nigeria	W/D	1%	Agriculture	Plot	No significant difference in erosion rate	0.2 t/hn	Comparison to erosion rate from one storm event on 10m inter-
	Terraces (20m inter-terrace width)			5 X			51% decrease in erosion rate	16. t/ha	terrace widths
	Terraces (20m inter-terrace width)			10%			26% decrease in erosion rate	24 t/ha	I N
	Terraces (20m inter-terrace width)			15%			No significant difference in erosion rate	60 t/ha	217 -
	Bench terrace Stone bunding Stick bunding Contour bunding	Sierra Leone	W/D	30X 30X 30X 30X	Rice	Field	84% decrease in sediment yield 38% decrease in sediment yield 43% decrease in sediment yield 62% decrease in sediment yield	48 t/ha/yr	Comparison to rice, no conservation
	Bench terrace Stick bunding Contour bunding	Sierra Leone	W/D	30X 30X 30X	Cassava	Field	85% decrease in sediment yield 18% decrease in sediment yield 49% decrease in sediment yield	33 t/ha/yr	Comperison to cassava, no conservation
143	Bench terrace	India	0/LM	25%	Poteto	Field	93% decrease in sediment yield	17 t/ha	Comperison to contour rows; Pt = 1,295 mm/yr
144	Broad base terraces	India	SATr	NG	Agriculture	Field	92% decrease in sediment yield	N/A	Comparison to unterraced; soil = Vertisol
68 (Graded vs Bench terraces	India	D/LM	25%	Agriculture	Field	to significant difference in sediment yield between these two terrace types	N/A	
104	Inward sloping bench terrace	Taiwan	D/\IN	NG	Sugarcane	Field	%% decrease in addiment yield	N/A	Comparison to outward sloping banch terrace

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON EROSION AND SEDIMENTATION

	E TECHNOLOGY/TREATMENT	LOCATION	CLIMATE	SLOPE	LAND USE	SCALE	IMPACT	COMPAR I SON	REMARKS
	03 Bench terraces	Taiwan	D/WM	28%	Citrus orchard		97% decrease in sediment yield	N/A	Comparison to clean cultivation; soil = clay loam
1	27 Sediment besins with pipe drainage from terraces	USA	T	NG	Corn, clean cultivated	Field	> 97% trap efficiency	W/A	Trap efficiency = % of sediment lead of runoff deposited in besin; soil = (Entisol/Mollisol) Mon-trapped sediment = 88% clay
3	30 Gully plugs & drop structure	s Indonesia	D/WM	4-8X	Agriculture	Watershed	All structures failed within 2 years	N/A	
	19 Gully headwall structures	NSW, Australia	SATE	N/A	Guliy	Watershed	Greater than 50% of sediments derive from gully sidewalls, headwall control will not give short-term sediment reduction	N/A	
3	30 Check dam & banboo	Indonesia	D/WN	4-8X	Agriculture	Watershed	Increased in-gully erosion	H/A	Gully was stabilized until construction of checkdam
1	37 Check dams	Taiwan	D/W	54%	Nixed hardwood/ conifer forests		No significant difference in reservoir sillation rates following construction of 70 check dams.	N/A	Comparison to siltation rates prior to construction; soil = rocky-gravelly sands; Pt = 3,020 mm/yr
	60 Check dams	USA	T	N/A	N/A	Vatershed	Gully reclamation	H/A	Numerous ton, semi-pervious, N temporary check dams are in preferable & more economical 00
i	26 Check dams	USA	T	W/A	Various	Vatershed	Increase flooding if used in perennial or flood susceptible streams.	N/A	Useful for drainages < 10 acres ¹
1	81 Check dams	Japan	T	N/A	Various	Watershod	Reduced bed gradient, regulated stream width, controlled sediment transport	N/A	Conclusions based on aerial photographs
9	59 Nogwire check dam Brush check dam Log check dam	Philippin es	D/WI	36-119%	Var i ous	Vatershed	74% decrease in trap efficiency 4% decrease in trap efficiency 42% decrease in trap efficiency	N/A	Comparison to stone check dams; 5 years for treated gullies to stabilize and revegetate; only stone check dams still intact at year 5
2	07 Straw/fabric check dams Rock check dams	ALL	ALL	NG	ALL .	Vatershed	50-95% trap efficieny of sediments Trap only fine sands and coarser sediments	N/A	Straw/fabric dams only for flow velocities of < 0.06 ft/sec
1!	54 Rock check dams	USA	T	NG	Construction site	Vatershed	5-10% trap efficiency	N/A	Comparison to sediment load of runoff above check dam
4	43 Fabric check dam	USA	T	NG	Construction	Vatershed	99.6% trap efficiency	¥/A	Comparison to sediment load of runoff above check dam

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

	TECHNOLOGY \ TREATMENT	LOCATION	CLIMATE		LAND USE			
	Erosion	Worldwide	ALI	N/A	Agricul ture	Inevitable reduction in productivity, in favorable subsoils erosion increases production costs with little or no losses in yield	Andosols (Andepts) and Cambisols (Inceptisols) have good subsoli charecteristics, old and highly weathered Ferrasols (Oxisols), Luvisols (Alfisols), Acrisols (Ultisols), and Nitosols (Alfisols and Ultisols) usually do not	
95	Erosion	Tropics	ALL	N/A	Agriculture	On shallow, infertile tropical soils productivity may decline more rapidly than in temperate counterparts.	Drought effects are also magnified	
93	Erosion	Tropics	ALL	N/A	Agricul ture	From available data appears that yield reductions per unit soil loss of topsoil is more drastic for tropical vs temperate soils.	Attributable to lower inherent fertility, concentrations of plant- available nutrients and organic matter in top few cms, to root- restrictive & adaphologically unfavorable subsoil environments.	
93	Erosion	Vortduide	ALL	N/A	Agriculture	Primary effects of erosion on productivity is through loss of plant-available water.	Conclusion of the U.S. Mational Soil Erosion-Soil Productivity Research Committee	1
93	 Shallow soils, concentration of plant- available water and nutrients in top few cms Deep soils, good structure, favorable distribution & high reserves for plant-available water and nutrients Soils where topsoil horizon buried by less favorable soil material 	Vort duí de	ALL	N/A	Agricul ture	1.Severe erosion-induced productivity decline; will not respond to management in severly eroded phases. 2.May show no significant yield decline despite significant erosion; fertility restorable with additions of N or organic matter. 3.May show yield increases as the result of severe erosion		219 -
95	Soil loss, natural	Nigeria	w/D	1X 5X 10X 15	Corn Corn Corn Corn	.26 t/ha decrease in yield/ mm of soil loss .10 t/ha decrease in yield/ mm of soil loss .08 t/ha decrease in yield/ mm of soil loss .10 t/ha decrease in yield/ mm of soil loss	Higher rate of yield decline at 1% slope attributed to severe crusting and sealing from raindrop impact	
31	Soil loss, natural	USA	T	NG NG NG NG	Beans Peas Sugarbeets Alfalfa	27% decrease in yield 23% decrease in yield 15% decrease in yield 28% decrease in yield	Comparison to crop yields from plots where topsoil depth was about the same as when the land was first cultivated to plots where subsoil was exposed	3
57	Soil loss (0.5 - 1.4 cm/yr), natural	Poland	T	NG	Winter wheat	50% - 70% decrease in yield	where subsoit was exposed g	
115	Soil loss (0.1 cm), natural Soil loss (0.8 cm), natural	Australia	SATr	NG NG	Agriculture	3X - 7.5X decrease in yield 10 - 25X decrease in yield	0 • •	

•

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

•

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	INPACT	REMARKS
	Soil removal (2.54 cm) Soil removal (7.5 cm)	Nigeria	W/D	NG	Corn	50% decrease in yield 90% decrease in yield	Soil = sandy Alfisol
95	Soil removal (10 cm)	Nigeria	W/D	NG	Agriculture	65% and 38% decrease in yield for grain and stover, respectively	Soil = Paleustalf
	Soil removal (20 cm)					90% and 55% decrease in yield for grain and stover, respectively	
118	Soit removal (5 cm)	Nigeria	W/D	NG	Corn Coupea	95% decrease in yield 63% decrease in yield	Comparison to no soil removal; Soil = Ultisol, Pt = 2,480 mm/yr
	Soil removal (10 cm)				Corn Compea	95% decrease in yield 71% decrease in yield	
	Soil removal (20 cm)				Corn Coupea	100% decrease in yield 68% decrease in yield	
118	Soil removal (5 cm)	Nigeria	W/D	NG	Corn	31% decrease in yield	Comparison to no soil removal;
	Soil removal (10 cm)				Coupea Corn	2% decrease in yield 74% decrease in yield	Soil = Alfisol, Pt = 1,307 mm/yr
	Soil removal (20 cm)				Coupea Corn	59% decrease in yield 92% decrease in yield	
					Сонреа	65% decrease in yield	
118	Soil removal (5 cm)	Nigeria	W/D	NG	Corn Coupea	73% decrease in yield 43% decrease in yield	Comparison to no soil removal; Soil = Alfisol, Pt = 1,230 mm/yr
	Soil removal (10 cm)				Corn Coupea	832 decrease in yield 333 decrease in yield	
	Soil removal (20 cm)				Corn	100% decrease in yield	
497					Coupea	81% decrease in yield	
100	Soil removal (10 cm) Soil removal (20 cm)	Indonesia	W/D	NG	Soybean	48% decrease in seed weight 65% decrease in seed weight	Liming of soils increased average plot yield by 15% but did not
	Soil removal (40 cm) Soil removal (60 cm)					79% decrease in seed weight 86% decrease in seed weight	increase seed weight
221	Soil removal (0 cm,	Hawaii	W/D	NG	Corn stover,	22% increase in yield: no significant	Comparison to no soil removal.
	50% recommended fertilizer) Soil removal (0 cm,			NG	1st crop Corn stover.	difference in water use efficiency 46% increase in yield: no significant	fertilizer; Soil = clay Ferrasol (Tropeptic Eutrustox).
	100% recommended fertilizer) Soil removal (10 cm, no			NG	1st crop	difference in water use efficiency	Water use efficiency =
	fertilizer)				Corn stover, 1st crop	39% decrease in yield; 44% decrease in water use efficiency	Tield (kg)/Water use (kg)
	Soil removal (10 cm, 50% recommended fertilizer)			NG	Corn stover, 1st crop	No significant difference in yield; 31% decrease in water use efficiency	
	Soil removal (10 cm, 100% recommended fertilizer)			NG	Corn stover, 1st crop	44% increase in yield; no significant difference in water use efficiency	
	Soil removal (35 cm, no fertilizer)			NG	Corn stover, 1st crop	91% decrease in yield; 90% decrease in	
	Soil removal (35 cm, 50% recommended fertilizer)			NG	Corn stover,	water use efficiency 35% decrease in yield; 67% decrease in	
	Soit removal (35 cm,			NG	1st crop Corn stover,	water use efficiency 21% increase in yield; 36% decrease in	
	100% recommended fertilizer)				ist crop	water use efficiency	

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

TE TECHNOLOGY\TREATHENT	LOCATION	CLIMATE		LAND USE		REMARKS
221 Soil removal (0 cm,	Hawa i i	W/D	NG	Corn,	165% and 34% increase in grain and stover	Comparison to no soil removal, no
50% recommended fertilizer)				2nd crop	yield, respectively	fertilizer; Soil = clay Ferrasol,
Soil removal (0 cm,			NG	Corn,	317% and 64% increase in grain and stover	(Tropeptic Eutrustox)
100% recommended fertilizer)				2nd crop	yield, respectively	
Soil removal (10 cm,			NG	Corn,	46% and 41% decrease in grain and stover	
no fertilizer)				2nd crop	yield, respectively	
Soil removal (10 cm.			NG	Corn,	83% increase in grain yield and no	
50% recommended fertilizer)				2nd crop	significant difference in stover yield	
Soil removal (10 cm,			NG	Corn,	302% and 51% increase in grain and stover	
100% recommended fertilizer				2nd crop	yield, respectively	
Soil removal (35 cm.			NG	Corn,	100% and 91% decrease in grain and stover	
no fertilizer)				2nd crop	yield, respectively	
Soil removal (35 cm,			NG	Corn,	39% and 41% decrease in grain and stover	
50% recommended fertilizer)				2nd crop	yield, respectively	
Soil removal (35 cm,			NG	Corn,	112% and 16% increase in grain and stover	
100% recommended fertilizer)				2nd crop	yield, respectively	
					field, lespectively	
117 Soil added (15 cm), 0 kg/ha N	USA	SATimp	NG	Sorghum	69% increase in yield	Comparison to non-treated; Soil =
Soil removed (15 cm), 0 kg/ha N		•		-	46% decrease in yield	loessial, calcareous, silty
Soil removed (30 cm), 0 kg/ha N					61% decrease in yield	Mollisol
Soil added (15 cm), 34 kg/ha N					45% increase in yield	
Soil removed (15 cm), 34 kg/ha M					22% decrease in yield	
Soil removed (30 cm), 34 kg/ha M					27% decrease in yield	
Soil added (15 cm), 68 kg/ha N					34% increase in yield	
Soil removed (15 cm), 68 kg/ha M				•	13% decrease in yield	
Soil removed (34 cm), 68 kg/ha M					21% decrease in yield	
96 Nutrient losses on eroded soil	Nigeria	W/D	1%	Agriculture	50 organic C, 6 N, 0.2 available P	
(kg/ha/yr)	Niger IV	.,	5%	Agricolitare	870 organic C, 100 N, 1.8 available P	
			10%		1850 organic C, 190 N, 2.2 available P	
			15%		3070 organic C, 230 N, 8.1 available P	
			174		Sofo organic C, 250 H, 6.1 available P	
30 Mutrient losses on eroded soil	Indonesia	D/WN	18%	Agriculture	30 organic matter, 1.5 N, 1.0 P, 2.0 K	
(kg nutrients/ton of soil loss/						
year)			-			
52 Nutrient losses on eroded soil	Zimbabwe	W/D	3-6.5%	Agriculture	Type I : 0.97 N, 0.16 P, 10.7 organic C	Type I = well-drained sands;
(kg nutrients/metric ton of		-/	3 0.3%	Mai Ical cai e	Type II : 2.1 N, 0.16 P, 15.4 organic C	Type II = other soils
sediment/yr)					Type II : 2.1 W, 0.10 P, 15.4 Organic C	Type II = other solts
actinency yr y						
96 Nutrient losses in runoff water	Nigeria	W/D	1%	Agriculture	2.9 N, 0.5 P, 4.7 K, 11.2 Ca, 2.4 Mg	
(kg/ha/yr)			5%		5.5 N, 0.5 P, 6.2 K, 17 Ca, 2.5 Mg	
			10%		5.7 N, 0.8 P, 5.6 K, 14.9 Ca, 3.1 Ng	
			15%		4.5 N, 0.7 P, 4.1 K, 12.5 Ca, 3.0 Mg	
61 4% to 5% decrease in plant	USA	т	NG	Agriculture	12% - 36% decrease in yield	Dependant on crop and degree of
available water		•			In the second of the second of the second se	soil loss
						8411 1488
82 Grass cover	Colombia	W/D	22%	Pasture	Decreases in nutrient losses : N - 72%,	Comparison to monthly tilled
					P - 85%, K - 75%, Ca - 89%, Mg - 83%	

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE		
	Grassiand	India	D/WN	NG	Grassland	20% increase in N	Comparison to forested lands; Soil = sandy loam to clay loam, Pt = 1,050 mm/yr; attributed to higher phosphate levels (aids in M fixation) in grasslands
85	Cover cropping with N-fixing plant (Nimosa invisa) - 2 years	India	D/IM		Mimosa invisa	0.4% increase in organic matter,30% increase in available N, 98% increase in available P, 28% increase in K	Comparison to clean cultivation
160	Green Nanure	Vorldvide	ALL	N/A	Agriculture	Only effects next crop	Usually limited to mechanical agriculture as the power to incorporate green manure into soil often beyond manual labor
160	Organic matter	Worldwide	ALL	N/A	Agriculture	In unfertilized soils supplies N, S, blocks P fixation, maintains CEC, improve structure of poorly aggregated soils, form complexes with micro-nutrients	Essential in non-fertilized systems, important in low CEC soits and poorly aggregated sands.
160	Commercial fertilizer	Worldwide	ALL	N/A	Agriculture	Increase soil organic matter due to increased root decomposition	If soils are adequate, sound fertilization practices decrease need for organic matter
160	Organic vs Commercial fertilizer	Worldwide	ALL	N/A	Agriculture		Choice between predominately based on economics, transport, accessability, and social criteria
21	Cow dung (5 t/ha) Wood shavings (5 t/ha) Poultry manure (5 t/ha) Cow/poultry manure (5 t/ha)	Ghana	CW	7.5% 7.5% 7.5% 7.5%	Corn	105% increase in yield 53% increase in yield 32% increase in yield 11% increase in yield	Comparison to commercial fertilizer (200 kg/ha Urea, 100 kg/ha triple superphosphate, 120 kg/ha muriate of potash; Pt = 1,340 mm/yr
21	Cow dung (4 t/ha) Cow dung (4 t/ha) & straw mulch (4 t/ha)	Ghana	SATE	2% 2%	Sorghua	75% increase in yield 75% increase in yield	Comparison to 2 t/ha cow dung, Pt = 320 mm/yr
	Cow dung (5 t/ha) Cow dung (5 t/ha) & straw mulch (4 t/ha)			2% 2%		88% increase in yield 100% increase in yield	
197	Mulch (1.1 t/ha) Mulch (2.2 t/ha) Mulch (4.4 t/ha) Mulch (8.8 t/ha) Mulch (13.2 t/ha)	USA	T	NG NG NG NG NG	Sorghum	35% increase in crop yield 66% increase in crop yield 67% increase in crop yield 107% increase in crop yield 124% increase in crop yield	Comparison to no mulch; Pt = 808 mm/yr
38	Nutch	India	D/W	1%	Wwheat/barley/ gram/linseed	30% increase in yield	Comparison to unmulched; Soil = sandy clay loam
153	Nutch	India	Satr	NG	Agriculture	40% increase in yield	Comparison to unmulched in 4 crops

- 222

ł.

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	IMPACT	REMARKS
*****		***************************************					in 6 regions for 3 years
185	Wulch (5 t/ha)	Indonesia	N/A	0%	Corn	63%% increase in biomass	Greenhouse study
91	Hulch Hulch	Indones î a	W/D	N/G	Rice Corn	69% increase in yield 10% - 188% increase in yield	Plots on 20 yr old terraces; soil latosol
193	Mulch (ó t/ha)	Indonesia	W/D	14%	Rice	30% increase in yield	Soil = red latosol
149	950% asphalt mulch 100% asphalt mulch	Venezuela	W/D	4X 4X	Sorghum	39% increase in yield 110% increase in yield	Comparison to no-mulch; soil = sandy loam, Typic Haplustalf
174	Mulch - polyethylene sheets Mulch - dry grass (10 t/ha)	India	SATr	NG NG	Wheat	Yield increase did not justify expense 24% increase in grain yield, 30% increase in straw yield	Comparison to unmulched; Soil = silty clay loam
153	Vertical mulching (8m interval) Vertical mulching (4m interval)	India	SATE	NG NG	Sorghum	35% increase in yield 34% increase in yield	Comparison to no vertical mulch; Soil = heavy black soil
190	Mulch and minimum tillage Mulch and minimum tillage	Indonesia	EM -	NG" NG" NG" NG" NG"	Peanuts Soybeans Corn Cassava Mung beans Upland rice	no significant difference in yield no significant difference in yield 58% increase in yield 33% increase in yield 139% increase in yield 24% increase in yield	Comparison to unmaulched, traditional cultivation; Soil = Ferrasol (Haplorthox)
190	Mulch and minimum tillage Mulch and minimum tillage Mulch and minimum tillage Mulch and minimum tillage	Indonesia	EN	NG NG NG NG	Peanuts Corn Mung beans Upland rice	no significant difference in yield 15% increase in yield 48% increase in yield 31% increase in yield	Comparison to unmulched, traditional cultivation; Soil = Nitosol (Tropudult)
212	No-till with stubble mulch (chemical weed control)	USA	T	3X	Corn	7% decrease in yield	Comparison to conventional tillage with stubble mulch
40	Land clearing (bulldoze, plow, level)	Bolivia	₩/D	NG	Sugarcane	No significant difference in yield	Comparison to slash-and-burn
136	Land clearing (D-6 with conventional blade)	Brazil	Cu	NG NG NG NG NG NG	Rice (2nd crop) Rice (3rd crop) Rice (4th crop) Cassava Soybean Guinea grass		
136	Land clearing (D-6 with conventional blade, addition of lime to pH 6.2, 50 kg/ha N, 172 kg/ha P, 40 kg/ha K. Same N and K additions after each crop or grass cutting)	Brazil	CV	NG NG NG NG NG NG	Rice (2nd crop) Rice (3rd crop) Rice (4th crop) Cassava Soybean Guinea grass	10% decrease in yield	Comparison to slash-and-burn; Soils = Acrísols (Ultisols)

÷

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

		LOCATION	CLIMATE		LAND USE		REMARKS	
	Land clearing (Slàsh-and-burn)	Peru	CW	NG	Agriculture	Increased crop yields	Comparison to buildozed sited; attributed to benefits of ash, soil compaction and topsoil disturbance by buildozer	
153	Deep tillage	India	SATr	NG	Agriculture	28% increase in yield	Comparison to shallow tillage in 10 crops in 7 regions over 4 years	
44	Tillage Artificial stabilization of soil surface (Polyacrylamide)	Indonesia	EM	XG Ng	Agriculture	Drastic reduction of fertilizer loss 95% decrease in N & P, and 90% in K losses	Soil = Ferrasol (Oxisol); rainfall simulator study performed in pans	
97	Minimum tillage	Nigeria	W/D	NG	Corn Compeas Soybeans Sweet potatoes Pigeon peas	50% increase in crop yield 24% increase in crop yield 21% decrease in crop yield 24% increase in crop yield No significant difference in yield	Comparison to conventional tillage	
122	Minimum tillage Zero-tillage Mulching Ridging across slope	Ghana	W/D	7.5X 7.5X 7.5X 7.5X	Corn	16% increase in yield 8% decrease in yield 57% increase in yield 16% increase in yield	Comparison to traditional mixed cropping; soil = sendy loam to sandy clay, Pt = 1,500 mm/yr	I
	Minimum tillage Zero-tillage Nulching Ridging across slope	Ghana	W/D	3X 3X 3X 3X	Corn	15% decrease in yield 51% decrease in yield 7% increase in yield 21% increase in yield	Comparison to traditional mixed cropping; soil = sandy clay loam to sandy clay, Pt = 1,400 mm/yr	- 224 -
158	Nechanized agriculture	Loessial soils	ALL	N/A	Agriculture	Rapid physical degradation and productivity decline in tropics; process slower in temperates	Beneficial effects of tillage do not last unless lime or use rotation with deep rooted grass	
36	Hand cultivation (< Scm) Hechanical cultivation(15-20cm) Hand cultivation (<scm) Hechanical cultivation(15-20cm) Hand cultivation (< Scm) Hechanical cultivation(15-20cm) Hand cultivation (< Scm) Hechanical cultivation(15-20cm) Hand cultivation (< Scm) Hechanical cultivation(15-20cm) Hand cultivation (< Scm)</scm) 	Senegal	W/D	NG	Nillet Nillet Sorghum Corn Corn Rice Rice Cotton Cotton Cotton Peanuts Peanuts	24% yield increase 22% yield increase 24% yield increase 25% yield increase 35% yield increase 103% yield increase 73% yield increase 25% yield increase 26% yield increase 28% yield increase 8% yield increase	Comparison to non-cultivated	
16	Contour cultivation Contour cultivation	India	W/D	2.2%	Jowar Barley	28% increase in yield 23% increase in yield	Comparison to up & downslope planting; soil = eroded, alluviai loam	
46	Contour rows	India	D/WM	Up to	Sorghum	Up to 35% increase in yield	Comparison to non-contour	

÷

.

IMPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	ІМРАСТ	REMARKS
*****	*********	12\$\$\$82±==±±==±=;		3%		. 	cultivated; based on review of 30 years of experiment station projects
131	Cross slope planting Cross slope planting Ridge & furrow (60 cm spacing) Ridge & furrow (60 cm spacing)	India	W/D	1.5%	Grain Straw Grain Straw	23% increase in yield 10% increase in yield 59% increase in yield 36% increase in yield	Comparison to up & downslope planting; soil = well-drained, sandy loam (inceptisol)
25	Ripped furrows	USA	SATIN	NG	Grassland (Bouteloua spp)	250% increase in yield	Comparison to non-ripped
47	Furrows	USA	SATimp	NG	Grassland (Buchloe spp)	300% increase in yield, 50% increase in cover	Comparison to non-furrowed
104	Bench terrace Contour cultivation	Taiwan	D/WI	12X 12X	Sugarcane	4% decrease in yield 10% increase in yield	Comparison to up & down stope cultivation
34	Contour/mulch/close planting Bench terrace Contour/close planting	Taiwan	D/LM	28%	Pineapple	105% increase in yield 72% increase in yield 66% increase in yield	Comparison to up & down slope/wide planting.
105	Contouring Mulching Bench terrace Contouring Mulching Bench terrace	Taiwan	D/W	17X 17X 17X 32X 32X 32X	Tea	6% increase in yield 6% decrease in yield 32% decrease in yield 27% increase in yield 71% increase in yield 16% increase in yield	Comparison to clean cultivated; Soil = gravelly loam C
5	Contour bunds & terraced Contour bunds & mulch Contour bunds & terraced Contour bunds & mulch	Indonesia	W/D	9% 12%	Potato Cabbage	No significant difference in yield No significant difference in yield 8% decrease in yield No significant difference in yield	Comparison to contour bunding only; soil = Andosol
180	Furrow dans	USA	SATmp	NG	Sorghum Cotton	20% increase in yield 15% increase in yield	
86	Bunds	India	SATr	NG	Agriculture	Mn significant or stable yield increase	Construction of bunds as a soil or moisture conservation practice have not shown, in controlled ICRISAT experiments, to achieve either significant or stable yield increase due to moisture conservation
ćā	Contour bunding/level terrace/ ridge-type terrace/absorptive- type terrace	India	SATE &	NG	Agricul ture	Ponded water damaged crops and interfered with tillage operations resulting in lowered yields on treated sites 8 years out of 8 years on poorly drained soils	Comparison to non-treated; Soil = Vertisol
88	Bunds Levelling	India	D/W	NG	Wheat/barley/ gram/corn/juar	35% increase in yields 63% increase in yields	Comparison to unbunded, unleveled.

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

CITE	TECHNOLOGY\TREATHENT	LOCATION	CLINATE	SLOPE	LAND USE	INPACT	REMARKS
******	Bunds & levelling			********		98% increase in yields	-
112	Land leveling	USA	T	NG	Sorghum	No significant difference in yield	Comparison to unleveled; Soil = sandy clay loam & fine sandy loam, Pt = 684 mm/yr
126	Level pan	USA	SATap	NG	Grain sorghum Forage sorghum	130% increase in yield 180% increase in yield	Comparison to plots outside level pans
125	Level pan	USA	SATep	NG	Sorghum	100% increase in yield	Comparison to unleveled press; Pt = 422 mm/yr
68	Graded vs Bench terrace	India	D/W	25X	Potato	10% greater yield on banch terrace	
182	Terrace	Colombie	W/D	45%	Coffee	Decreases in nutrient losses : N - 50%, Increases in nutrient losses : P - 250%, K - 100%, Ca - 33%, Ng - 29%	Comperison to unterreced coffee.
74	Terrace	USA	SATup	NG	Agriculture	No yield benefits from terracing alone.	
	Inward sloping banch terrace Outward sloping banch terrace Puerto Rico structural terrace * Puerto Rico vegetative terrace	Indie	D/LM	25X	Potato	10% increase in yield 9% increase in yield 23% increase in yield 45% increase in yield	Comparison to inward sloping bench terrace; Highest yields attributed to minimized soil disturbance on Puerto Rico vegetative terrace. I * - PR terraces = structural or vegetative barriers built on the contour and allowed to fill with soil, usu. 2-4 years to build up terrace; yield differences in 5 year total yield.
76	Conservation bench terrace	USA	SATep	1.5%	Sorghum/wheat/ fallow	Little or no yield benefits from bench leveling alone.	Comparison to non-terraced
75	Conservation banch terrace	USA	SATap	1.5%	Sorghum/wheat/ fallow	50% increase in yield on fine or medium textured soils with good water holding capacity	No increases on coarse textured soils; Soils = silty clay loam & sand
17	Conservation bench terrace	USA	T	NG	Sorghum/wheat/ fallow	27% increase in yield over the long term. Yield reductions persisted for 6 years following leveling.	Bench terraces require deep fertile soil on moderate slopes to permit topsoil removal necessary for leveling.
124	Conservation bench terrace	USA	\$AT a p	1%	Sorghum	40% increase in yield	Comparison to unterraced; Soil = silt loam to clay loam, Pt = 424 mm/yr
18	Conservation banch terrace	USA	SATinp	2-8X	Wheat	Topsoil loss due to leveling resulted in need for high application rates of fertilizer to sustain yield.	Subsoil properties poor, replacement of 2 inches of topsoil increased yields as much or more than highest rates of fertilizer application

•

•

INPACTS OF SOIL CONSERVATION TECHNOLOGIES ON CROP YIELD AND PRODUCTIVITY

CITE	TECHNOLOGY\TREATMENT	LOCATION	CLIMATE		LAND USE	1NPACT	REMARKS
							over two year period. Soil = silt loam, Pt = 325 mm/yr
61	Conservation banch terrace	USA	SATing)	1-5% 1-5% 1-5%	Wheat Corn Brome/alfalfa	19% increase in yield No significant difference in yield 100% increase in yield	Comparison to unterraced; Soil = silt loam to silt clay loam, Pt = 111 mm/yr of study
35	i Closed-end terrace/graded terrace	India	D/LM	2%	Barley/gram/ linseed/niger	Significant yield decreases in all years (3) and in all crops	Comparison to non-terraced; Soil = sandy clay loam, Pt = 1,170 mm/yr; attributed to poor drainage resulting in higher soil moisture causing poor tilth as a result of tillage operations in moist clay
135	i Bench terrace Bench terrace Bench terrace	Indonesia	W/D	N/G	Rice Pearut Cassava	18% increase in yield No significant difference in yield No significant difference in yield	Comparison to crops on ridge terraced Lands
111	Bench terrace	Indonesia	W/D	N/G	Agriculture	34% - 38% increase in yield	Crops : bawang preg, corn, beans
56	Level banch terrace Banch terrace, 1.6% outslope Conservation banch terrace Steep backslope terrace Broad base terrace	Ecuador	W/D	4-6X 4-6X 4-6X 4-6X 4-6X	Corn	No significant difference in yield 33% increase in yield 12% decrease in yield 18% increase in yield No significant difference in yield	Comparison to unterraced control; soils = loam to loamy sand

Distributors of World Bank Publications

ARGENTINA Colos Hinch, SRL Galeria Cuernes Florida 165, 4th Flore-Ofc. 453/465 1333 Businos Airen

AUSTRALIA, PAPUA NEW GUINEA, PIJI, SOLOMON ISLANDS, VANUATU, AND WISTERN SAMOA DA. Bochs & Journals 648 Whitehome Rad Mitchan 3132 Victoria

AUSTRIA Gerold and Co. Groben 31 A-1011 Wien

BAHRAIN Bebruin Research and Consultancy Associates Ltd. P.O. Box 22103 Massase Town 317

BANGLADBSH Micro Industries Development Assistance Society (MIDAS) House S, Rood 16 Diasmondi R/Ares Dhalas 1209

> Branch officas: 156, Nur Ahmed Sarak Chittagong 4000

%, KDA. Avenue Kulta BELGRIM

Publications des Nations Unies Av. du Roi 202 1060 Brunsels

BRAZIL Publications Tocricas Internacionais Itale, Ras Pativoto Caenide, 209 01409 Sec Paulo, SP

CANADA La Diffuenar C.P. 85, 1501 B rue Ampère Boucherville, Québec 142 684

CHINA China Rhancial & Boonomic Publishing House 8, Da Po St Dong Jie Beijing

COLOM BIA Enlace Lida. Apartado Aereo 34270 Bagota D.S.

COTE D'IVOIRE Centre d'Edition et de Diffunion Akricaines (CEDA) 04 B.P. 543 Abidjen Di Plateau

CYPEUS MEMRE Information Services P.O. Rox 2006 Niconia

DENMARK SemfundeLitteratur Rosenoerus Allé 11 DK-1970 Frederikaburg C

DOMINICAN IERUBLIC Reltorn Taller, C. por A. Restauratión e lasbel la Católica 309 Apartado Postal 2190 Sento Dianizago

EL SALVADOR Puestos Aventás Manuel Entique Areujo #3530 Editido 5155A, Jar. Pieco Bas Selvador

BGYPT, ARAB REPUBLIC OF Al Alman Al Galas Binat Cairo

The Middle Bast Observer \$ Chavanhi Street Catro FINLAND Akatoeminen Kirjakauppa P.O. Box 128 SP-00101 Helsinki 10

FRANCE World Bank Publications 66, avenue d'Iéna 75116 Paris

GERMANY, FEDERAL REPUBLIC OF UNO-Vering Poppeladorfer Allee S5 D-S300 Benn 1

GREECE KEMB 24, Ippodamou Street Platia Plastica Athena-11635

GUATEMALA Liberias Piedra Santa Sa. Calle 7-55 Zona 1 Guatemala City

HONG KONG, MACAO Asia 2000 Led. Mangkok Post Office Bute Street No. 37 Mangkok, Kowloon Hang Kang

HUNGABY Kulture P.O. Box 149 1389 Budapest 62

INDIA Allied Publishers Private Ltd. 751 Mount Road Madras - 600 002

> Branch officer 15 J.N. Heredia Marg Ballard Esteir Bombay - 400 036

13/14 Aset Al: Road New Delhi - 110 002

17 Chittaranjan Avenue Calcutte - 700 072

Jeyadova Houtel Building 5th Main Road Gendhinagar Bengalore - 560 009

3-S-1129 Kachiguda Cruns Road Hyderabad - 500 027

Prathana Flata, 2nd Ploor Near Thakare Baug, Nevrengpura Ahmedabad - 380 009

Patiala House 16-A Ashok Marg Lucknow - 226 001

INDONESIA Pt. Indira Limited Jl. Scut Retulengi 37 P.O. Box 181 Jekarte Puset ITALY Licone Commissionaria Senso

Lione Commissioneria Sensoni SPA Via Benadetto Fortini, 120/10 Casella Postale 552 50125 Florence

,-m: Art Rastan Book Service 37-3, Honge 3-Chome, Bunkyo-ku 113 Takyo

KENYA Africa Book Service (B.A.) Ltd. P.O. Box 45245 Nairobi

KO KEA, HEPUBLIC OP Pan Kores Book Corporation P.O. Box 101, Kwangwhaman Soul

KUWAIT MEMRB Information Services P.O. Box 5463

MALAYBIA University of Malaya Coopersitive Bookahop, Lémind P.O. Bos 1227, Jalen Panial Beru Kuala Lumpur MEXICO INFOTEC Apertado Postel 22-860 16060 Tialpen, Mexico D.F.

MOROCCO Société d'Etudes Marketing Marocaine 12 rue Mouart, Bd. d'Azés Canablanca

NETHERLANDS InOr-Publication b.v. P.O. Box 14 7240 BA Lochem

NEW ZEALAND Hills Library and Information Service Private Bag New Market Auckland

NIGERLA University Press Limited Three Crowns Building Jericho Private Mail Bag 5095 Ibadan

NORWAY Narvenes Information Center Book Department P.O. Box 6125 Etterntad N-6602 Colo 6

OMAN MEMRE Information Services P.O. Box 1613, Soch Airport

FAKISTAN Mina Book Agency 65, Shahrah-o-Quaid-o-Asaon F.O. Box No. 729 Lahora 3

PERU Editorial Deservatio SA Apartado 3624 Lima

PHILIPPINES National Book Store 207 Rizzd Avenue P.O. Bon 1934 Metro Manila

POLAND ORPAN Palec Kultury i Nauki 00-901 Wanatawa

PORTUGAL Livraria Portugal Rua Do Carmo 70-74 1203 Liabon

SAUDI ARABIA, QATAR Jarit Book Store P.O. Box 3196 Riyath 11471

MBMRB Information Services Branch officer A) Also Street A) Dahos Center Pint Boor P.O. Boor 7165 Riyadh

> Haji Abdullah Alivese Building King Khalad Streat P.O. Bux 3069 Damatan

33, Mohammet Hassen Awad Street P.O. Box 5978 Jeddah

SINGAPORE, TAIWAN, MYANMAR, BRUNEL Information Publications Private, Ltd. (2-06 in FL, Pai-Pa Industrial Rate.

Bidg. 24 New Industrial Road Stugapore 1953

BOUTH APRICA, SQTEWANA For single tiller Oxford University Press Southern Adrice P.O. Box 1141 Cape Town 5000

For malecription orders: International Subscription Service P.O. Box 41095 Creighali Johannesburg 2024 SPAIN Mundi-Prenss Libros, S.A. Castelio 37 28001 Madrid

Libresia Internacional ABDOS Conveil de Cent, 391 08009 Barosiona

SRI LANKA AND THE MALDIVES Lake House Boolshop P.O. Box 244 100, Sir Christempelam A. Gardiner Mawritha Colombo 2

SWEDEN For single tilles: Pritzes Fackboluforetaget Regeringegatan 12, Box 16356 S-103 27 Stockholm

For subscription orders: Wennergreg-Williams AB Box 30004 S-104 25 Shotkholm

SWITZERLAND For single killer Libratie Payot 6. rue Grenue Case postale 381 CH 1211 Geneva 11

For subscription orders: Libratrie Payot Service des Abonnements Care postale 3312 CH 1002 Laurenne

TANZANIA Oxford University Press P.O. Box 5399 Dar es Salaam

THAILAND Central Department Store 306 Silom Road Bangkok

TRINIDAD & TOBAGO, ANTIGUA BARRUDA, BARBADOS, DOMINICA, CIRENDAD, GUYANA, JAMARCA, MONTSERRAT, ST. XITTS & NIVES, ST. LUCIA, BT. VINCENT & GRENADINES Systematics Studies Unit 9 Waits Studies Curape Trindiad, West Indies

TURKEY Hanet Kitapevi, A.S. Intiklai Catideni No. 469 Beyogiu Intanbul

UGANDA Uganda Bookshop P.O. Box 7145 Kampala

UNITED ARAD EMIRATES MEMRE Gulf Co. P.O. Box 6097 Sharjah

UNIFED KINGDOM Microtofo Ltd. P.O. Box 3 Alton, Hampahire GU34 2PG England

URUGUAY Instituto Nacional del Libro Sen Jose 1116 Munisvideo

VENEZUELA Libreria del Este Aptelo, 60.337 Caracas 1960-A

YUGO SLAVIA Jugoslovenska Krjiga P.O. Box 36 Trg Republika YU-11000 Belarade

RECENT WORLD BANK TECHNICAL PAPERS (continued)

- No. 94 Le Moigne, Barghouti, and Plusquellec, Technological and Institutional Innovation in Irrigation
- No. 95 Swanson and Wolde-Semait, Africa's Public Enterprise Sector and Evidence of Reforms
- No. 96 Razavi, The New Era of Petroleum Trading: Spot Oil, Spot-Related Contracts, and Futures Markets
- No. 97 Asia Technical Department and Europe, Middle East, and North Africa Technical Department, Improving the Supply of Fertilizers to Developing Countries: A Summary of the World Bank's Experience
- No. 98 Moreno and Fallen Bailey, Alternative Transport Fuels from Natural Gas
- No. 99 International Commission on Irrigation and Drainage, Planning the Management, Operation, and Maintenance of Irrigation and Drainage Systems: A Guide for the Preparation of Strategies and Manuals (also in French, 99F)
- No. 100 Veldkamp, Recommended Practices for Testing Water-Pumping Windmills
- No. 101 van Meel and Smulders, Wind Pumping: A Handbook
- No. 102 Berg and Brems, A Case for Promoting Breastfeeding in Projects to Limit Fertility
- No. 103 Banerjee, Shrubs in Tropical Forest Ecosystems: Examples from India
- No. 104 Schware, The World Software Industry and Software Engineering: Opportunities and Constraints for Newly Industrialized Economies
- No. 105 Pasha and McGarry, Rural Water Supply and Sanitation in Pakistan: Lessons from Experience
- No. 106 Pinto and Besant-Jones, Demand and Netback Values for Gas in Electricity
- No. 107 Electric Power Research Institute and EMENA, The Current State of Atmospheric Fluidized-Bed Combustion Technology
- No. 108 Falloux, Land Information and Remote Sensing for Renewable Resource Management in Sub-Saharan Africa: A Demand-Driven Approach (also in French, 108F)
- No. 109 Carr, Technology for Small-Scale Farmers in Sub-Saharan Africa: Experience with Food Crop Production in Five Major Ecological Zones
- No. 110 Dixon, Talbot, and Le Moigne, Dams and the Environment: Considerations in World Bank Projects
- No. 111 Jeffcoate and Pond, Large Water Meters: Guidelines for Selection, Testing, and Maintenance
- No. 112 Cook and Grut, Agroforestry in Sub-Saharan Africa: A Farmer's Perspective
- No. 113 Vergara and Babelon, The Petrochemical Industry in Developing Asia: A Review of the Current Situation and Prospects for Development in the 1990s
- No. 114 McGuire and Popkins, Helping Women Improve Nutrition in the Developing World: Beating the Zero Sum Game
- No. 115 Le Moigne, Plusquellec, and Barghouti, Dam Safety and the Environment
- No. 116 Nelson, Dryland Management: The "Desertification" Problem
- No. 117 Barghouti, Timmer, and Siegel, Rural Diversification: Lessons from East Asia
- No. 118 Pritchard, Lending by the World Bank for Agricultural Research: A Review of the Years 1981 through 1987
- No. 119 Asia Region Technical Department, Flood Control in Bangladesh: A Plan for Action
- No. 120 Plusquellec, The Gezira Irrigation Scheme in Sudan: Objectives, Design, and Performance
- No. 121 Listorti, Environmental Health Components for Water Supply, Sanitation, and Urban Projects
- No. 122 Dessing, Support for Microenterprises: Lessons for Sub-Saharan Africa
- No. 123 Barghouti and Le Moigne, Irrigation in Sub-Saharan Africa: The Development of Public and Private Systems
- No. 124 Zymelman, Science, Education, and Development in Sub-Saharan Africa
- No. 125 van de Walle and Foster, Fertility Decline in Africa: Assessment and Prospects
- No. 126 Davis, MacKnight, IMO Staff, and Others, Environmental Considerations for Port and Harbor Developments

The World Bank

Headquarters 1818 H Street, N.W. Washington, D.C. 20433, U.S.A.

Telephone: (202) 477-1234 Facsimile: (202) 477-6391 Telex: WUI 64145 WORLDBANK RCA 248423 WORLDBK Cable Address: INTBAFRAD WASHINGTONDC **European Office** 66, avenue d'Iéna 75116 Paris, France

Telephone: (1) 40.69.30.00 Facsimile: (1) 47.20.19.66 Telex: 842-620628 **Tokyo Office** Kokusai Building 1-1 Marunouchi 3-chome Chiyoda-ku, Tokyo 100, Japan

Telephone: (3) 214-5001 Facsimile: (3) 214-3657 Telex: 781-26838

Cover design by Walton Rosenquist

ISBN 0-8213-1606-0