Rate Setting 101

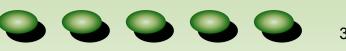
Presented By:

Raftelis Financial Consulting, PA

George Raftelis

William Stannard

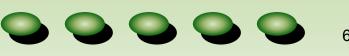

Harold Smith



Presentation Schedule

Introduction	9:30-10:00
Pricing Objectives	10:00-10:30
Break	10:30-10:45
Revenue Requirements	10:45-11:30
Cost of Service	11:30-12:15
Lunch	12:15-1:15
Rate Design	1:15-2:00
Break	2:00-2:15
Rate Assessment	2:15-2:45
Public Involvement	2:45-3:15
Questions/Discussion	3:15-4:00

Rate setting "is as much an art as it is a science"

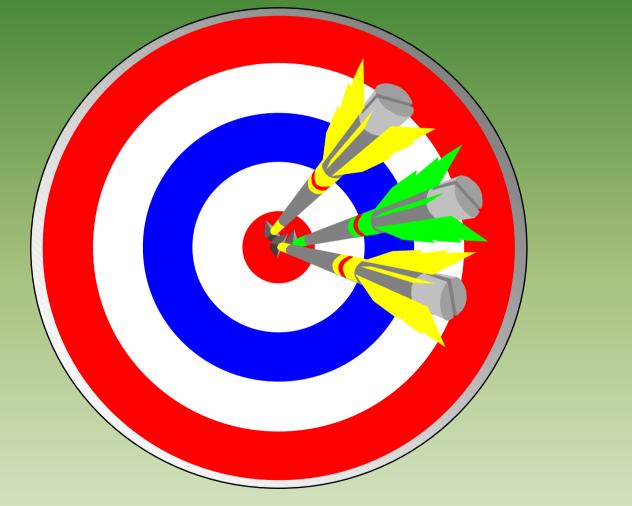


Overall Utility Pricing Goal

Design rate structure:

Consistent with industry practices

Responsive to utility and stakeholder objectives



Who Are Utility Stakeholders?

How Do We Accomplish Our Overall Goal?

Introduction to Topics: "The Short Course"

Basic Steps in the Rate Setting Process

Rate Setting Process

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

5

Public Involvement

Step 2 - Identify Revenue Requirements

Step 1 - Identify Financial and Pricing Objectives

Step 1: Identify Financial and Pricing Objectives

Legality

- Financial Sufficiency
- Cost of Service Based Allocations
- Minimizing Customer

Impacts

Affordability to

Disadvantaged

Customers

Conservation/Demand

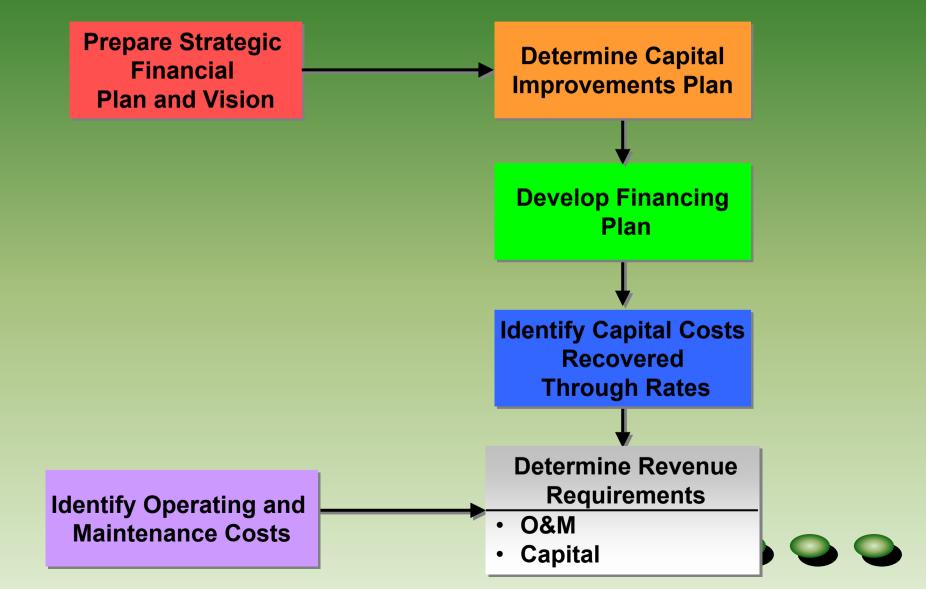
Management

- Equitable contributions
 - from new customers
- Simple to understand and update
- Ease of implementation

- Revenue stability
- Rate Stability
- **Economic**
 - Development

Step 2: Identify Revenue Requirements Concept:

In providing adequate water service, every water utility must receive sufficient revenue to ensure:


Proper operation & maintenance (O&M)

Development and perpetuation of the system

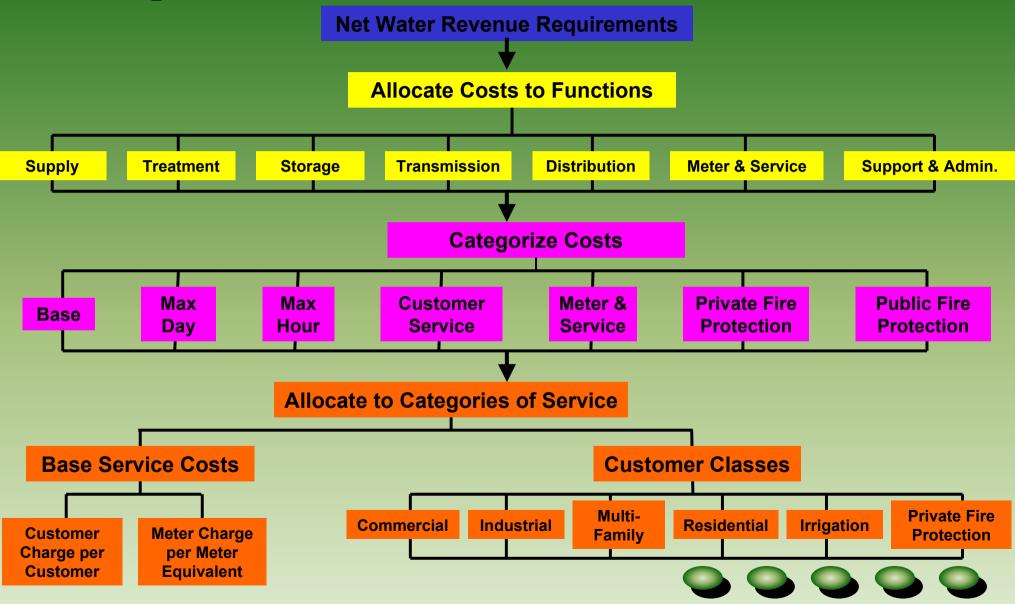
Preservation of the utility's financial integrity

Determine Revenue Requirements

Key Revenue Requirement Considerations

- Selection of Test Year
- Projection Period
- Cash vs. Utility Approach
- Impact on Forecasted Demand
- Escalation Factors

Step 3: Allocate Costs


Cost of Service Concept Cost of Service **Alternatives** Base-Extra Capacity Commodity Demand Design vs. Function □ Allocate Costs of Service to Cost Components

Functional Cost Allocations Categorization of Costs Customer Classes Units of Service

Sample Allocation of Water Costs

17

Step 4: Design Rate Structure

- Recovery of Full Costs of Service
- Fixed vs. Variable Charges
 - Service Charges
 - Consumption Charges
 - High Strength Surcharges
- Evaluating Alternative Rate Structures

Conservation vs. Traditional Rate Designs

- Flat Rate
 - Declining Block Rates
- Uniform Rates
- Increasing Block Rates
- Seasonal Rates
- Individualized Rates

Step 5: **Assess Effectiveness of Addressing Pricing Objectives**

- **Customer impact analysis**
- Satisfied objectives
- Price elasticity of demand
- Comparison with other communities
- Affordability of service

Public Involvement Considerations

Rate Setting Process

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

5

Public Involvement

Step 2 - Identify Revenue Requirements

Step 1 - Identify Financial and Pricing Objectives

Step 1: Identify Financial and Pricing Objectives

- Equitable contributions from new customers
- Simple to understand and update
- Ease of implementation
- Legality
- Revenue stability
 - Affordability to disadvantaged customers

Legality

Consistency with:

- Accepted practice and industry standards
- > Local & state statutes, contractual obligations, etc.
- Potential for litigation

□ Effective in meeting bond covenants

Identify Financial and Pricing Objectives (continued) Financial Sufficiency Manage utility like a business Accepted practice and industry standards Local & state statutes, contractual obligations, etc. Rates "should be" set to recover the "full cost" of utility operations Rates "should be" set to recover long-term financing of new facilities and water resources

Cost of Service Based Allocations

Recovery of costs from customers and customers classes in proportion to cost of providing service

"Level of Equity" tradeoff

Minimizing Customer Impacts

Avoiding large cost increases

Customer service implications

❑ Should rate increases be phased?

Affordability to Disadvantaged Customers

Lifeline rates

Percentage of income payment plans

Rate discounts

Conservation/Demand Management

Should the pricing structure encourage more

efficient water use?

Which demand is targeted?

Which customer classes should be targeted?

Equitable Contributions From New Customers

System development charges

"Growth pays for growth"

Intergenerational equity

Simple to Understand and Update

Communication with customers and

elected officials

Customer service impacts

Administration and updating

Ease of Implementation

Impact on customer service staff

Billing software capability

Data requirements and costs

Revenue Stability

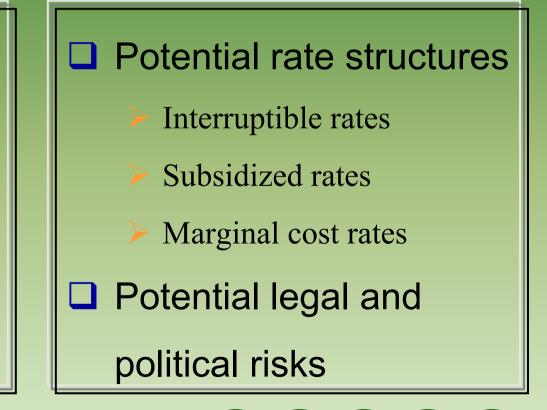
Revenues are predictable and stable

Cash flows matched with expenditures

Rate Stability

Smooth program of rate adjustments is usually preferable

Volatile swings should be avoided


Economic Development

Water and sewer

service as incentive for

economic development

Comparability with our neighbors?

Ranking Main Objectives

	Stakeholders		
Objectives	Α	В	С
Legality	1	3	1
Financial Sufficiency	3	1	2
Cost of Service Based Allocations	2	2	3
Minimizing Customer Impacts	5	4	6
Affordability to Disadvantaged Customers	4	6	5
Conservation/Demand Management	6	7	4
Equitable Contributions-New Customers	7	5	9
Ease of Implementation	8	8	8
Rate Stability	10	10	7
Economic Development	9	9	10

Objectives will vary depending on specific situations

Rate Setting Process

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

5

Step 2 - Identify Revenue Requirements

 1
 Step 1 - Identify Financial and Pricing Objectives

 Public Involvement
 Pricing Objectives

Step 2: Identify Revenue Requirements Topics Covered:

Steps to determine revenue requirements

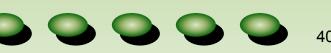
- Overview of developing revenue requirements
- Forecasting considerations
- Cash needs approach
- Utility approach basis
- Capital costs vs. operating costs

Steps to Determine Revenue Requirements

- Gather financial data
- Gather non-financial data
- Interview key staff
- Assemble data

- Determine key factors like inflation, interest rates, etc.
- Common problems

Steps to Determine Revenue Requirements (continued) Financial Data:

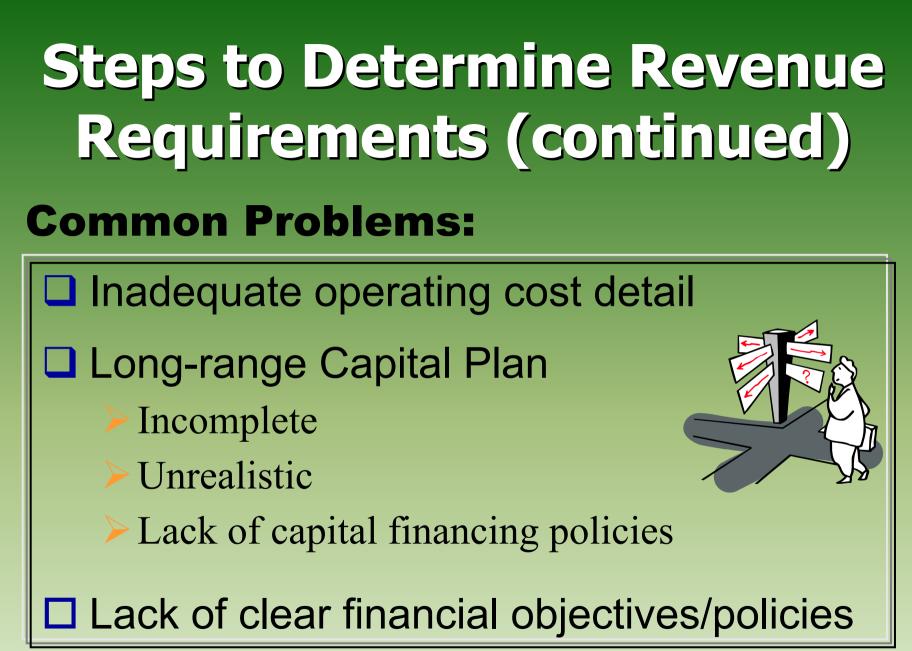

Audits, CAFRS

Budget document

Actual expenditures Monthly cash flows

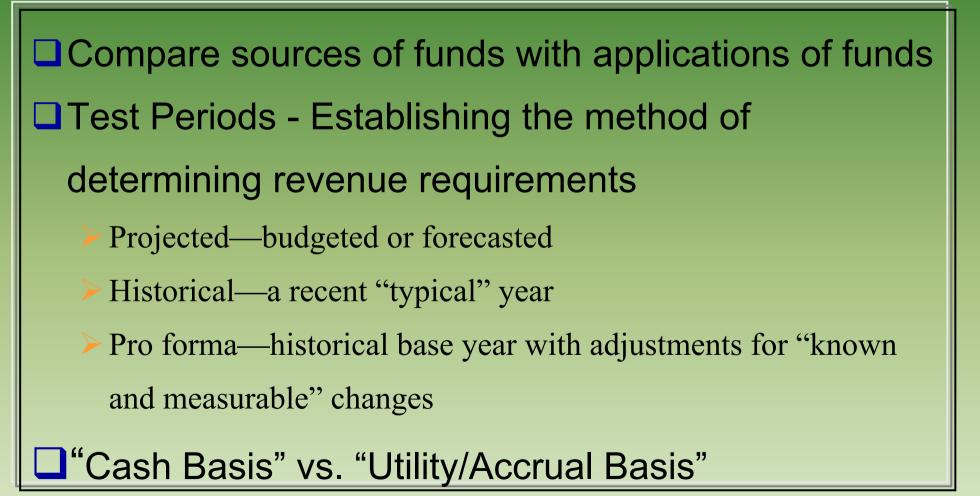
Bond Official Statements

Debt service schedules



Steps to Determine Revenue Requirements (continued) Non-Financial Data:

- Customer records
- Billed usage
- Functional breakdown of costs
- Design capacity and costs associated with peak demand


Customer survey information

Overview of Developing Revenue Requirements

Steps to Determine Revenue Requirements (continued)

Financial Planning Considerations:

Debt service coverage ratios

Reserve levels

Financing of capital projects

Forecasting Considerations

- Test year
- Generally from 3 to 10 years
- Important to provide a reasonable forecast
 - Avoid surprises in future years
 - Allows gradual "ramp up" of rates over years instead of spikes
- Should be considered living document and reviewed annually

Components:

- Operation and maintenance costs
- Indirect charges from General Fund
- Payment in lieu of taxes
- Franchise fees, etc.
- Capital costs

Operation and Maintenance Costs:

□ Water production,

distribution, etc.

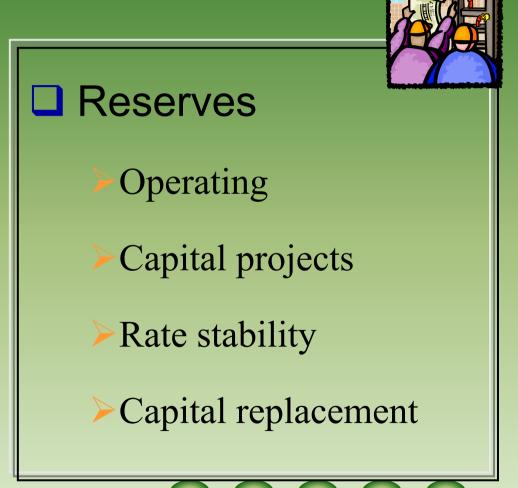
Sewer Collection and

treatment

Laboratory

Meter reading and

service


Billing and collections

Administrative

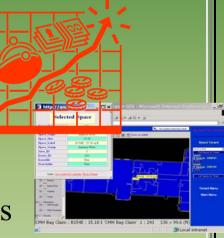
47

Capital Costs:

- Debt service
- Capital Improvements (rate funded)
 - Principal
 - >Interest
 - Debt service coverage factor

Capital Improvements:

Examples:

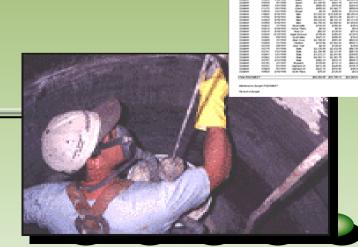

- Routine replacement
- Normal extensions and improvements
- Major capital replacements and improvements

How these affect rates depends upon funding policy agency has established

Estimates of contributions received from developers and customers, grants and other non user fee sources Major capital usually funded by combination of long term debt, revenues, and rates

Methodology:

- Projections generally based on historical data adjusted for:
 - Inflation
 - Changes in conditions
 - > Growth of demand affecting variable treatment costs
- Normalize historical data to account for conditions not expected to continue during forecast period



Utility Basis Approach Components:

Operation & maintenance

Depreciation

Return on investment

Utility Basis Approach Approach Generally Used By Investor Owned Utilities

Includes:

- Private investors organized as Sole Proprietor, Partnership, or Corporation
- Non-Profit Organizations, POA/HOA, Church, Camps, etc.
 - For-Profit Mobile Home Communities
- Rate Increase must be approved by Public Service Commission

Utility Basis Approach

For Municipal Water Utility Serving Outside Its Corporate Boundary

Compensation for rights and risks of ownership or other costs
 May want to charge more to outside customers than in-city
 For policy or political reasons

Utility Basis Approach

For Municipal Water Utility Serving Outside Its Corporate Boundary

- If not regulated or by agreement, sometimes charge outside customer a multiple of in-city rate
- Normally, some cost justification required, particularly where rates to outside customers are regulated
- Common method is to use combination of cash and utility bases

Utility Basis Approach

For Municipal Water Utility Serving Outside Its Corporate Boundary

Does owning municipality truly bear risk?

> Risk of loss due to injuries, damages, catastrophic event

Financial risk

Are incremental costs incurred to serve outside city?

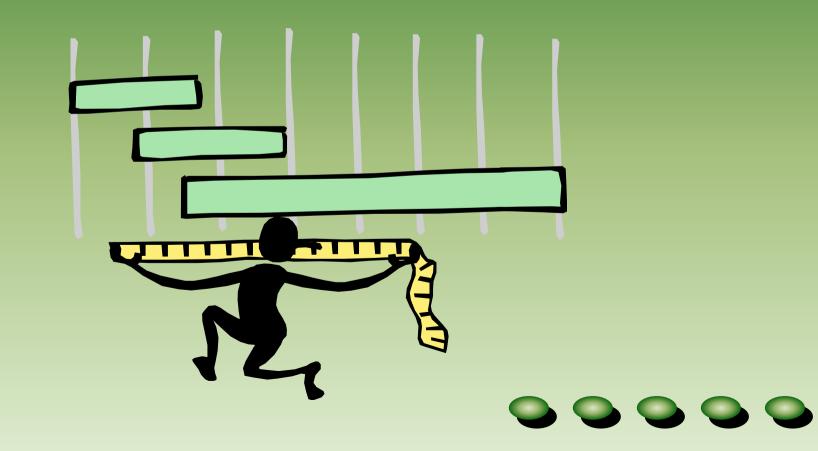
Location of supplies

Economies of scale

Utility Basis Approach Issues and Pitfalls That Can Arise

- Availability of necessary data such as net plant investment and depreciation
- Determination of appropriate rate of return
- High cash capital outlay requirements can cause rates to reverse
 - Must be prepared to accept results
 - Can't just switch back and forth

Advantages of Cash-Needs vs. Utility Basis Approach


Cash-Needs Utility Approach **Consistent with government budgeting practices** Less subjective **Easier to understand** Í **More flexibility** 創 創 Matches cost of service with beneficiary use **Consistent with CAFR** 創 **Consistent with bond covenant requirements** 創

Comparison of Cash-Needs vs. Utility Basis Approaches

	Cash-Needs	Utility
O&M	\$21,000	\$21,000
Depreciation		3,200
Allowable Return		19,200
Debt Service	19,900	
Rate Funded Capital Projects	1,800	
Reserve Fund Contribution		
Operating	500	
Replacement	1,000	
Expansion	1,000	
Insurance	500	
Rate Stability	500	
Debt Service	1,000	
Total Revenue Requirements	\$47,200	\$43,400

Capital Costs vs. Operating Costs

Capital Costs vs. Operating Costs Operations and Maintenance + Capital Requirements

= Total Revenue Requirement

Which cost goes where?

Minor costs vs. major costs

Ongoing vs. one-time costs

Must do today vs. sooner or later

Capital Costs vs. Operating Costs Types of Capital Costs:

- Rehabilitation expenditures for repair due to damage, wear, or decay to restore facilities to normal or optimum condition.
- Replacements expenditures for components replacing existing units.
- Improvements betterments or upgrades to increase value, quality, or usefulness.
- Expansion expenditures to enlarge capacity of facilities or extend system to new areas.

Capital Costs vs. Operating Costs

Definition of O&M Costs:

- Operating costs includes those system costs required during the process of providing water or wastewater service.
- Maintenance costs are those expenditures "required to maintain the system in good operating condition, and include repairs or replacements of minor property components less than the size of a retirement unit." *

Rate Setting Process

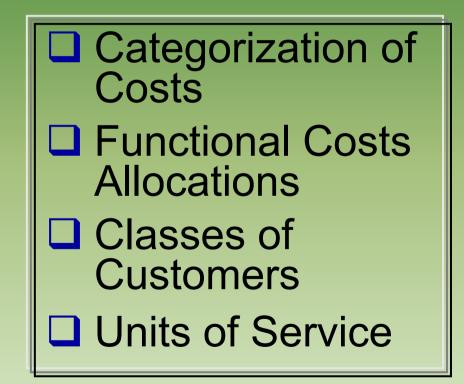
5

Public Involvement

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

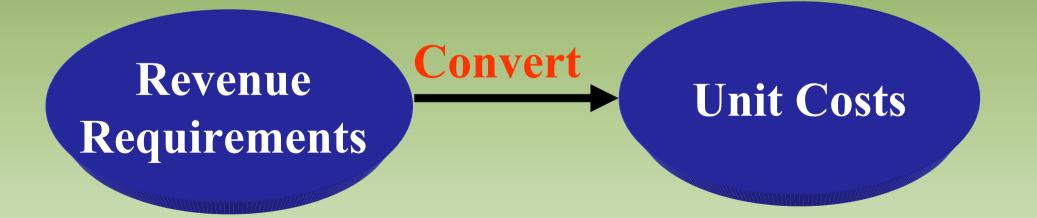
Step 4 – Design Rate Structure

Step 3 – Allocate Costs


Step 2 - Identify Revenue Requirements

Step 1 - Identify Financial and Pricing Objectives

Step 3: Allocate Costs


Topics Covered:

- Cost of Service Concept
- Cost of Service Alternatives
- Allocate Cost of Service to Cost Components

A cost-based process of converting revenue requirements into unit costs

What Is Cost of Service?

Cost of service is the total annual revenue requirements to be derived from utility revenues.

That is, the cost of providing service to the utility's customers must be recovered from the utility's revenues.

Rationale

- Different types of customers generate different costs because their patterns of use or characteristics are different.
- Cost of service allows the matching of rates charged to each group to the cost of serving them.
- Each group "pays its own way"; no subsidies.

Bottom Line

Achieve Equity:

The attempt to recover costs from users in proportion to their use of the system, and by recognizing the impact of each class on system facilities and operations.

Cost of Service Alternatives

O&M Allocation

- Capital Cost Allocation
 - Cash Basis

 Utility Basis
 (Depreciation and Rate Base/Return) Allocation Methodologies

Water

- Base-extra capacity
- Commodity-demand

Wastewater

- Design basis allocation
- Functional based allocation

Allocate Cost of Service to Cost Components

Recognize Cost Causation (Design Basis)
 Cost Components

Commodity costs

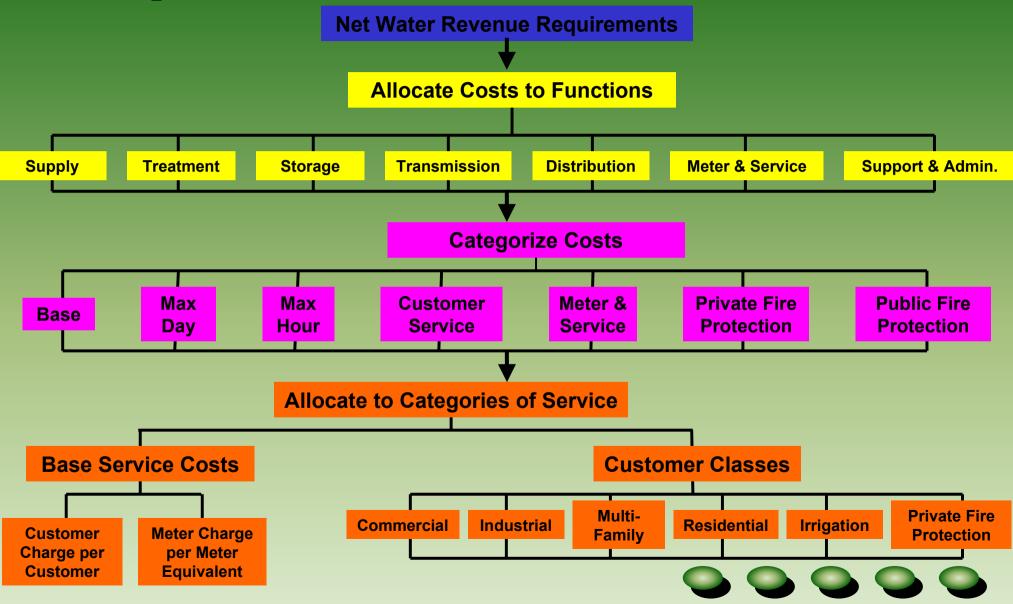
- Volume
- Strength
- Demand costs
 - Maximum day
 - Maximum hour

Customer costs

- Meters & services
- Billing (Meter reading, billing, collection)

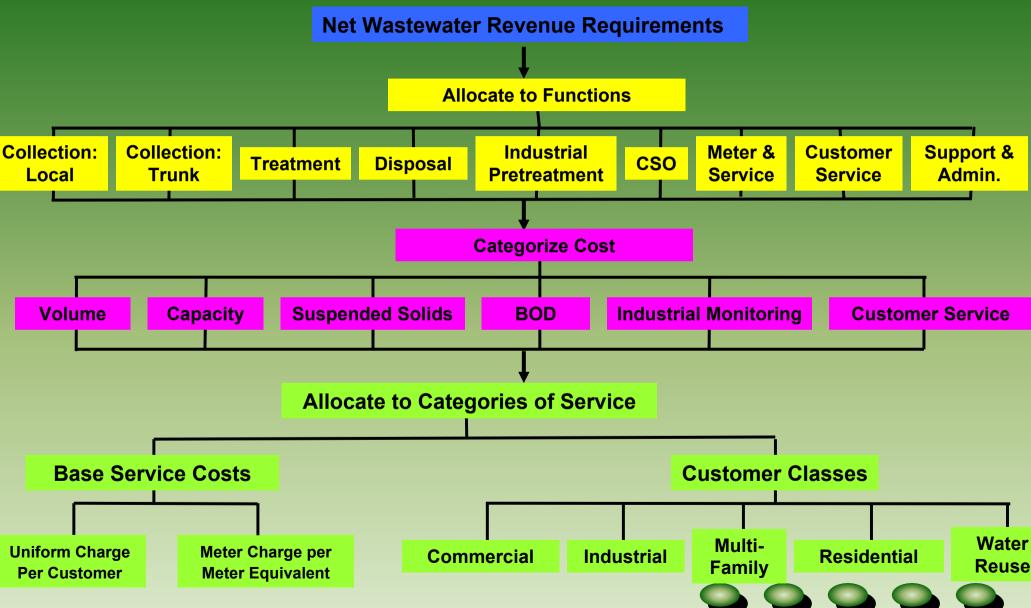
> Other

- Fire protection
- Customer specific


Allocate Cost of Service to Cost Components (Continued)

Capital related costs (debt service, other)

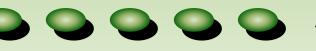
- Allocate rate base (plant investment) to cost components
- Allocate capital related costs in proportion to rate base
- Operation & maintenance expense
 - Similar allocation to rate base
 - Power (commodity/demand)
 - Chemicals (commodity)



Sample Allocation of Water Costs

73

Sample Allocation of Wastewater Costs


Classes of Customers

Distribute Costs to Customer Classes

Determine unit cost of service by cost component

- Operation & maintenance expense
- Capital cost

Apply unit costs to customer class units of service

Classes of Customers

Indicative Revenue Increase by Class

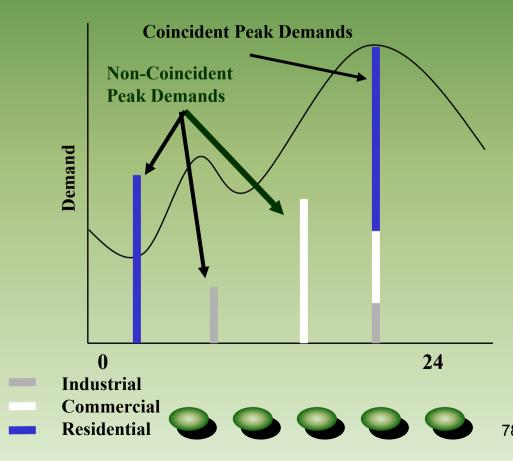
Overall system revenue increase required Indicated increases by class to meet allocated cost of service Provides decision makers with basis for: Establishing defensible rates Identifying levels of subsidy if rates vary from cost of service May require phase-in to achieve full cost of service

Units of Service Sources of Data

Billing Records

- Number of meters by size
- Number of meters by class
- Annual metered use by class
- Monthly variation in metered use by class
- Wastewater pollutant strengths

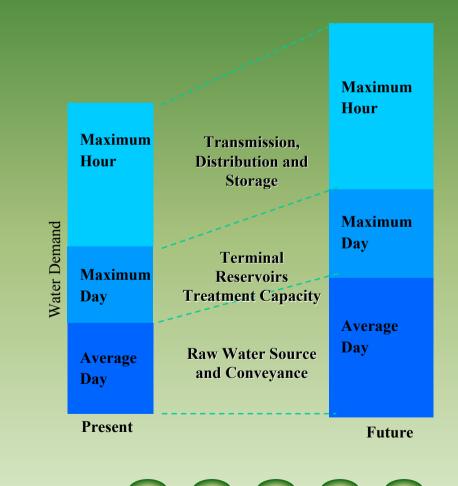
Operational Records


- System water demand (annual, max day, max hour)
- Treated wastewater volumes and strengths (customers,infiltration/ inflow)

Water Demand Factors Coincident vs. Non-Coincident Peaking Factors

<u>Issue</u>

Should allocations use coincident peaking demands, non-coincident peaking demands, or some combination of both?


Coincident vs. Non-Coincident Peaking Factors -Arguments & Implications

Benefits of Coincident:

 Cost allocations are to reflect cost causation; costs are incurred due to coincident peaking

Benefits of Non-Coincident:

 Benefits of diversity of customer demands should be spread to all customers

Rate Setting Process

5

Public Involvement

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

Step 2 - Identify Revenue Requirements

Step 1 - Identify Financial and Pricing Objectives

Step 4: Design Rate Structure

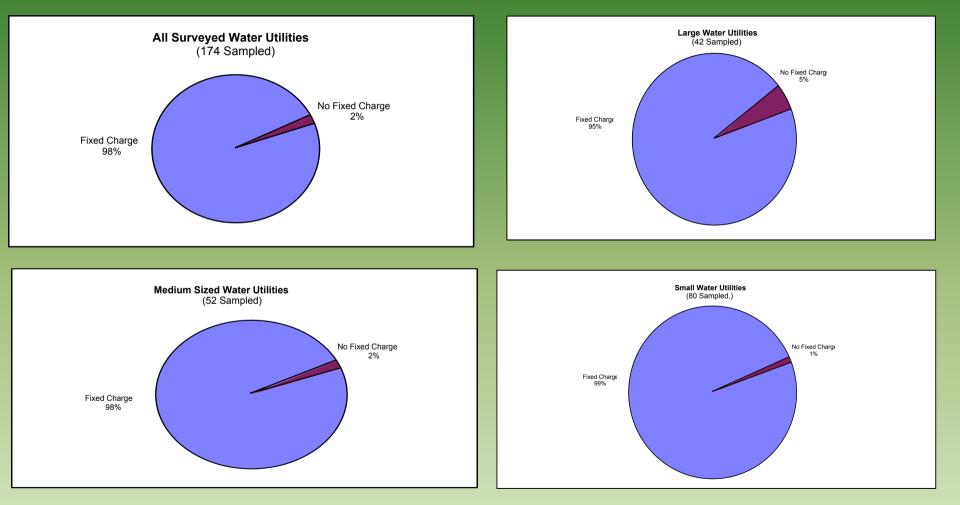
Topics Covered:

- Recovery of full costs
- Fixed charges vs. variable charges
- Evaluating alternative rate structures
 - Conservation vs. traditional rate designs

Recovery of Full Costs

Goal is to recover costs of service

from each customer class


Fixed Charges vs. Variable Charges

Fixed Charges

- Invariant with customer water usage
- Cost-of-service fixed charges reflect customer related costs
- Fixed charges may include portion of capital costs
- Variable Charges ('Consumption' Charges)
 - Vary with amount of water used
 - Recover utility costs that vary with customer usage patterns

Summary of Water Utilities with Charges for No Consumption 2000 Survey of 174 Water Utilities

Notes: Large systems sold over 75 mgd, Medium sized systems sold between 20 and 75 mgd, and Small systems sold less than 20 mgd.

Source: Raftelis Financial Consulting, PA, Raftelis Financial Consulting 2000 Water and Wastewater Rate Survey. Charlotte N.C.: Raftelis Financial Consulting, PA, 2000

Examples of Fixed Charges

Meter Size	Billing and Collecting	Meters and Services	Meter Charge	Total
5/8 - inch	\$2.00	\$2.25	\$4.20	\$8.45
3/4 - inch	2.00	2.45	4.45	8.90
1-inch	2.00	3.10	5.10	10.20
2-inch	2.00	6.50	8.45	16.95
3-inch	2.00	24.50	26.50	53.00
4-inch	2.00	31.25	33.20	66.45
6-inch	2.00	46.80	48.80	97.60

Historical Perspectives/Policy Considerations for Fixed Charges

Variable charges not possible prior to availability of metering

- Fixed charges above customer costs remain prevalent
- Revenue recovery often cited as basis for "high" fixed charges
- Special considerations for resort communities (e.g., part-time residents)

- Certain costs are recovered as a fixed component of a customer's bill:
 - Customer service, billing & collection
 - Meter reading and meter maintenance
 - Portion of debt service "readiness to serve" component
- These costs are incurred by the utility regardless of usage.
- Revenues are generated regardless of usage.

Typical Fixed Charges

Customer or Base Charge

- Included costs are recovered on a per account basis (example: billing, collection, etc.)
- Charges are not differentiated by meter size

Service Charge by Meter Size

Included costs are recovered proportionately based on meter size (example: meter installation & maintenance)

Minimum Charge

Includes an allowance for a minimum level of consumption

Variable Charges

- Recovers all costs not recovered from the service charges
 - Water production, treatment & delivery
 - Wastewater collection, treatment & disposal
- Customer costs vary depending on customer usage characteristics (volume demands)
- Typically measured through water meter readings
- Wastewater consumption is frequently based off a percentage of water consumption

Advantages vs. Disadvantages

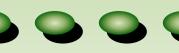
Fixed Charges

Advantages

- Contributes to revenue stability
- May reflect customer related costs

Disadvantages

Limits customer control of bill
 / conservation incentives


Variable Charges

Advantages

- Recover volume-related costs based on usage
- Address policy objectives including conservation

Disadvantages

Administrative costs associated with metering consumption / advance rate designs

Rate structure typically reflects variable charges

Evaluating Alternative Rate Structures

Considerations in Evaluating Alternatives

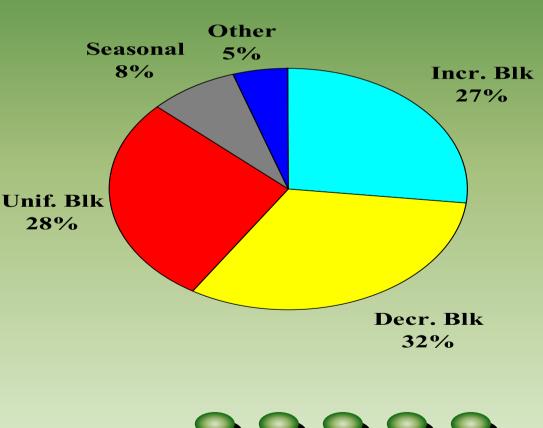
Level of effort

- Availability of resources and data
- Public involvement
- Pricing objectives
- Elements of rate structure
 - Defining customer classes
 - Frequency of billing
 - how much to charge (fixed charges and consumption charges)

Evaluating Alternative Rate Structures (continued)

Common Elements of Rate Structure

- Defining customer classes
 - Who will be charged
- Frequency of billing
 - How often customers are charged
- How much to charge (fixed charges and consumption charges)
 - What rates apply
 - Most of the time is spent here


Evaluating Alternative Rate Structures (continued)

One Size Does Not Fit All

Rate designs vary by utility and by region

Rate levels vary by utility

- Generally a function of the utility's costs and the customers demands
- Rates reflect diverse and competing objectives

Conservation Rates vs. Traditional Rate Designs

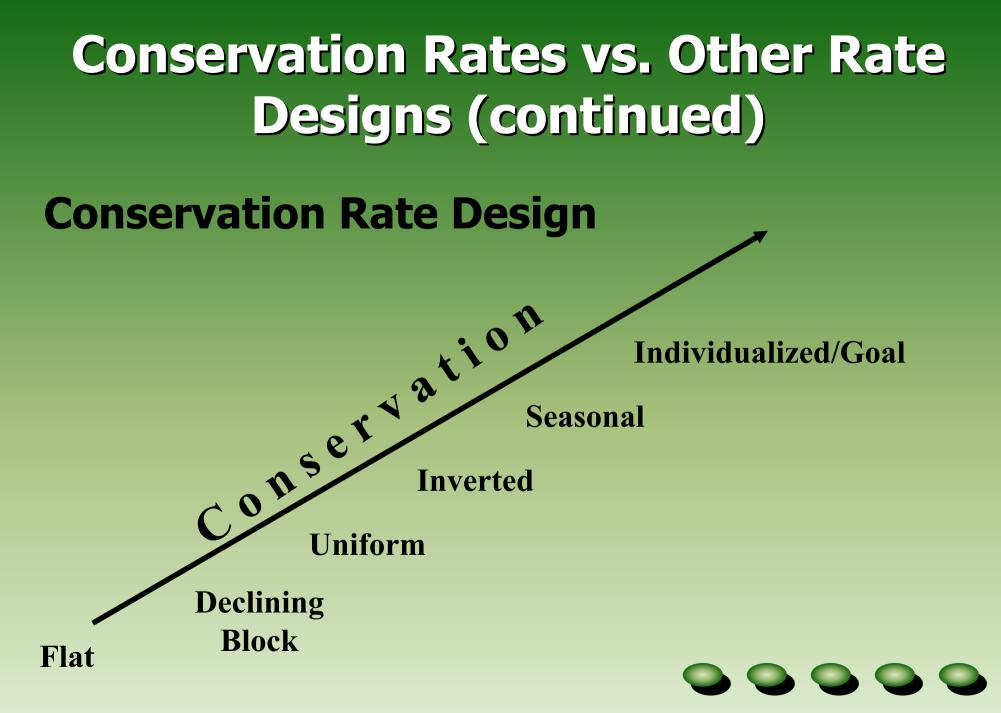
Conservation Rates vs. Traditional Rate Designs

CONSERVATION

- 🖵 Uniform
- Inverted Block
- Seasonal
- Individualized Rates

TRADITIONAL			
G Flat			
Declining			

Conservation Pricing Objectives

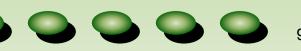

I. Demand Management Objectives

Primary

- Reduce peak usage
- Reduce season usage
- Reduce system demand

Secondary

- Reward economically efficient water users
- Surcharge nonessential and non-efficient water use
- Communicate conservation consciousness

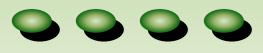


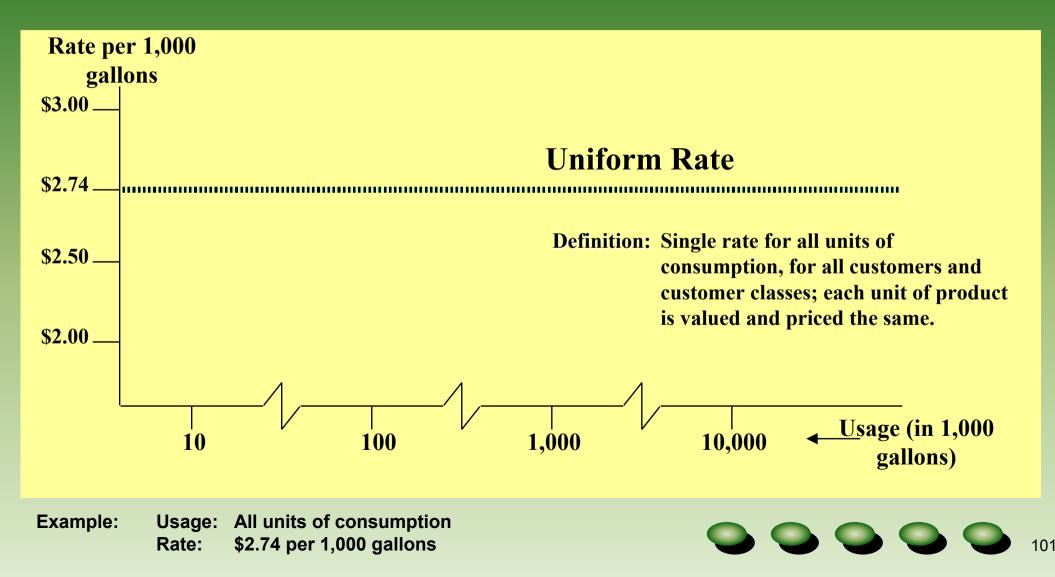
-98

Factors Affecting Conservation Rate

- **Frequency of billing**
- Billing format
- **Fixed vs. variable**
- Message sent
- Consumer's ability to react

Flat Rate


Major Advantages

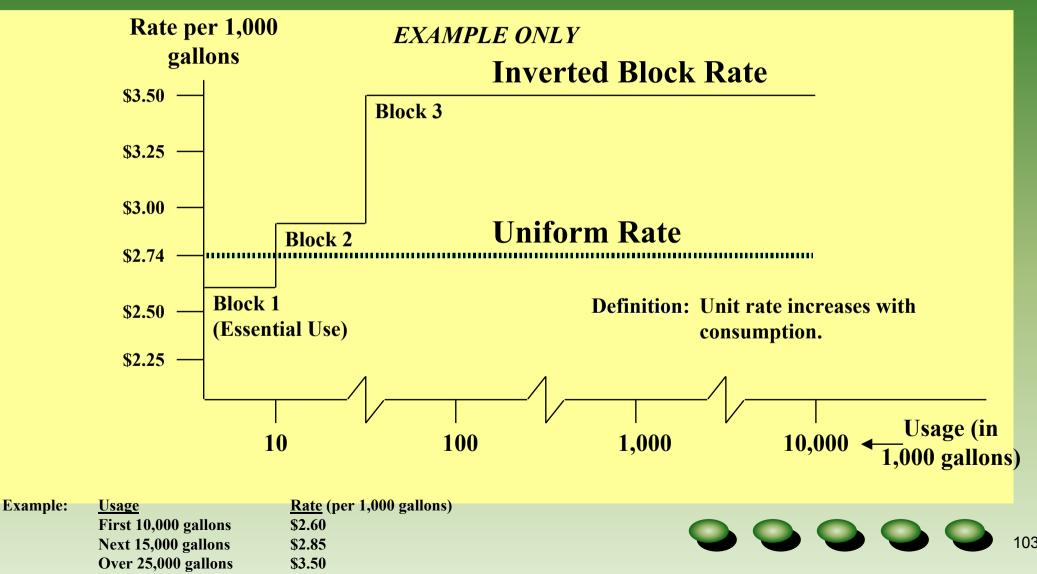

- Revenue stability
- Easy to understand
- Seen as favorable by bond investors

Major Disadvantages

- Does not equitably
 - recover costs from
 - different user classes
- Does not promote efficient use of water

resources

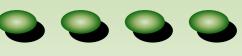
Conservation Rates vs. Other Rate Designs (continued) Uniform Rates

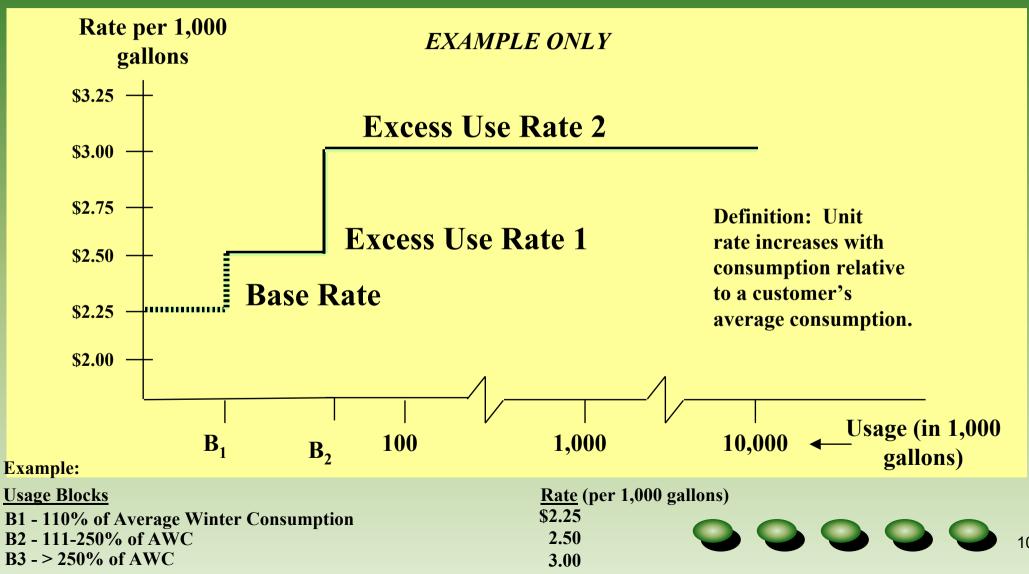

Major Advantages

- Are generally easy to implement, administer, and update
- Are understandable and accepted by most customers

Major Disadvantages

- Does not fully allocate system costs associated with peak/seasonal demand to usage which creates the peaks.
- May only marginally achieve conservation objectives



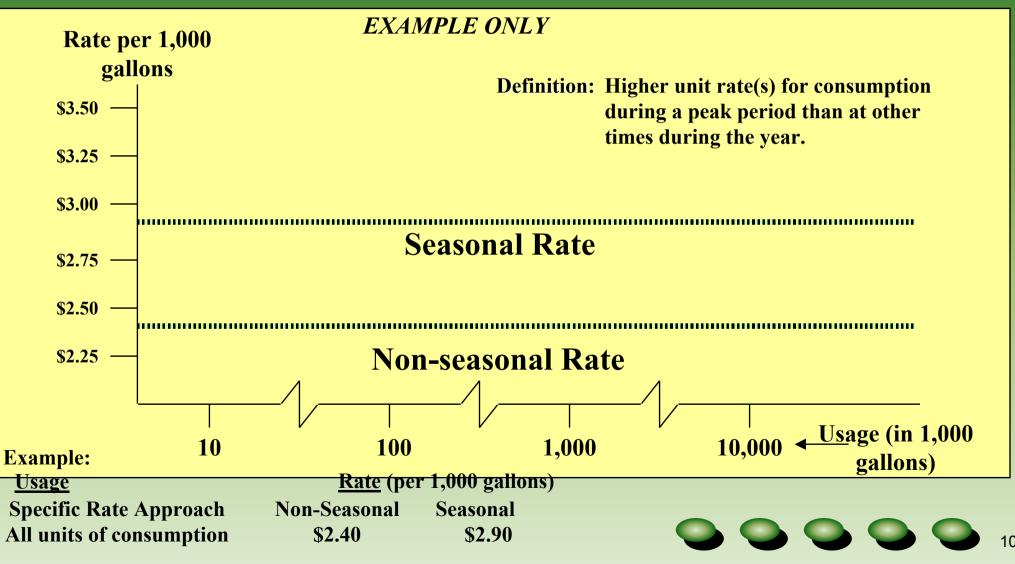

Inverted Rates

Major Advantages

- Can be highly conservation oriented
- Are generally understandable by customers

Major Disadvantages May result in revenue instability Pose challenges in developing appropriate block cutoffs and unit rates May have substantial impact on high volume **customers**

Excess Usage Rates (Individualized)


Major Advantages

- Produces the most equitable conservation structure
- Highly rewards conservationminded customers
- Places more cost burden on non-efficient water users

Major Disadvantages

- Can be more difficult to calculate rates
- Imposes billing system challenges
- May have the most dramatic differentials in customer bills
- May be difficult for the customer to understand

Seasonal Rates

Major Advantages

- Are based upon cost of service allocation concepts
- Are generally understandable and accepted by customers

Major Disadvantages

- May have substantial impact on high volume customers
- May have less predictable impact on demand, and therefore revenue

Conservation Rates vs. Other Rate Designs (continued)

Hybrid Approach

- Rate structure varies by customer class
 Any combination of rate structures
- may be used
- Addresses implementation issues for each customer class

Conservation Rates vs. Other Rate Designs (continued)

Design Features Affecting Conservation Aggressiveness of Rate Structure

Block cutoffs
Number of blocks
Magnitude of unit charges
Definition of "season"

Conservation Rate Structure Evaluation Matrix (Example)

	Uniform	Inverted	Excess Use	Seasonal
Demand Management Goals		Block		
Primary Goals				
Reduce Peak Usage	С	B -	A -	B -
Reduce Season Usage (Maximum Seasonal Demand)	С	В	Α-	B +
Reduce System Demand (Average Day Demand)	С	B +	B +	B -
Overall	С	В	A -	В
Secondary Goals				
Reward Economically Efficient Water User	С	B -	A -	B +
Surcharge Non-essential and Non- efficient Water Use	С	В	С	В
Communicating Conservation Consciousness	С	A -	А	A -
Overall	С	B +	A -	B +

Rate Setting Process

5

Public Involvement

Step 5 – Assess Effectiveness of Addressing Pricing Objectives

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

Step 2 - Identify Revenue Requirements

Step 1 - Identify Financial and Pricing Objectives

Step 5: Assess Effectiveness of Addressing Pricing Objectives

Topics Covered:

- Customer impact analysis
- Competing objectives
- Price elasticity of demand
- Comparison with other communities
 - Affordability of service

Customer Impact Analysis

Impact on individual customers Typical single family residential Typical commercial System impact Sample of residential/non-residential accounts All accounts

Competing Objectives

General Rate Structure Evaluation Matrix

	Uniform	Inverted Block	Excess Use	Seasonal
<u>General Pricing Goals</u>				
Encourage Cost of Service Equity	B -	B-	A-	A-
Minimize Litigation Potential	A -	B-	B-	В
Minimize Negative Impact on Rates	Α	В-	В	В
Overall	B+	B -	B	В
<u>Related Goals</u>				
Lifeline Rates	С	B-	A-	B+
Enhance Implementation	A -	B-	С	В
Encourage Simplicity	A-	B-	C+	В
Encourage Use of Reclaimed Water	С	B +	B +	B +
Overall	В	B-	B-	В

Price Elasticity of Demand Defined

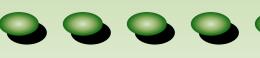
- Price elasticity is a measure of the price sensitivity of consumption by consumer
 - Elasticity = <u>% change in consumption</u>

% change in real price

Elasticity is usually expressed as a decimal percentage number. For example, given an elasticity of -.1, and a 60% upward price change, the resulting consumption change is a downward 6% or (-.1 x 60).

Challenges to determine or estimate price elasticity.

Price Elasticity of Demand


- Price effects can be small if little change in real prices.
- Other demand parameters are strong: temperature, rain, income.
- Timing and lags.
- Fixed and Wastewater charges affect price elasticity.
- Consumers react to average bill, not final block rate.
- Each user class responds differently.

- Residential summer usage is more sensitive than winter usage.
- Peak usage is more sensitive than off peak usage.
- Southwest tends to be more price sensitive than other areas.
 - Consumer education affects price elasticity.
- Literature reviews are imperfect for specific areas.

Price Elasticity of Demand Impact on Rates

- Existing rates are \$1.00 per thousand gallons
- New costs to be recovered are \$110 thousand
- Demands are 100 thousand gallons

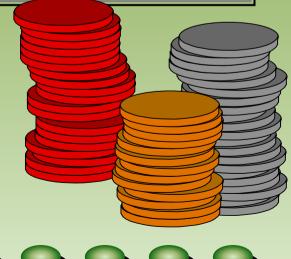
New rate equal:
\$110,000 / 100 thous. gal. = \$1.10 per thousand gal (10% increase)
Price elasticity of demand is -0.3; therefore expected
 decrease in demand is 3% Revised rates equal: \$110,000 / 07 thous gol = \$1,12
\$110,000 / 97 thous. gal. = \$1.13 per thousand gal (13% increase)

Comparison with Other Communities

Community	Water	Wastewater	Total
Austin	\$15.59	\$31.69	\$47.28
Fort Worth	\$19.50	\$23.10	\$42.60
Tulsa	\$17.71	\$18.95	\$36.66
Dallas	\$12.89	\$23.59	\$36.48
Average	\$15.32	\$19.28	\$34.60
Albuquerque	\$16.70	\$16.85	\$33.55
San Antonio	\$14.34	\$14.83	\$29.17
Denver	\$13.52	\$13.56	\$27.08
El Paso	\$12.32	\$11.66	\$23.98

Affordability of Service

- Ability of Consumers to Pay Charges
 Ways to Improve Ability to Pay
 - Change Bill Frequency
- Life Line Rates
- >Budget Billing
- Target Usage Reduction
- > Third Party Programs


- Percentage of Income
 - Payment Plans
- Rate Discounts

What is Affordability?

Ability of consumers to pay the charges for water service in a timely fashion.

Not the same as <u>willingness</u> to pay.

Customers Who May Experience Ability-to-Pay Problems

Fixed incomes

- TANF recipients
- Unemployed
- Elderly
- Disabled

Low incomes

- Welfare-to-work households
- Single parent headed household with children

Conditions that Can Exacerbate Affordability Problems

High summer bills

- May be result of increased consumption unrelated to outdoor usage (e.g., children home all day)
- Come at same time that energy bills peak

Extraordinary expenses in other areas

May create a temporary inability to pay (e.g., medical bills)

Ways to Improve Ability to Pay:

Non-Rate Changes

Change Bill Frequency

- Many low-income households find it easier to pay smaller monthly bills than larger bills delivered bimonthly or quarterly.
- Does not require changing to monthly billing for all customers (can be an option available to customer).
- Bill should be delivered on the same day each month.

Budget Billing

Levelizes high seasonal bills
Improves ability of household to budget
Improves cash flow to utility

Targeted Usage Reduction

- Plumbing fixture replacement
 - Leak repair
- Education
 - Joint funding may be available from energy provider for hot water savings

Third Party or Voluntary Programs

Utilities can create fund to which customers (and utility) contribute to assist low-income consumers

Piggyback on energy funds

Third-party charitable organizations can

administer fund

Ways to Improve Ability to Pay:

Rate Changes

Lifeline Rates

- Below-cost rate for meter charge and water needed for minimum sanitary requirements.
- Should be targeted to households in need.
- Amount of water may vary with household size.

Percentage of Income Payment Plans

- Water bill set to a percentage of household income.
- Percentage may vary with income level.
- Timely bill payment a condition of remaining in plan.

Rate Discounts

- Fixed percentage discount applicable to customers that meet certain criteria
 - Entire bill or just a portion
- Applications
 - All elderly heads of household
 - All low-income households
 - All households in certain locations

Rate Setting Process

Step 4 – Design Rate Structure

Step 3 – Allocate Costs

ic Involvemen

5

Step 2 - Identify Revenue Requirements

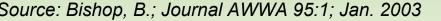
Step 1 - Identify Financial and Pricing Objectives

Public Involvement Considerations

Topics Covered:

Why Is It Important?

Communication Tools


Ten Steps to Successful Public

Involvement

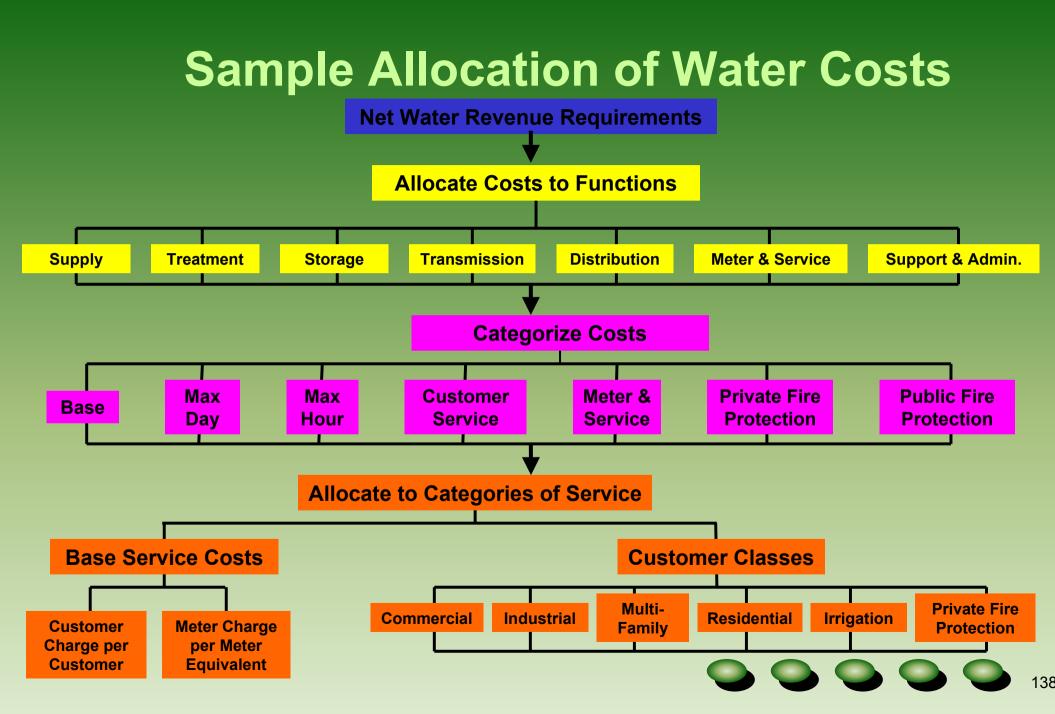
Rate Issues Are the Most Difficult to Communicate

Issue	Frequency of Responses	Percent of Respondents
Rates	29	17
Drought, Conservation, Supply	26	15
Specific Contaminants	22	13
Water Quality	20	11
Projects	19	11
Management	19	11
Consumer Confidence Reports	18	10
Regulations	12	7
Fiscal	12	7
Pollution	10	6

Most Difficult Audiences

- **1. Residential Customers**
- 2. Citizens' Groups
- 3. Media
- 4. Business Customers
- Regulators
- Elected Officials

Employees


Why Are Rates So Difficult?

Complex Concepts

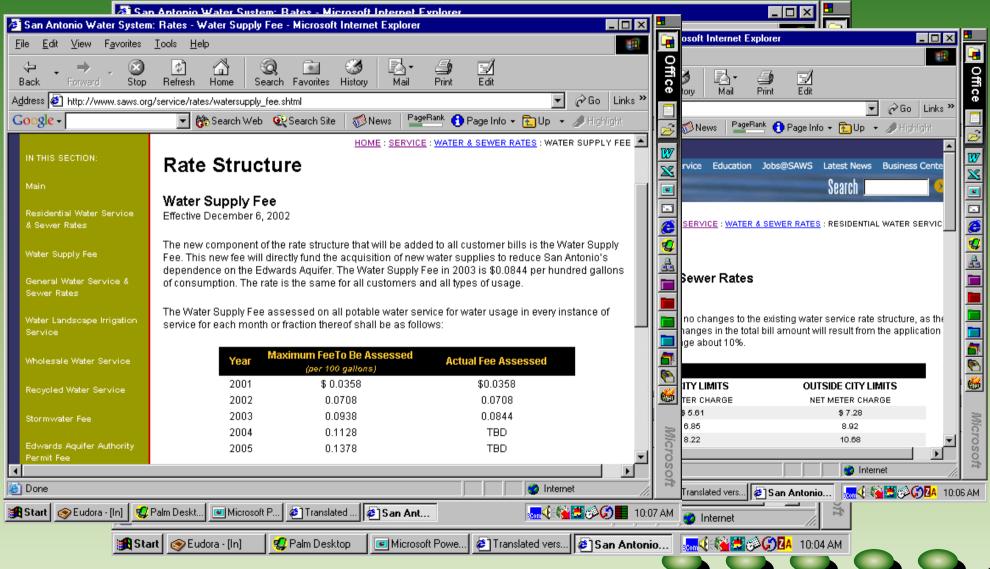
Conflicting Priorities

13

Conflicting Priorities

Residential	Citizens' Groups	Media
Customer Impacts	Customer Impacts	Customer Impacts
Affordability	Conservation	Simplicity
Conservation	Legality	Economic Development

Business	Regulators	Elected Officials	Employees
Customer Impacts	Legality	Customer Impacts	Financial Sufficiency
Economic Development	Cost of Service	Financial Sufficiency	Ease of Implementation
Rate Stability	Financial Sufficiency	Simplicity	Revenue Stability


Tools for Fostering Understanding

Informational Press releases ➢ Bill stuffers Messages on bills ►TV and radio PSAs >Annual reports >Website Newsletters > Posters Billboards

Participatory
Focus groups
Advisory committees
Workshops

Official ➤Board and Council meetings ➤Rate study reports

SAWS Website

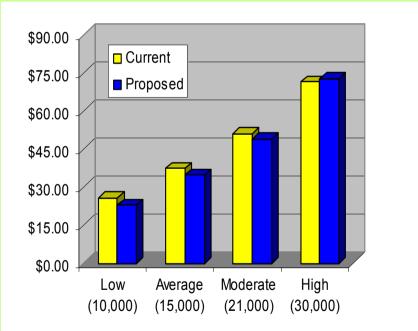
141

Rates Advisory Committee

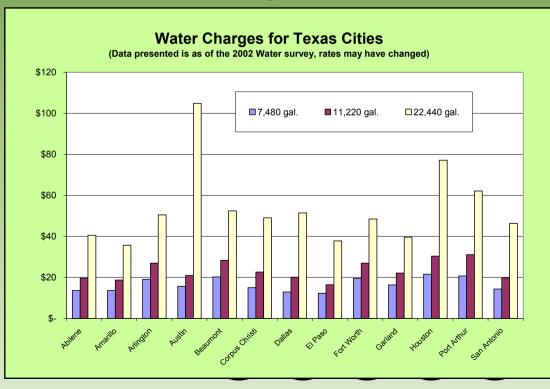
ROLE: Advise the SAWS Board of Trustees.

- COMPOSITION: Area citizens who represent the range and diversity of SAWS customers.
- **FOCUS:** SAWS Rates and Rate Structure.
- OUTCOME: To provide SAWS with information to be used to make decisions, by the Board of Trustees, about rates and rate structure.

Rates Advisory Committee


Basic Tasks:

- Review design of structure of rates and charges within the framework of SAWS policies.
- Help maintain fair and equitable rates with consideration of service area demographics.
- Evaluate cost allocations.
- Review pricing objectives outlines by previous Rates Advisory Committee.



Rate Study Report

Rate Impact Analysis

Rate Comparisons

Ten Steps For Successful Public Involvement

- Frame the problem
- Identify the constraints
- Identify & describe decision steps and project milestones
- Identify & understand potentially affected stakeholders
- Determine vulnerabilities and must resolve issues

Ten Steps For Successful Public Involvement (continued)

- Determine appropriate level of public involvement.
- Select processes and techniques.
- **Develop a work plan.**
- Implement and monitor the work plan.
- Manage change.

